Dynamic Stress Drop and Rupture Velocity for Mining Induced Seismicity

Wojciech Dębski

Institute of Geophysics Polish Acad. Sci.,

www.igf.edu.pl/debski

debski@igf.edu.pl

13 listopada 2008

Plan of the talk

- Background review of the seismicity induced by mining in Poland
- Soure parameters from seismic spectra
- Rupture velocity and dynamic stress drop
- Towards the dynamic source tomography
- An accuracy issue: Bayesian and MCMC sampling techniques

Harva

Mining technology

Mining technology (cd)

Harvard University- 4

Mining technology (cd)

Polish copper mines

LGOM Seismicity

1980–1999

LGOM Seismicity

Analyzed data

Static stress drop

1994–2006

Stress drops - classical estimators

• Static (Brune) stress drop $[\sigma_0 - \sigma_1]$

$$\Delta \sigma_s = \frac{7}{16} \frac{M_0}{R^3}$$

$$\sigma_a = \frac{\mu E}{M_0}$$

 $\sigma_a \approx 1/10 \Delta \sigma$ (Rudna copper mine)

Stress drops - classical estimators

• Dynamic stress drop $[\sigma_0 - \sigma_d]$

$$\Delta \sigma_d = \frac{M_0}{4\pi v_r^3 I} \left(1 - \xi^2\right)^2 \frac{\mathrm{d}S}{\mathrm{d}t}$$

$$I = \int_0^T S(t) \, \mathrm{d}t$$

- Mo seismic moment
- v_{T} constant (assumption!) rupture velocity
- ξ geometrical (directional) factor assumed to be 0.75
- S STF
- \bullet T rupture duration time

Partial stress drop/overshooting

$$\gamma_d = \Delta \sigma_d / \Delta \sigma_s \approx \frac{\sigma_0 - \sigma_d}{\sigma_0 - \sigma_1}$$

$$\gamma_{d} \begin{cases} = 1 \quad \text{Orowan's model} \quad \sigma_{d} = \sigma_{1} \\ > 1 \quad \text{partial stress drop} \quad \sigma_{d} < \sigma_{1} \\ < 1 \quad \text{"overshooting"} \quad \sigma_{d} > \sigma_{1} \end{cases}$$

Rupture velocity

"circular type"

"unilateral type"

no visible directivity

$$V_r = 0.5 V_s$$

STF- spatial distribution

Source Time Function

Source Time Function

STW width - spatial distribution

Rupture velocity

Rupture velocity

Stress estimates

Velocity

"Overshhoting" stress

Scaling stresses with $\ensuremath{\mathbf{M}}_0$

Fracture energy

Source size: Madariaga, Brune, or ...

Uncertainties (a)

Uncertainties (b)

Finite size sources

Finite size sources

Case - A

Case - B

Case - C

Empirical Green Functions

Source Time Function

Synthetics/Seismograms

Harvard University- 51

Inverse problem - Indirect Measurements

$$\mathbf{d}^{obs} \implies \mathbf{m}$$

Solution

$$||\mathbf{d}^{obs} - \mathbf{d}^{th}(\mathbf{m})|| + \lambda ||\mathbf{m}^{ml} - \mathbf{m}^{apr}|| = \min$$

Errors

$$\mathbf{m}^{true} = \mathbf{m}^{ml} + \epsilon_{\mathbf{m}}$$
 $\epsilon_{\mathbf{m}} = ???$

Inversion Algorithms

Method	Advantages	Limitations
Algebraic (LSQR)	- Simplicity	- Only linear problems
$\mathbf{m}^{ml} = (\mathbf{G}^T\mathbf{G} + \gamma\mathbf{I})^{-1}\mathbf{G}^T\cdot\mathbf{d}^{obs}$	- Large scale problems	- Lack of robustness
Optimization	- Simplicity	- Difficult error estimation
$\ \mathbf{G}(\mathbf{m}) - \mathbf{d}^{obs}\ + \lambda \ \mathbf{m}) - \mathbf{m}^a\ = \min$	- Fully nonlinear	
Bayesian	- Fully nonlinear	- More complex theory
$\sigma(\mathbf{m}) = f(\mathbf{m})L(\mathbf{m}, \mathbf{d}^{obs})$	- Full error handling	- Requires efficient sampler

Inversion algorithms

Back projection

Model space search

Bayesian Inversion - Basic Ideas

Probabilistic approach

- A posteriori pdf $\sigma(m, d)$:
- always exists
- ✤ is unique
- describes all information
- ♦ is the solution of an inverse problem

When and why we need to use this approach ???

ERROR ANALYSIS !!!

All channels

STF- errors

Warsaw team

- prof. S.J. Gibowicz
- + dr P. Wiejacz
- 🔶 dr B Domański
- + dr G. Kwiatek (on leave GFZ, Potsdam)
- + dr G. Lizurek
- + L. Rudziński
- + M. Dec
- 🔶 dr hab. W. Dębski