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Stationary Markov Chain
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Direct vs. MCMC sampling

✦ Direct sampling:
generation of samples mα in such a way that all lies in a
region where σ(m) is large so they can be used for accurate
estimation of integrals as follow

I =

∫
M

h(m)σ(m)dm ≈
∑
α

h(mα)σ(mα)
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Direct vs. MCMC sampling

✦ MCMC sampling generation of samples mα in such a
way that

N(mα ∈ [m− h,m+ h]) ∼ N totσ(m)

then

I

∫
M

h(m)σ(m)dm ≈
∑
α

h(mα)
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Direct vs. MCMC sampling - summarising

✦ Direct sampling:
important are values σ(mα) not distribution of m ∈ M

✦ MCMC sampling:
important is distribution of m ∈ M, not values σ(mα)

debski@igf.edu.pl: L11- 5 CAMK, 7.06.2023



Probabilistic Inverse Theory Lecture 11

Metropolis pseudo-code for sampling from p(m)

✦ Initialize sampling mα = m0

★ generate test sample mβ: mβ = mα + δm
★ evaluate mβ: pβ = p(mβ, Tk)
★ select a new chain state mα+1

➡ accept mβ with probability p = min (1, pβ/pα)

mα+1 = mβ

➡ if mβ rejected duplicate

mα+1 = mα

✦ Repeat untill sufficient number of {mi} is obtained
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Metropolis algorithm -features

✦ after so called burn-in initial time generated samples follow σ(m) probabi-
lity distribution

✦ subsequent samples are strongly correlated - the chain must be run for a
long time

✦ MH is optimum sampling algorithm if only σ(m) is available.

✦ How many samples should be generated ?

✦ problem with generating “proper” test samples (mβ)
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MH algorithm - how many samples

N = 100

-4 -2 0 2 4

N = 1000

-4 -2 0 2 4

N = 10000

-4 -2 0 2 4
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MH algorithm - generating proposal samples
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MH algorithm - generating proposal samples

“Narrow” σ(m) requires small update of mα

mβ = mα + δm

but then we diminishing mixing property of the chain
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Metropolis Hasting algorithm

σ(m) = f(m)L(m)

✦ Initialize m0

✦ Repeat

★ generate test sample mβ from f(m)
★ generate uniform random number u ∼ U(0, 1)

★ if u < P (mβ,mα) = min
[
1, L(mβ)

L(mα)

]
mα+1 = mβ

otherwise
mα+1 = mα

✦ Continue until sufficient number of samples {mα} is generated
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Mixture of two MH chains

Km = νK1 + (1− ν)K2

✦ Generate initial state m0

✦ Repeat

★ get random number u ∼ U(0, 1)
★ if u < ν

run the chain with kernel K1

otherwise
run the chain with kernel K2

★ reselect chain K1,K2

and restart from mα = mK
final
i

The Markov chain mixture algorithm is built from two chains with the K1 and K2 kernels
having the same invariant distribution.
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Non stationary MCMC

✦ discrete time: t1, t2, · · ·

✦ short memory K(ti, x; ti−1, xi−1)

✦ ergodic process:

★ stationary K(t, x; t′, x′) = K(x, x′)

★ irreducible
★ aperiodic

*** NO Stationary probability distribution:***
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Non stationary chain evolution

T=10 T=1 T=0.1

Example of (slow) MC chain “stationary” distribution evolution in time due
to a particular time dependences of K(·, ·) kernel.
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Non stationary MCMC

p(m) = exp

(
−S(m)

kT

)

K(mβ,mα) : P (mβ,mα) = min

[
1, exp

(
−S(mβ)− S(mα

kT

)]
where, e.g.

S(m) = ||do − dth(m)||

and allow decreasing of T :

T (ti) =
To

ln(ti)
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Non stationary MCMC

p(m) = exp

(
−S(m)

kT

)

T=10 T=1 T=0.1

debski@igf.edu.pl: L11- 16 CAMK, 7.06.2023



Probabilistic Inverse Theory Lecture 11

Simulated annealing - an idea

Wybierz To

Zmniejsz T

Zakoncz gdy T = Tk

Wygeneruj C z p(C)

Model Space
Temperature
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SA - pseudo-code

✦ Create Boltzman-like distribution p(m, T ) = exp(−S(m)/T )

✦ Set T = To

★ generate test sample mβ: mβ = mα + δm

★ evaluate it mβ: pβ = p(mβ, Tk)

★ create a new one mα+1

➡ accept mβ with probability p = min (1, pβ/pα)

m
α+1

= m
β

➡ if mβ rejected duplicate

m
α+1

= m
α

✦ Keep the “best” mα

✦ Decrease Tk =
T0

ln(k)

✦ continue sampling untill Tk > Tfinal

debski@igf.edu.pl: L11- 18 CAMK, 7.06.2023



Probabilistic Inverse Theory Lecture 11

Simulated annealing - elements

Two most important elements

1. generating sample from p(m)

2. schedule of T change

Efficient sampling - the Metropolis algorithm (generalized by Hastings)
Optimum cooling schedule (Kirkpatrick)

Tk =
To

ln(k)

Gobal Optimization Algorithm
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Hamiltonian MCMC

Original Metropolis algorithm is actually performing purely
random walk over M

mβ = mα + δm δm = mo Urand(−1, 1)

(filtered next by Metropolis selection KerneL)

For this reason the algorithm requires an extremely long runs
and subsequent samples are strongly correlated
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Hamiltonian MCMC

Hastings has extended the Metropolis algorithm by allowing
generating test samples from auxiliary (a priori ) distribution
what has improved (sometimes not) convergence of the original
algorithm.

Many other attemps have also been undertaken to improve the
situation (convergence of the chain) with varying results.
Usually proposed extensions work better for some classes of
problems but fails in others

NO FREE LUNCH THEOREM
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Hamiltonian MCMC

Significant improvements of this situation requires additional information on
sampled σ(m). Particular (often met) situation occurs when

σ(m) = k f(m)L(m,do)

and one can calculate gradient of L(m,do) with respect to m

∇iL =
∂L(m,do)

∂mi

One can use this information for a more efficient generation of test samples

mβ = mα + δm
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Hamiltonian MCMC - idea

The most popular method of including ∇iL information into sampling
algorithm is so called

Hamiltonian Monte Carlo

It’s basic idea is avoiding generation of test sample mβ = mα + δm more or
less randomly but rather to take it as a result of a deterministic evolution
from a given chain state mα.

This evolution is based on the Hamiltonian dynamics in an extended phase
space (M,V)
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Hamiltonian dynamics

Let P be a particle of a unit mass moving in Rd space due to a potential
energy Ep. Let

✦ x - position of particle
✦ v - its velocity

One can define the Hamiltonian (energy) functional

H(x, v) = Ep +
1

2
||v||2

over the phase space P = {(x, v)}
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Hamiltonian dynamics

Evolution equations:

dx

dt
=

∂H

∂v
,

dv

dt
= − ∂H

∂x

✦ Evolution conserves “energy”:

dH

dt
= 0, H(x(t), v(t)) = H(x(0), v(0))

✦ Volume in phase space is conserved:

F⃗ = (
dx

dt
,
dv

dt
); ∇ · F⃗ = 0
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Hamiltonian Monte Carlo

✦ Extend the model parameter space: M → (M,P)

✦ Build the Hamiltonian functional

H(m,p) = − ln(σ(m)) +
1

2
pTM−1p

✦ Evolve current state (mα,pα) over time τ according to Hamiltonian
equations to get a proposal MCMC state mβ = mα(τ)

✦ accept (reject) with Metropolis acceptance kernel (replacing S(m) by
H(m,p)

✦ resample p from N (0, IM)
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