An introduction to Physics of Seismic Sources

SP-1: Introduction

W. Debski, IGF PAN

debski@igf.edu:pl

Tentative plan

- 1. Basic observational facts
 - Earthquakes basic characteristics, description, evidence etc.
 Seismic data processing (elementary)

2. Theory of point sources

Wave equation and representation theory
Point source representation
Seismic moment tensor
Seismic spectra and scaling relations
Madariaga and Bruno models
Extended sources - seismic radius

3. Earthquake and fracture mechanics

Dynamics of fracturing
Grifith -Irwin's theory
State and rate models
friction and fracture

sub- and super-shear fracturing

4. Advanced issues

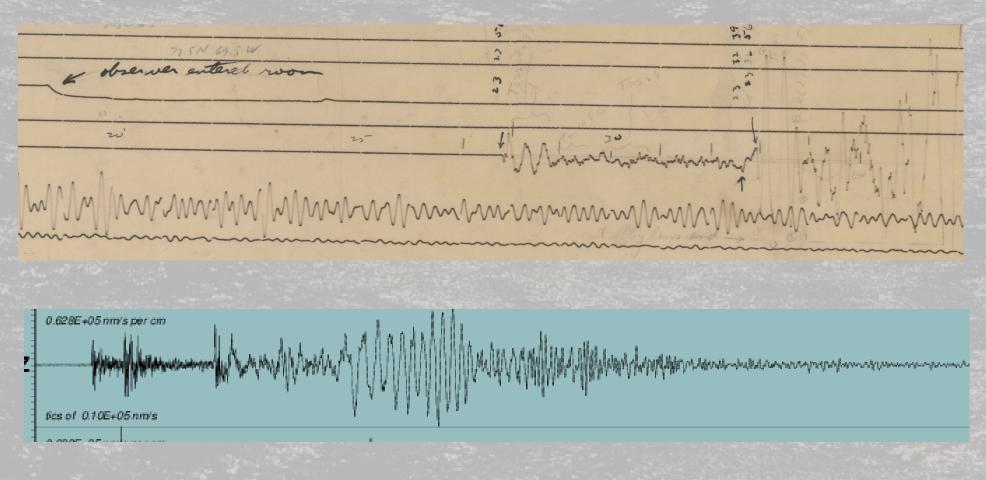
Stochasticity of rupturing: Fiber Bundle Model
 Electromagnetic effects accompanying rupture process
 Earthquake interaction

Recomended textbooks:

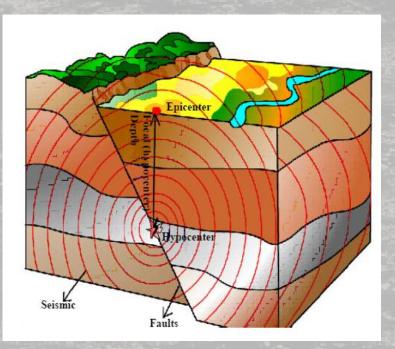
- A. Udias, R. Madariaga, E. Buforn;
 Source Mechanisms of Earthquakes (Cambridge Univ. Press 2014)
- F.H. Cornet,
 Elements of Crustal Geomechanics,(Cambridge Univ. Press 2015)
- S.J. Gibowicz, A. Kijko;
 An itroduction to mining seismology,(Akademic Press, 1994)
- + research papers mentioning during the course

Seismological inference

Seismology deals with two broad classes o problems:

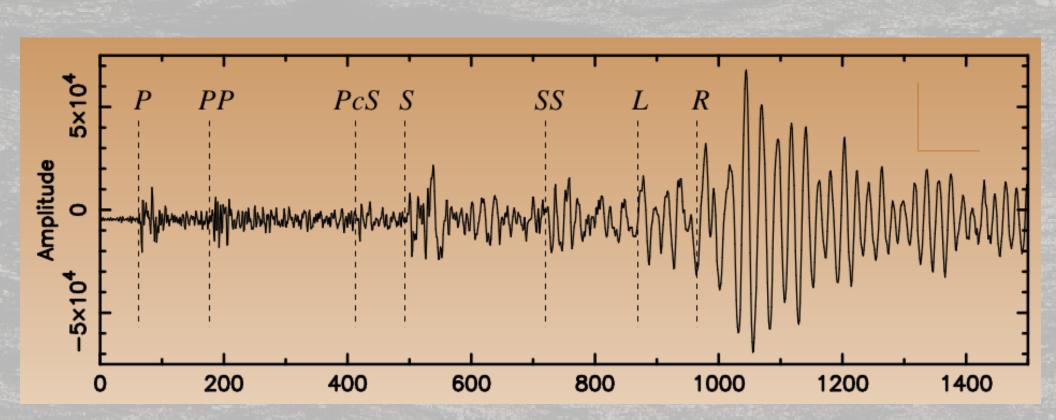

◆ Structure and composition of the Earth in various scales global, regional (~ 2000 km), local (~ 100 km), etc.

✦ Earthquakes: their origins, physics, effects and (possible) prediction

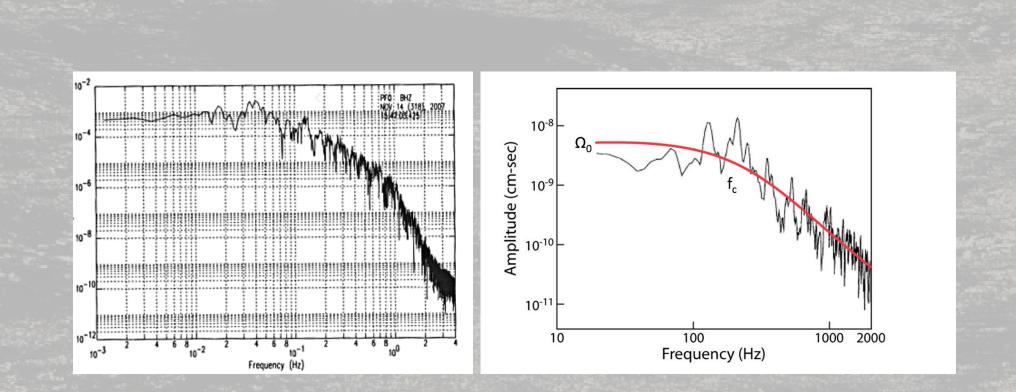

Inference is always based on records made on surface (space) There is no possibility of direct measurements of thought quantities

Seismic waves - primary source of information

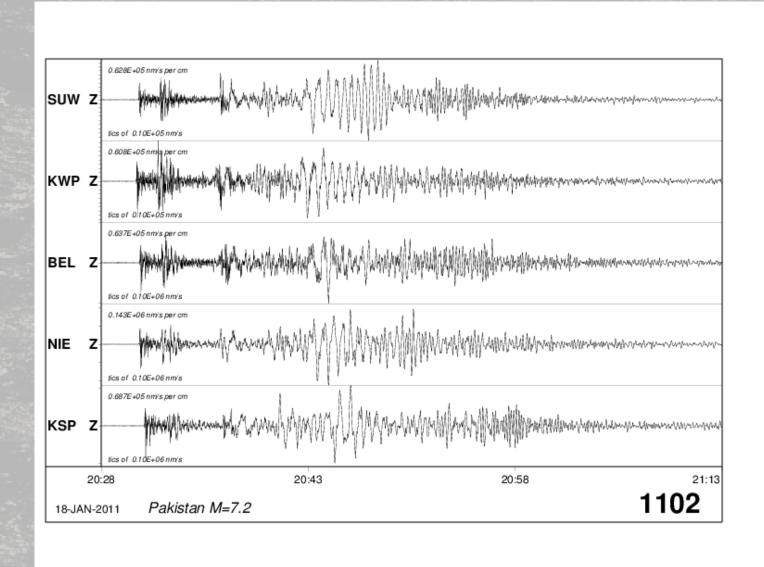
Seismograms: records of seismic waves

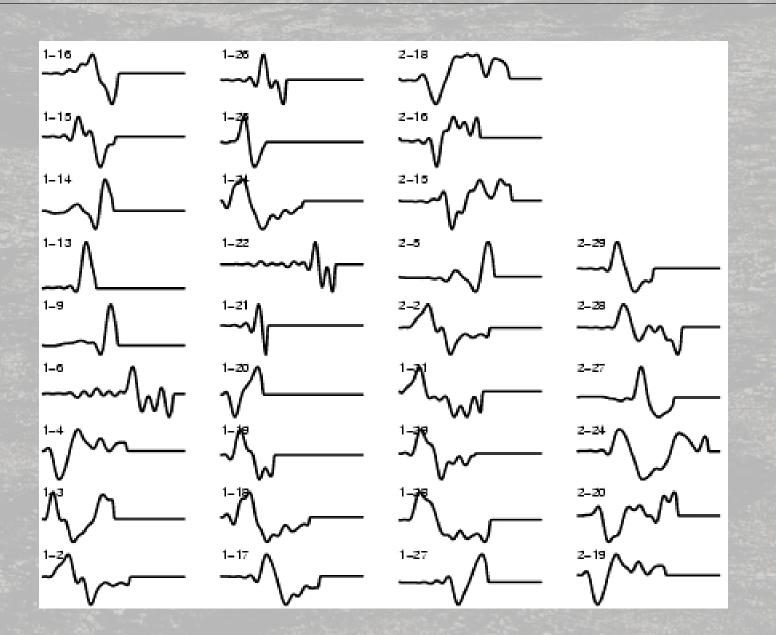


Seismic waves - information contents



$$\mathbf{u}(\mathbf{r},t) = \int_{R',T'} G(\mathbf{r},\mathbf{r}',t-t') S(\mathbf{r}',t') \,\mathrm{d}\mathbf{r}'\mathrm{d}t'$$


Seismic info - seismic phases


Seismic info - spectrum

Seismic info - spatial variation (heterogeneities)

Seismic info - spatial variation (source physics)

Seismic source inference

- Having recorded seismic data
- can we describe processes in earthquake foci?
- what can we say about energy budget of earthquake?
- can we understand rupture dynamics ?
- what about heterogeneities in source area?
- Classical or quantum

Earthquake origin - preliminary

Origin:

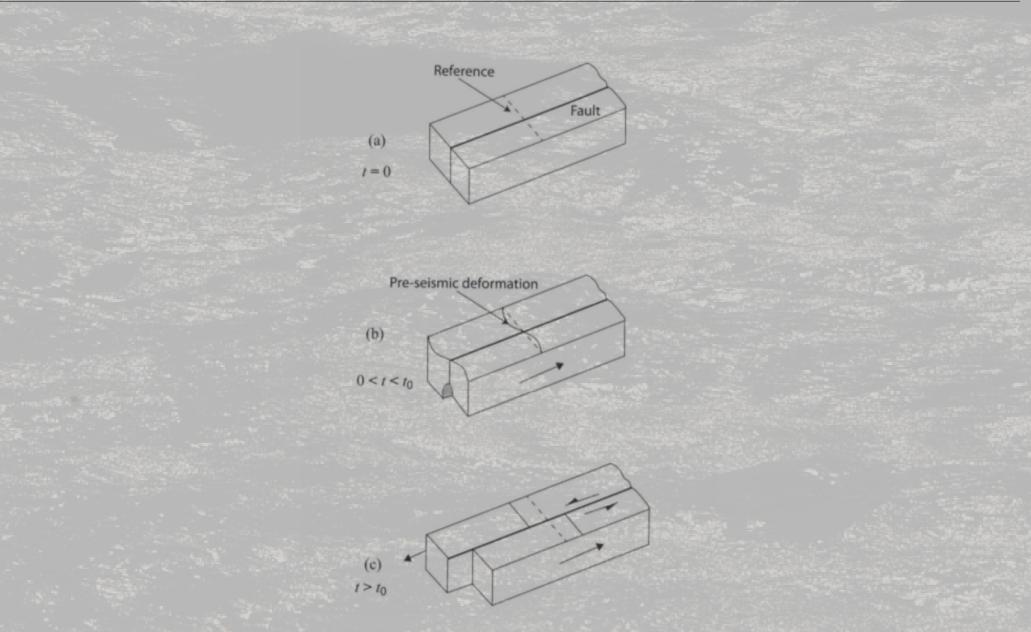
- natural earthquakes
- induced earthquakes
- triggered earthquakes

Depth:

- shallow (crustal) earthquakes
- deep earthquakes

Earthquakes and faults

Fault - a rupture (discontinuity) in Earth's crust with relative displacement of its two size Properties:


- ✦ fault lengths from 1m to 1000 km
- ✦ fault width for shallow earthquakes ; 40 km
- fault slip from millimeters to tens of meters
- complexity: non-planarity, branching, bifurcation, etc
- sense of motion: strike-, and dip-slip faults

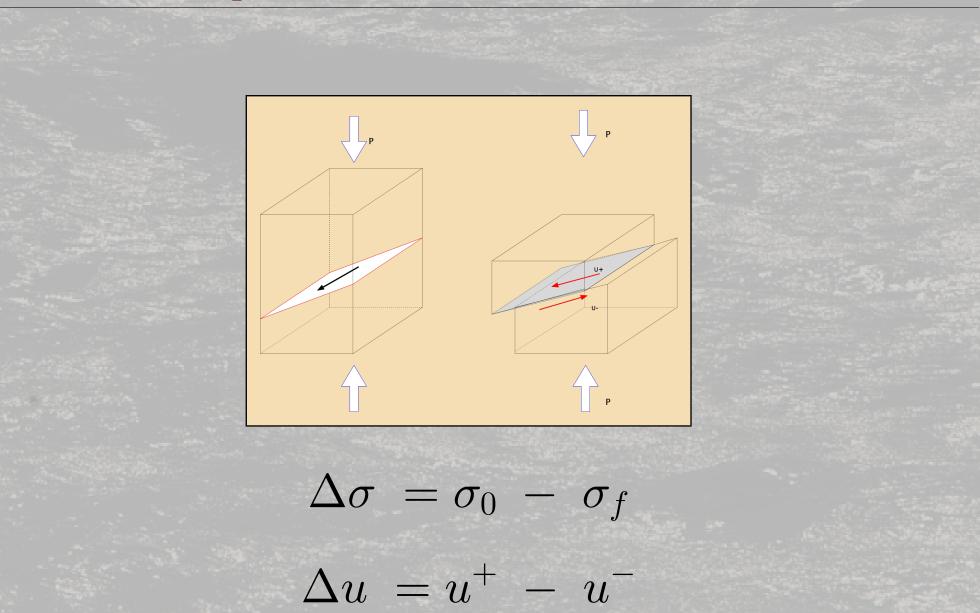
Elastic rebound theory - natural earthquakes

The background model of Earth's seismicity has been proposed by Reid [1910] after studying the catastrophic San Francisco (1906) earthquake.

- driving force plate tectonics caused by thermodynamical instability of Earth's interior (hot core - cool crust)
- tectonic stress and and related stress localizations along fault. Localization occurs because at depth 10-20 km crust loosing its brittle character and becomes more visco-plastic. Tectonic driven motion become continues aseismic slip (creep)
- when deformation along upper part of fault is large enough, induced stresses exceed material strength - an earthquake is triggered releasing accumulate stress
- after that earthquake aftershocks occurs due to possible relaxation processes
- fault heals (locks) and stress starts to accumulate again

Elastic rebound model

Shear stress overcomes the material strength or friction forces Motion on fault and permanent deformation


Different material behaviors:

- plastic (permanent deformation without breaking)
- ductile (breaking with sides deformations
- brittle sharp and sudden breaking with sides displacements but no deformations

Elastic rebound theory - natural earthquakes

We shall consider only brittle failure

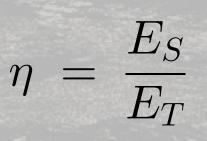
Simple seismic source model (after UMB)

Energy balance

$E_T = E_F + E_S + E_H$

- E_T total energy dissipated during earthquake
- E_F fracture energy (creation new surface)
- E_S seismic wave energy
- E_H energy dissipated by friction during sliding (mostly heat)

Energy balance


Seismic energy (only directly measurable component)

$$E_S = \int_{-\infty}^{\infty} v\rho \cdot u^2 \mathrm{dt}$$

can be estimated from far-field measurements (after propagation effects and radiation pattern correction). Finally, it also converts mostly to heat.

 E_H, E_F are dissipated during lasting earthquake: $t_o < t < t_f$

Seismic efficiency

Measure the proportion of total dissipated energy radiated as seismic waves

Seismic [scalar] moment

$$M_o = \mu \Delta \bar{u} S$$

- μ shear (rigity) modulus
- $\Delta \bar{u}$ average final slip: $\Delta \bar{u} = \frac{1}{S} \int_{S} \Delta u(\xi) d\xi$
- S fault surface area

 M_o is very convenient measure of "size" of earthquake

$$M_o$$
 units: Nm

Average and Static stress drop

Fault starts to slip (breaks) when shear stress exceeds strength of fault material or static friction

Static stress drop

$\Delta \sigma = \sigma_0 - \sigma_f$

Average stress

 $\bar{\sigma} = \frac{1}{2}(\sigma_0 + \sigma_f)$

 $\sigma_f = 0 \Longrightarrow \Delta \sigma = 2\bar{\sigma}$

Static stress drop

- Since σ_0, σ_f are initial (pre-earthquake) and final (post-earthquake) shear stresses $\Delta \sigma$ **does not** depend on kinematics and dynamics of stress release process
- Average stress drop:

$$\Delta \bar{\sigma} = \frac{1}{S} \int_{S} \Delta \sigma(\xi) \mathrm{d}\xi$$

$$\sigma_o, \sigma_f, \Delta \sigma$$
 units: Pa, bar

Energy balance - strain energy

Energy dissipated by earthquake is elastic potential energy ΔW

Simplifying problem

$$E_T = \Delta W = \Delta \bar{u} \, \bar{\sigma} S = \frac{\sigma}{\mu} M_o$$

But $E_S = \eta E_T$ one can define **apparent average stress**

$$\bar{\sigma}_a = \eta \bar{\sigma} = \mu \frac{E_S}{M_o}$$

Apparent stress

using definition of M_o [$\mu \bar{u}S$]

$$\bar{\sigma}_a = \frac{E_S}{\bar{u}S}$$

Apparent stress $\bar{\sigma}_a$ express how much energy is radiated from source per unit area and unit fault displacement.

An introduction to Physics of Seismic Sources

Full distressing ($\sigma_f = 0$)

$$\Delta \sigma = 2\bar{\sigma}$$

$$E_T = E_o = \frac{\Delta\sigma}{2\mu} M_o$$

Seismic efficiency

$$\eta = \frac{2\mu E_S}{\Delta \bar{\sigma} M_o}$$

 $E_S, M_o, \Delta \bar{\sigma}$ are parameters which can be estimated from seismograms !

An introduction to Physics of Seismic Sources

Partial distressing ($\sigma_f \neq 0$)

 $\bar{\sigma} = \frac{\Delta \bar{\sigma}}{2} + \sigma_f$

$E_T = E_o + \sigma_f \Delta \bar{u} S$

frictional stress: σ_{fr}

$E_R = E_F + E_H = \sigma_{fr} \Delta \bar{u} S$

$$E_S = E_T - E_R = \frac{\Delta \bar{\sigma}}{2\mu} M_o + \Delta \bar{u} S(\sigma_f - \sigma_{fr})$$

Orowan's model ($\sigma_f = \sigma_{fr}$)

$$E_S = \frac{1}{2} \Delta \bar{\sigma} \Delta \bar{u} S$$

In this case the the radiated energy brings information ONLY on stress drop and total (final) displacement and not about rupture evolution.

Seismic efficiency: after using definition of M_o

$$\gamma = \frac{\Delta \bar{\sigma}}{2\bar{\sigma}}$$

Statistical properties of earthquakes

Gutenberg-Richter law

Logarithm of number N of earthquakes greater than given magnitude M decreases linearly with M

$$log(N) = a - bM$$

seismic activity in given area mbers of large-to-small earthquakes

Observing temporal changes of *b* one can tried to predict earthquakes - rather unsatisfactory approach

Statistical properties of earthquakes

- Omori's Utsu law
- Number of aftershocks following a main shock is proportional to inverse power of time after the main shock

$$N(t) = \frac{A}{(c+t)^{\gamma}}$$

of aftershocks per unit time expressing the overall aftershock activity befficient (usually ~ 1)

Statistical properties of earthquakes

♦ Báth rule

The largest aftershock has magnitude approximately one unit less than the main event (shallow earthquake) or between 2 and 4 in case of deep earthquake.

Recently, (Maule 2010, $M_w = 8, 8$ and Tohoku 2011, Mw = 9the rule has failed. In the first case the largest aftershock $(M_w = 7.3)$ occurred almost two years after the main earthquake. In the second case the largest aftershock of magnitude $(M_w = 7.8)$ occurred a few minutes after the main event.

Create: DZ-12-10-2015

debski@igf.edu.pl: W1