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Probability (A)

✦ Physical approach
Physical (objective, frequency) probabilities, are associated with random
processes and systems like noisy/unprecised measurements, processes like
radioactive atoms decay, or a systems of many (interacting?) elements.
In such systems, a given type of event tends to occur at a given relative
frequency, in a long run of trials/observations. Physical probability is a
measure of these relative frequencies.

This definition undertakes (mixes) two different issues:

1. what probability is

2. how to construct it
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Probability (B)

✦ Bayesian approach
Bayesian (evidential) probability is a kind of measure that can be assigned
to any statement, observation, forecasting, etc. even when no random pro-
cess is involved, as a way to represent its subjective plausibility, or the
degree to which the statement is supported by the available evidence.

This definition:

1. tells what probability is but does not tell how to construct it

2. expressis verbis shows underlying assumption - insufficient reasoning principles
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Probability difference

Above notions of “probability” actually defines two different objects
and essentially we should use two different names for them. For tra-
ditional reasons it is not a case. The situation additionally compli-
cates the fact, that both probabilities can/are described by the same
mathematical structure (probabilistic space with e.g. Kolomogorov
axioms). However, choice one of them, what is absolutely arbitrary
determines hove given problems in hand is approach. For this reason
the choice of Frequentists or Bayesian probability should be done
appropriately to the task.
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Probability differences - Example

Let assume we have N samples X1, X2, . . . XN drawn from the normal
distribution

N (θ, 1) = A exp(−(x− θ)2)

We want to provide some sort of interval estimate C of θ

How should we proceed ???
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Probability differences - Example (freq.)

1. We know that samples comes from N (θ, 1) so we can construct (2σ) interval

C =

(
X̄N − 1.96√

N
, X̄N − 1.96√

N

)
2. then

Pθ(θ ∈ C) = 0.95

3. The solution is the statement about the interval C which is now a random variable
because depends on “random” samples Xi. Unknown (thought) parameter θ is fixed
(although unknown) parameter and we state nothing about it

4. Solving the problem relays on constructing interval C
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Probability differences - Example (freq.)

What Pθ() means ?

Suppose that we repeat “experiment” K times

Nature sets θ1⇒Nature gives {Xi} from N (θ, 1)⇒statistician computes C1

Nature sets θ2⇒Nature gives {Xi} from N (θ, 1)⇒statistician computes C2

... ⇒ ... ⇒ ...

Nature sets θK⇒Nature gives {Xi} from N (θ, 1)⇒statistician computes C2

We will find that Ci traps the parameters θ, 95% of the time
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Probability differences - Example (Bayes.)

1. We treat θ as unknown parameter we wish to infer from “data ” {Xi} Since our
knowledge about θ is limited we treat θ as a “random” (unknown) variable and describe it
by appropriate probability

2. Since at start we know nothing about θ we describe it by a prior distribution ρ(θ)

3. Inferring about θ goes by calculating a posteriori distribution having in hand the set of
data {Xi}

σ(θ) = L(θ|{Xi})ρ(θ)
using e.g. Bayes theorem

4. We construct the interval C such that∫
C

σ(θ)dθ = 0.95

debski@igf.edu.pl: S6- 7 GEOPLANET, 6.05.2024



Advanced statistical methods and Bayesian inference in scientific research Lecture 6

Probability differences - Example (Bayes.)

The solution can be stated as

P (θ ∈ C|{Xi}) = 0.95

✦ This time the solution is the statement about θ which now is treated as the random
variable and knowledge about it is described by σ(θ)

✦ P (θ ∈ C|{Xi}) = 0.95 does not guarantee now that when experiment is repeated θ will
be in C 95% of times

✦ The solution depends somehow on a priori - subjective ρ(θ)
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Probability differences - conclusion

✦ Frequentists

★ Frequentists inference is focused on constructing given procedure which assures that
“frequency probability (like 0.95 here) is guaranteed

★ thought parameter is treated as fixed but unknown
★ solution incorporates usually various “hidden” assumptions (here, e.g. normality of

{X} )

✦ Bayesian

★ this approach is a method for stating and updating possessed information about
unknown parameters

★ inference means joining and analyzing possessed information
★ the method explicit manipulates information but does not create them !
★ can be used even if single experiment is available.
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Example-II. Measurements

Voltage measurement

0.5518
0.5518
0.5518
0.5518
0.5519
0.5518
0.5517
0.5518
0.5519
0.5518

What is the true value of the measured voltage?

V obs = V true + n
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Example-II. Measurements

Naive (Frequentists) estimation: construct histogram of measured values
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0.551 0.552 0.553

Conclusion: measuring accuracy at 95% confidence level

||n|| = ∆V = 0.0002V

is apparently wrong !
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Example-II. Measurements

Technical specification

||n|| = ∆V = 0.05% ∗ 2.5V + 0.0003 = 0.0015V

This example illustrates possible problems with “Frequentists” data-based construction of
probability distribution
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Example-II. Measurements

Technical specification is not fully informative !

Writing

V = V true ±∆V

we usually assume that noise n has a normal (Gaussian) distribution with zero average and
variance estimated by ∆V .

Is it really true?
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Example-II. Bayesian approach

The output of measurement V is a random variable due to existence of random noise. We
wish to learn about it as much as possible

✦ A priori distribution
ρ(V ) = const.

✦ we assume Gaussian noise with a variance provided by manufacturer:
∆V = 0.0005 ∗ 2.5V + 0.0003 = 0.0015V

✦ construct a posterioribased on measured values

σ(V ) = ρ(V )
∏
i

exp

(
−(Vi − V )2

∆V 2

)

✦ explore it
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Example-II. conclusions

The output measurement is fully determined only if we provide the fully
noise distribution !!!
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Example-II. a priori dependences

Does a priori term influence final inference?
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Conclusion

Inference about unknown parameters is just like a measurement
corrupted by a noise term.

In both cases we want to learn about the parameter but our know-
ledge is always limited by many factors like, noise , limited number
of data, lack of theoretical models, wrong initial expectations, etc.

We can quantified our vague or unprecised information about the
parameter by means of probability distribution just like in case of
noisy measurements.
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