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Bayes theorem - comments
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Bayesian inference - random variable example

4 Y - random variable we can measure

4 X - random variable we are interested in

4+ we know X and Y are related by theory e.g. ¥ = G(X)
4 What can we say about X if we have measured Y = y°?

4 Can we evaluate its “accuracy” provided we know measurement
uncertainties?
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Bayesian inference - random variable example

4 B -eventthat Y € [y,, ys) — P(B)
4 A - random variable X have value in range [z, x;| = P*"(A)

4+ X, Y related: conditional probability P(Y | X) that theory predicts value Y = y provided
X = x (possible “modelling” uncertainties)

4 P(X|Y) conditional probability of X = x provided we have measured Y - object we are
looking for

PPt (X) = P(X = 2|V = 4°) ~ P (Y = 4°|X) x P(X)

Pa,pr(X) 3 Ppost(X)
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P - parameter space

2. - space of all probability distributions over P

*(-, ) - joining operator: > X X — X
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2. q(x)

((z) = pAQ(x) =

-

1(x) - non-informative probability

T
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-

Essentially, u(-) can be arbitrary but usually is taken as

volumetric pdf
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Using Inference space approach - example I

4 random variable X is described by p(x)

4 we perform another measurement of X

Question: how performed measurement constraints (update) the pdf
distribution p(x) describing X?

Assumption: noisy measurement with known noise characteristic (-)
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7 = / p(@) iz — x0) /() da

E)mment:

Z (evidence) measure to what extend measurement is compatible with “apriori” p(x)

debski@igf.edu.pl: S5- 9




debski@igf.edu.pl: S5- 10



debski@igf.edu.pl: S5- 11



Advanced statistical methods and Bayesian inference in scientific research Lecture 5

Using Inference space approach - example 11

4 random variable X is described by p(x)
4 we perform a measurement of Y

4 measurement errors are characterized by ¢ (y — y,) distribution

4+ we know that X and Y arerelatedas Y = G(X) + ¢
and the relation 1s subjected to errors € described by

((X,Y) = (Y - G(X))

Question:
how performed measurement constraints (update) knowledge of X ?
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XY —= 7 =
Y

R X R =— R?

p(z) — p'(2) = p(x)u(y)
w(y_yo) — W(z) s ¢(y_yo):u($)

¢(z,y) — ('(2)
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4 does observation approve/falsify them?

Simplest answer: Let check which theory provides “best fit to Y

-r v - v = \/DY—W

N 3 m




1
Ek = imV2

heory '
Ey = imv2 —~In(V/V,.)

Measured values (V1, E3), (Va, EZ) - --

Theory evaluation:

-
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If R < Rp G theory explain better data than F'. It is “better” one

The only problem may appear if none of theory well fits data, 1.e. Rg, Rp
are very large

-

F m




G(X)=a+bX
F(X)=a+bX +cX?

|Y° — G(X;)|| = min |Y° — F(X;)|| = min

More complex theory will always gives “better fit” to data if we can adjust parameters

1Y? — F(X¢)|| =0 while |1Y? - G(Xy)|| >0

debski@igf.edu.pl: S5- 22

P

GE



20

16

12

1 zaburzenie

n\*\

.4 2
o ]
/ 1
P q
/!
/,
-2 2 4 86 10

20

16

12

debski@igf.edu.pl: §5- 23




Solution:

I I:nspecting resulting posteriori o () distribution and measuring their “goodness”
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Using Inference space approach - example III (model selection)

4 Comparing values of evidence: Zr Zq.
This does not take into account difference in theory complexity

4 Calculate entropy

Example: normal distribution

1
H[e_(“"/")Q] — §ln(27re(72)

Hiop] = n(Zp) — / fIn(p(a)) + In(1p(a))} o(a)da
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where () describes measurement errors.

h(z) = exp(—|[z|])

- Hiog] = In(Zr) + / IY° — Gp(X:a)||o(a)da

Still no theory complexity is taken into account

F K m




AIC[o] = 2n — 2H]o]

ﬁven a set of candidate models for the data, the preferred model is the one
th the minimum AIC value
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Bayesian information criterion

Let theory G() contains n adjustable parameters and to construct o(a) we
used £ observational data

BIC =nln(k) — 21In(L)

Extended version:

BIC|o] =nln(k) — 2H|o]

Given a set of candidate models for the data, the preferred model 1s the one
with the minimum BIC value
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