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processes (catalogs)

time evolution of stochastic physical system
4 spatial under-sampling (e.g. Geo-statistics)
4 approximate theoretical predictions

"missing information on a system
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than any probability that, e.g
a< X <b

can be represented as

- Pla< X <b) = /p(:z:)dx
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Describing pdf (1)

Full pdf brings all available information on given random variable X we have
in hand. However, sometime it is more useful to characterize p(z) by a finite
set of numbers rather than use the full pdf.

The most popular approach is to use moments of p(x)

M, = / z"p(z)dz

or central moments

fon, = / (x —x*")"p(z)dz

Such description we shall call a point-like method.
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Random variable transformation

Let transform X to Y

Consistency requirement:
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Describing pdf (2)

Moments p provides detailed characteristics of p(x)

However, quite often we need only a compact description of p(x)
- 1its shape rather than its full details
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Conditional probability

Let us assume two events A and B

The conditional probability 1s defined as

P(AN B)
P(A)

P(B|A) =

If P(B|A) = P(B) the events A and B are independent
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uestion: how performed measurement allows us to constraint (update) the
pdf distribution p(x) describing X?
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More explicite

initial (a priori) pdf p(x)

thought p(x)

values of X drawn from p(x)

how z depends on u with given x,,

pM(x) = kp(x|ze,p) X p

p'M(z)

K /p(x|xo,u) X p(u)du
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‘bnclusion (not quite precise):

If measurements are independent we get no refinement of p(x) via Bayes

theorem
T
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Bayes theorem - two variables X, Y (1)

4 Variable X is approximately known as p°(x) .
We measure another variable Y

Question: can knowledge of Y improves information about X ?

P(B|A) = P(A|B)x P(B)/P(A) X =B Y — A
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Bayesian inversion - two variables X, Y (2)

4 —m y —d
4 p°(x) - a priori distribution p™"(m)
4 P(y|x) - likelihood function L(d, m)

4 p(x) - a posteriori distribution o (m)

o(m) = L(d,m) ;" (m)
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d°% = d + noise

assuming that noise has given statistics

ple) = p(d — d")

L(d,m) = p(d°* — G -m)

-

o(m) = p(d*** — G -m) p*"(m)

T
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P - parameter space

2. - space of all probability distributions over P

*(-, ) - joining operator: > X X — X
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2. q(x)

((z) = pAQ(x) =

-

1(x) - non-informative probability

T
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Essentially, u(-) can be arbitrary but usually is taken as

volumetric pdf
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Insufficient reasoning postulate (Laplace)

If x 1s a real unconstrained parameter then the state of
lack of information on it 1s represented by a probability
proportional to the volume (Iength) in K.

p(A) = /A u(@)dz = vol(A),

where A stands for the volume (length) of the set A, (A C 'R.

In a Cartesian coordinate system

u(x) = const.

debski@igf.edu.pl: S3- 20 GEOPLANET, 25.03.2024



g() - differentiable function

If x' € R than u(z’') = const

Using transformation properties of probability density function
_d

dg
dx

Fo m

u(z) =




Advanced statistical methods and Bayesian inference in scientific research Lecture 3

Example - positive defined parameters

Let / be a positive parameter (e.g. frequency) f € R™*

Then, one can take transformation function (R* = R)

Comment: if assume p(f) = const. we end up in contradiction with above
- Borrel’s paradox
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which represents exactly the same information like f.
Then, using transformation rule for parameter change

f—=T

’ We immediately get

uT) = Wrm) |5l = 7
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e s See you April, 8th
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