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Random variables

✦ noisy measurement data d = dth + noise

✦ occurrence of (random) physical processes (catalogs)

✦ time evolution of stochastic physical system

✦ spatial under-sampling (e.g. Geo-statistics)

✦ approximate theoretical predictions

✦ missing information on a system
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Cumulative distribution and probability density function

Usually (continuous case) cpd is differentiable so one can define
probability density function

p(x) =
d

dx
FX(x)

than any probability that, e.g

a < X < b

can be represented as

P (a < X < b) =

b∫
a

p(x)dx
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Describing pdf (1)

Full pdf brings all available information on given random variable X we have
in hand. However, sometime it is more useful to characterize p(x) by a finite
set of numbers rather than use the full pdf.

The most popular approach is to use moments of p(x)

µ′
n =

∫
xnp(x)dx

or central moments

µn =

∫
(x− xavr)np(x)dx

Such description we shall call a point-like method.
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Changing variables

µ′
n =

∫
xnp(x)dx

Basic fact: the above integral does not depend on used parameterization

x = y(x)

dx =

∣∣∣∣∂y∂x
∣∣∣∣ dy

µ′
n =

∫
ynp(x)

∣∣
x=y(x)

∣∣∣∣∂y∂x
∣∣∣∣dy =

∫
ynp′(y)dy

p′(y) = p(x)

∣∣∣∣∂y∂x
∣∣∣∣
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Random variable transformation

Let transform X to Y

X =⇒ Y

Consistency requirement:

∀A PX(A) = PY (B)

p(y) = p(x)

∣∣∣∣∂y∂x
∣∣∣∣
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Describing pdf (2)

Moments µ′ provides detailed characteristics of p(x)

However, quite often we need only a compact description of p(x)
- its shape rather than its full details
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Meta-characteristic - Entropy

H[p] = −
∫

ln (p(x)) p(x)dx

8.5 8.5 15
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Conditional probability

Let us assume two events A and B

The conditional probability is defined as

P (B|A) =
P (A ∩B)

P (A)

If P (B|A) = P (B) the events A and B are independent
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Bayes theorem

P (A ∩B) = P (A|B)× P (B)

P (A ∩B) = P (B|A)× P (A)

P (B|A)× P (A) = P (A|B)× P (B)

P (B|A) =
P (A|B)× P (B)

P (A)
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Bayes theorem - single variable X

✦ Variable X is measured for the first time but we know that its value should
follow (approximately) ρ(x)

Question: how performed measurement allows us to constraint (update) the
pdf distribution p(x) describing X?
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Bayes theorem - single variable X

P (B|A) = P (A|B)× P (B)/P (A)

Interpretation:

B → values of X

P(B) → initial (a priori ) pdf ρ(x)

P (B|A) → thought p(x)

A → values of X drawn from ρ(x)

P (A|B) → how x depends on u with given xo

p(1)(x) = κ p(x|xo, ρ)× ρ

More explicite

p(1)(x) = κ

∫
p(x|xo, u)× ρ(u)du
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Bayes theorem - single variable X

If measurements are independent P (A|B) = P (B)

P (B|A) =
P (A|B)× P (B)

P (A)
=

P (A)× P (B)

P (A)
= P (B)

p(1)(x) ∽ p(x|ρ) = ρ(x)

p(n)(x) = ρ(x)

Conclusion (not quite precise):

If measurements are independent we get no refinement of p(x) via Bayes
theorem
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Bayes theorem - two variables X, Y (1)

✦ Variable X is approximately known as po(x) .
We measure another variable Y

Question: can knowledge of Y improves information about X ?

P (B|A) = P (A|B)× P (B)/P (A) X → B Y → A

p+(x) = p(x|y) = κP (y|x)× po(x)
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Bayesian inversion - two variables X, Y (2)

✦ x → m y → d

✦ po(x) - a priori distribution ρapr(m)

✦ P (y|x) - likelihood function L(d,m)

✦ p+(x) - a posteriori distribution σ(m)

σ(m) = L(d,m) ρapr(m)
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Bayesian inversion - two variables X, Y (3)

Let assume that
d = G ·m

and we have measured
dobs = d+ noise

assuming that noise has given statistics

p(ϵ) = ρ(d− dobs)

L(d,m) = ρ(dobs −G ·m)

σ(m) = ρ(dobs −G ·m) ρapr(m)
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Mathematics of inference - Inference Space

(P,Σ,∧)
where

P - parameter space

Σ - space of all probability distributions over P

∧(·, ·) - joining operator: Σ× Σ → Σ
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Joining information according to Tarantola

Two distributions describing different pieces of information about
the same object

1. p(x)

2. q(x)

ζ(x) = p ∧ q(x) =
p(x)q(x)

µ(x)

µ(x) - non-informative probability
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Non-informative distribution

q(x) = µ(x)

p ∧ q(x) =
p(x) µ(x)

µ(x)
= p(x)

Essentially, µ(·) can be arbitrary but usually is taken as
volumetric pdf
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Insufficient reasoning postulate (Laplace)

If x is a real unconstrained parameter then the state of
lack of information on it is represented by a probability
proportional to the volume (length) in R.

p(A) =

∫
A

µ(x)dx = vol(A),

where A stands for the volume (length) of the set A, (A ⊂ R.

In a Cartesian coordinate system

µ(x) = const.
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Bounded parameters

Let x be a parameter whose values belong to a segment Ω = [a, b].

Next, let us introduce a new parameter x’

x′ = g(x)

g() - differentiable function

If x′ ∈ R than µ(x′) = const

Using transformation properties of probability density function

µ(x) =

∣∣∣∣dgdx
∣∣∣∣
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Example - positive defined parameters

Let f be a positive parameter (e.g. frequency) f ∈ R+

Then, one can take transformation function (R+ ⇒ R)

x = g(f) = ln(f)

What immediately leads to the non-informative pdf for f

µ(f) =
1

f

Comment: if assume µ(f) = const. we end up in contradiction with above
- Borrel’s paradox
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Example - positive defined parameters

However, we can prefer other parameter: period

T = 1/f

which represents exactly the same information like f .
Then, using transformation rule for parameter change

f → T

We immediately get

µ(T ) = µ(f(T ))

∣∣∣∣ dfdT
∣∣∣∣ =

1

T
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