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Advanced statistical methods and Bayesian inference in scientific research Lecture 11

Metropolisa-Hastings (MH) algorithm
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Advanced statistical methods and Bayesian inference in scientific research Lecture 11

Hamiltonian MCMC

Original Metropolis algorithm 1s actually performing purely
random walk over M

x” = x% 4 0x 0X =X, + 0 X rand(—1,1)

(filtered next by Metropolis selection Kernel)

For this reason the algorithm requires an extremely long runs
and subsequent samples are strongly correlated
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MH - too large steps
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MH - too small steps
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MH - oiptimium steps
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Hamiltonian MCMC

Significant improvements of this situation requires additional information on
sampled o (x). Particular (often met) situation occurs when
o(x) = kexp(—=5(x))

and one can calculate gradient of .S(x) with respect to x

05 (x)
L= =

One can use this information for a more efficient generation of test samples

xP = x*+6VL
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MCMC — Gradient optimization
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Hamiltonian MCMC - idea

The most popular method of including V; L information into sampling
algorithm 1s so called

Hamiltonian Monte Carlo

It’s basic idea is avoiding generation of test sample x” = x + §x more or
less randomly but rather to take it as a result of a deterministic evolution
from a given chain state x“.

This evolution 1s based on the Hamiltonian dynamics in an extended phase
space (X, V)
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4 v - its velocity

One can define the Hamiltonian (energy) functional

1
H(z,v) = E, + 5|0l
-

over the phase space P = {p(t) := (z(t),v(t))}

F M




4 Evolution conserves “energy’’:

‘;_Ij:o, H(z(t),v(t)) = H(z(0),v(0))

‘Volume in phase space 1s conserved:

~ dx dv =
e SO CF
(dt,dt)’ v
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Hamiltonian dynamics

Hamiltonian’s equation describe evolution of the system in the phase space
P parameterized by time ¢

However, from geometrical point of view, after removing “parameter ” ¢, this
evolution 1s represented by given trajectory in P space

['(z,v) = 0

Energy, and “volume” are conserved along this trajectory!
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Trajectory:
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Hamiltonian MCMC

If we properly define “hamiltonian” for our sampled pdf o (x) then, for any
point (x v;) € P one can run “dynamic evolution” to get trajectory

['(z,v) = 0 and pick up any point of this trajectory as a test sample for
metropolis acceptance step.

r* = xp: I'(xp,or) = 0
Energy conservation assures (if H 1s properly defined) that
o(z”) ~ o(zi)

So, it 1s very probably that the test sample will be accepted by MH selection
rule
Lit1 — & i
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Hamiltonian Monte Carlo

4 Extend the model parameter space: X — (X', P)

4 Build the Hamiltonian functional: o(x) = kexp (—5(x))

1 B
H(x,p) = S(x)+7p' M 'p

4 Choose starting point xq and auxiliary p e.g. from N (0, I;)

4 Repeat sampling from o(x, p) = e H@P) = g(g;)e—l/?pTM_lp

* evolve current state (x“, p“) over time 7 according to Hamiltonian
equations to get a proposal MCMC state x* = x*(7)

% accept (reject) x* with Metropolis Hasting acceptance kernel
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g integration schemata) with time step e

pi(t+e/2) = pilt) — (¢/2) g2 (a(t))
zi(t+e/2) = a(t) + e B2
pit +€) = pi(t+e¢/2) —(¢/2) 52 (x(t +¢))
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Hamiltonian MCMC almost summary
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generate proposal x*

*
L;

*

P;

e

4 accept or reject ™

P(x — x¥)

min {1,exp (—(H(z",p") — H(z,p))}
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particularly if z = v S(v) = 1/2v%  o(v) = exp(—1/2v?)

-

describes Brovian motion.
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