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Metropolisa-Hastings (MH) algorithm

xi+1 = xi + δxi

P (xi → xi+1) = min

{
1,
p(xi+1)

p(xi)

}
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Samples correlation
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Hamiltonian MCMC

Original Metropolis algorithm is actually performing purely
random walk over M

xβ = xα + δx δx = xo + δ × rand(−1, 1)

(filtered next by Metropolis selection Kernel)

For this reason the algorithm requires an extremely long runs
and subsequent samples are strongly correlated
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MH - too large steps
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MH - too small steps
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MH - oiptimium steps
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Hamiltonian MCMC

Significant improvements of this situation requires additional information on
sampled σ(x). Particular (often met) situation occurs when

σ(x) = k exp (−S(x))

and one can calculate gradient of S(x) with respect to x

∇iL =
∂S(x)

∂xi

One can use this information for a more efficient generation of test samples

xβ = xα + δ∇L
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MCMC =⇒ Gradient optimization
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Hamiltonian MCMC - idea

The most popular method of including ∇iL information into sampling
algorithm is so called

Hamiltonian Monte Carlo

It’s basic idea is avoiding generation of test sample xβ = xα + δx more or
less randomly but rather to take it as a result of a deterministic evolution
from a given chain state xα.

This evolution is based on the Hamiltonian dynamics in an extended phase
space (X,V )
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Hamiltonian dynamics

Let P be a particle of a unit mass moving in R3 space due to a potential
energy Ep. Let

✦ x - position of particle

✦ v - its velocity

One can define the Hamiltonian (energy) functional

H(x, v) = Ep +
1

2
||v||2

over the phase space P = {p(t) := (x(t), v(t))}
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Hamiltonian dynamics

Evolution equations:

dx

dt
=

∂H

∂v
,

dv

dt
= − ∂H

∂x

✦ Evolution conserves “energy”:

dH

dt
= 0, H(x(t), v(t)) = H(x(0), v(0))

✦ Volume in phase space is conserved:

F⃗ = (
dx

dt
,
dv

dt
); ∇ · F⃗ = 0
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Hamiltonian dynamics

Hamiltonian’s equation describe evolution of the system in the phase space
P parameterized by time t

p(t) = (x(t), v(t)))

However, from geometrical point of view, after removing “parameter ” t, this
evolution is represented by given trajectory in P space

Γ(x, v) = 0

Energy, and “volume” are conserved along this trajectory!
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Hamiltonian dynamics - example

Variables (x, p) with hamiltonian H(x, p) = 1
2kx

2 + p2

2m

Hamilton equations

dx

dt
= p/m

dp

dt
= −kx

from which
d2x

dt2
= −ω2x

x(t) = sin(ωt) p(t) = mω cos(ωt)

Trajectory:
x2 + (p/(mω))2 − 1 = 0
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Hamiltonian MCMC

If we properly define “hamiltonian” for our sampled pdf σ(x) then, for any
point (x,vi) ∈ P one can run “dynamic evolution” to get trajectory
Γ(x, v) = 0 and pick up any point of this trajectory as a test sample for
metropolis acceptance step.

x∗ = xΓ : Γ(xΓ, vΓ) = 0

Energy conservation assures (if H is properly defined) that

σ(x∗) ≈ σ(xi)

So, it is very probably that the test sample will be accepted by MH selection
rule

xi+1 = x∗
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Hamiltonian Monte Carlo

✦ Extend the model parameter space: X → (X ,P)

✦ Build the Hamiltonian functional: σ(x) = k exp (−S(x))

H(x,p) = S(x) +
1

2
pTM−1p

✦ Choose starting point x0 and auxiliary p e.g. from N (0, IM)

✦ Repeat sampling from σ(x, p) = e−H(x,p) = σ(x)e−1/2pTM−1p

★ evolve current state (xα,pα) over time τ according to Hamiltonian
equations to get a proposal MCMC state x∗ = xα(τ)

★ accept (reject) x∗ with Metropolis Hasting acceptance kernel
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Hamiltonian Monte Carlo - “deterministic” evolution part

dx

dt
=

∂H

∂p
,

dp

dt
= − ∂H

∂x

Discretized version (with leapfrog integration schemata) with time step ϵ

pi(t+ ϵ/2) = pi(t)− (ϵ/2) ∂S
∂xi

(x(t))

xi(t+ ϵ/2) = xi(t) + ϵ pi(t+ϵ/2)
mi

pi(t+ ϵ) = pi(t+ ϵ/2) − (ϵ/2) ∂S
∂xi

(x(t+ ϵ))
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Metropolis vs. Hamiltonian MC
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Hamiltonian MCMC almost summary
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HMCMC - single step - Langevin method

✦

H(x,p) = S(x) +
1

2

∑
i

p2i

✦ sample pi from N (0, I)

✦ generate proposal x∗

x∗
i = xi − ϵ2

2
∂S
∂xi

(xi) + ϵ pi

p∗i = pi − ϵ
2

∂S
∂xi

(xi)− ϵ
2

∂S
∂xi

(x∗
i )

✦ accept or reject x∗

P (x → x∗) = min {1, exp (−(H(x∗, p∗)−H(x, p))}

debski@igf.edu.pl: S11- 19 GEOPLANET, 10.06.2024



Langevin MCMC

First equation:

x∗
i = xi −

ϵ2

2

∂S

∂xi
(xi) + ϵpi

is a discretized version of the overdamped Langevin equation

dx

dt
= − λ

∂S

∂x
+ η(t)

particularly if x ≡ v S(v) = 1/2 v2; σ(v) = exp(−1/2 v2)

dv

dt
= − λ v + η(t)

describes Brovian motion.
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