Advanced statistical methods and Bayesian inference in scientific research

Lecture 11

W. Dębski

10.06.2024

Metropolisa-Hastings (MH) algorithm

$$egin{aligned} x_{i+1} &= x_i + \delta x_i \ P(x_i o x_{i+1}) &= \min \left\{ 1, rac{p(x_{i+1})}{p(x_i)}
ight\} \end{aligned}$$

Samples correlation

Original Metropolis algorithm is actually performing purely random walk over \mathcal{M}

$$\mathbf{x}^{\beta} = \mathbf{x}^{lpha} + \delta \mathbf{x}$$
 $\delta \mathbf{x} = \mathbf{x}_{o} + \delta \times rand(-1, 1)$

(filtered next by Metropolis selection Kernel)

For this reason the algorithm requires an extremely long runs and subsequent samples are strongly correlated

Lecture 11

MH - too large steps

MH - too small steps

Lecture 11

MH - oiptimium steps

Hamiltonian MCMC

Significant improvements of this situation requires additional information on sampled $\sigma(\mathbf{x})$. Particular (often met) situation occurs when

$$\sigma(\mathbf{x}) = k \exp\left(-S(\mathbf{x})\right)$$

and one can calculate gradient of $S(\mathbf{x})$ with respect to \mathbf{x}

$$\nabla_i L = \frac{\partial S(\mathbf{x})}{\partial x_i}$$

One can use this information for a more efficient generation of test samples

$$\mathbf{x}^{\beta} = \mathbf{x}^{\alpha} + \delta \, \nabla L$$

GEOPLANET, 10.06.2024

$MCMC \Longrightarrow Gradient \ optimization$

Hamiltonian MCMC - idea

The most popular method of including $\nabla_i L$ information into sampling algorithm is so called

Hamiltonian Monte Carlo

It's basic idea is avoiding generation of test sample $\mathbf{x}^{\beta} = \mathbf{x}^{\alpha} + \delta \mathbf{x}$ more or less randomly but rather to take it as a result of a deterministic evolution from a given chain state \mathbf{x}^{α} .

This evolution is based on the Hamiltonian dynamics in an extended phase space (X, V)

Hamiltonian dynamics

Let **P** be a particle of a unit mass moving in \mathbb{R}^3 space due to a potential energy \mathbb{E}_p . Let

- \bullet x position of particle
- \bullet v its velocity

One can define the Hamiltonian (energy) functional

$$H(x,v) = E_p + \frac{1}{2}||v||^2$$

over the phase space $\mathcal{P} = \{p(t) := (x(t), v(t))\}$

Hamiltonian dynamics

Evolution equations:

$$\frac{dx}{dt} = \frac{\partial H}{\partial v}, \qquad \frac{dv}{dt} = -\frac{\partial H}{\partial x}$$

Evolution conserves "energy":

$$\frac{dH}{dt} = 0, \qquad H(x(t), v(t)) = H(x(0), v(0))$$

Volume in phase space is conserved:

$$\vec{F} = (\frac{dx}{dt}, \frac{dv}{dt}); \quad \nabla \cdot \vec{F} = 0$$

Hamiltonian dynamics

Hamiltonian's equation describe evolution of the system in the phase space \mathcal{P} parameterized by time t

$$p(t) = (x(t), v(t)))$$

However, from geometrical point of view, after removing "parameter" t, this evolution is represented by given trajectory in \mathcal{P} space

$$\Gamma(x,v) = 0$$

Energy, and "volume" are conserved along this trajectory!

Hamiltonian dynamics - example

Variables
$$(x, p)$$
 with hamiltonian $H(x, p) = \frac{1}{2}kx^2 + \frac{p^2}{2m}$

Hamilton equations

$$\frac{dx}{dt} = p/m \qquad \qquad \frac{dp}{dt} = -kx$$

from which

$$\frac{d^2x}{dt^2} = -\omega^2 x$$

 $x(t) = \sin(\omega t) \qquad p(t) = m\omega \cos(\omega t)$ $x^{2} + (p/(m\omega))^{2} - 1 = 0$

Trajectory:

Hamiltonian MCMC

If we properly define "hamiltonian" for our sampled pdf $\sigma(x)$ then, for any point $(x, v_i) \in \mathcal{P}$ one can run "dynamic evolution" to get trajectory $\Gamma(x, v) = 0$ and pick up any point of this trajectory as a test sample for metropolis acceptance step.

$$x^* = x_{\Gamma}: \quad \Gamma(x_{\Gamma}, v_{\Gamma}) = 0$$

Energy conservation assures (if H is properly defined) that

 $\sigma(x^*) \approx \sigma(x_i)$

So, it is very probably that the test sample will be accepted by MH selection rule

$$x_{i+1} = x^*$$

Hamiltonian Monte Carlo

◆ Extend the model parameter space: $\mathcal{X} \to (\mathcal{X}, \mathcal{P})$

• Build the Hamiltonian functional: $\sigma(\mathbf{x}) = k \exp(-S(\mathbf{x}))$

$$H(\mathbf{x}, \mathbf{p}) = S(\mathbf{x}) + \frac{1}{2}\mathbf{p}^T M^{-1}\mathbf{p}$$

• Choose starting point \mathbf{x}_0 and auxiliary \mathbf{p} e.g. from $\mathcal{N}(0, I_M)$

• Repeat sampling from $\sigma(\mathbf{x}, p) = e^{-H(x, p)} = \sigma(x)e^{-1/2\mathbf{p}^T M^{-1}\mathbf{p}}$

* evolve current state $(\mathbf{x}^{\alpha}, \mathbf{p}^{\alpha})$ over time τ according to Hamiltonian equations to get a proposal MCMC state $\mathbf{x}^* = \mathbf{x}^{\alpha}(\tau)$

 \star accept (reject) \mathbf{x}^* with Metropolis Hasting acceptance kernel

Hamiltonian Monte Carlo - "deterministic" evolution part

$$\frac{dx}{dt} = \frac{\partial H}{\partial p}, \qquad \frac{dp}{dt} = -\frac{\partial H}{\partial x}$$

Discretized version (with leapfrog integration schemata) with time step ϵ

$$p_i(t + \epsilon/2) = p_i(t) - (\epsilon/2) \frac{\partial S}{\partial x_i}(x(t))$$
$$x_i(t + \epsilon/2) = x_i(t) + \epsilon \frac{p_i(t + \epsilon/2)}{m_i}$$

$$p_i(t+\epsilon) = p_i(t+\epsilon/2) - (\epsilon/2) \frac{\partial S}{\partial x_i}(x(t+\epsilon))$$

Metropolis vs. Hamiltonian MC

Hamiltonian MCMC almost summary

HMCMC - single step - Langevin method

$$H(\mathbf{x}, \mathbf{p}) = S(\mathbf{x}) + \frac{1}{2} \sum_{i} p_i^2$$

 \bullet sample p_i from $\mathcal{N}(0, I)$

• generate proposal x^*

$$x_i^* = x_i - \frac{\epsilon^2}{2} \frac{\partial S}{\partial x_i}(x_i) + \epsilon p_i$$
$$p_i^* = p_i - \frac{\epsilon}{2} \frac{\partial S}{\partial x_i}(x_i) - \frac{\epsilon}{2} \frac{\partial S}{\partial x_i}(x_i^*)$$

accept or reject x^*

 $P(x \to x^*) = \min\{1, \exp(-(H(x^*, p^*) - H(x, p))\}\$

First equation:

$$x_i^* = x_i - \frac{\epsilon^2}{2} \frac{\partial S}{\partial x_i}(x_i) + \epsilon p_i$$

is a discretized version of the overdamped Langevin equation

$$\frac{dx}{dt} = -\lambda \frac{\partial S}{\partial x} + \eta(t)$$

particularly if $x \equiv v$ $S(v) = 1/2v^2$; $\sigma(v) = \exp(-1/2v^2)$

$$\frac{dv}{dt} = -\lambda v + \eta(t)$$

describes Brovian motion.

GEOPLANET, 10.06.2024

Created: ZA-10-06-2024

See you June, 17th