
Advanced statistical methods and
Bayesian inference in scientific

research
Lecture 10

W. D ↪ebski

3.06.2024



Advanced statistical methods and Bayesian inference in scientific research Lecture 10

Metropolisa-Hastings (MH) algorithm

xi+1 = xi + δxi

K(xi;xi+1) = min

{
1,
p(xi+1)

p(xi)

}
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Metropolis algorithm

✦ Initialize x0

✦ Repeat

★ generate random test sample xβ = xα + δ ∗ rand(0, 1)
★ accept xβ with probability P (xβ,xα) = min

[
1, σ(x

β)
σ(xα)

]
➡ generate uniform random number u ∼ U(0, 1)
➡ u < P (xβ,xα)

xα+1 = xβ

otherwise
xα+1 = xα

✦ Continue until sufficient number of samples {xα} is generated
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Metropolis algorithm
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Metropolis algorithm - tips

σ(x) = ke−S(x)

Then acceptance ratio

P (xβ,xα) = min
[
1, e−(S(xβ)−S(xα))

]

is easier to calculate numerically (less prone to numerical accuracy)
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Metropolis algorithm - generating proposal samples

The key point of the algorithm is the proper generating proposal samples
( how large δ should be ?)
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Metropolis Hasting algorithm - features

✦ after so called burn-in initial time generated samples follow σ(x)

probability distribution

✦ subsequent samples are strongly correlated - the chain must be run for a
long time

✦ MH is optimum sampling algorithm if only σ(x) is available.

✦ How many samples should be generated ?

✦ problem with generating “proper” test samples (xβ)
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Improving test sample generation

Runing MH chain for sufficiently long time we get some information about
sampled σ distribution. Can we us this information to improve (make more
robust, efficient, etc) sample generation process?

YES, but...

There is a big risk of biasing sampling procedure making the sampling
procedure non-stationar
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Non stationary MCMC - global optimization

Simulated annealing algorithm

p(x; t) = exp

(
−S(x)

kT

)
T = T (t)

T=10 T=1 T=0.1
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Simulated annealing - non-stationary sampler

The cooling process (decreasing T must be slow enought to allow sampler
properly sample the whole space at “fixed T ” If original MH is used one can
prove that fastest cooling must acually be very slow

T (k) ∼ 1

ln(k)

However Ingberg in 70’th had proposed to change sample generation with T

xi+1 = xi + d(T )× rand(0, 1)

achiving very fast cooling spead

T (k) ∼ 1

k
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Simulated annealing - non-stationary sampler

Model Space
Temperature
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Improving test sample generation

Non-stationarity of MH chain can also be caused/achived by changing the
method of sample generation (like Ingberg had done). What result can be?

100 5 1 0.05
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Can we do it?

If it can be accepted that our sampling will not be “perfect” but slightly
contaminated/biased by slow nonstation arity of the chain we may profit it by
significantly speeding up sampling but a price of loosing accuracy

Model Space
Temperature
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Hamiltonian MCMC - extension Metropolis idea

xi+1 = xi + δxi

K(xi;xi+1) = min

{
1,
p(xi+1)

p(xi)

}
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Hamiltonian MCMC

Original Metropolis algorithm is actually performing purely
random walk over M

xβ = xα + δx δx = xo + δ × rand(−1, 1)

(filtered next by Metropolis selection Kernel)

For this reason the algorithm requires an extremely long runs
and subsequent samples are strongly correlated

debski@igf.edu.pl: S10- 14 GEOPLANET, 3.06.2024



Advanced statistical methods and Bayesian inference in scientific research Lecture 10

Hamiltonian MCMC

Hastings has extended the Metropolis algorithm by allowing
generating test samples from auxiliary (a priori ) distribution
what has improved (sometimes not) convergence of the original
algorithm.

Many other attemps have also been undertaken to improve the
situation (convergence of the chain) with varying results.
Usually proposed extensions work better for some classes of
problems but fails in others

NO FREE LUNCH THEOREM
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Hamiltonian MCMC

Significant improvements of this situation requires additional information on
sampled σ(x). Particular (often met) situation occurs when

σ(x) = k exp (−L(x,d))

and one can calculate gradient of L(x,d) with respect to x

∇iL =
∂L(x,d)

∂xi

One can use this information for a more efficient generation of test samples

xβ = xα + δx
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Hamiltonian MCMC - idea

The most popular method of including ∇iL information into sampling
algorithm is so called

Hamiltonian Monte Carlo

It’s basic idea is avoiding generation of test sample xβ = xα + δx more or
less randomly but rather to take it as a result of a deterministic evolution
from a given chain state xα.

This evolution is based on the Hamiltonian dynamics in an extended phase
space (X,V )
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Hamiltonian dynamics

Let P be a particle of a unit mass moving in R3 space due to a potential
energy Ep. Let

✦ x - position of particle

✦ v - its velocity

One can define the Hamiltonian (energy) functional

H(x, v) = Ep +
1

2
||v||2

over the phase space P = {p(t) := (x(t), v(t))}
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Hamiltonian dynamics

Evolution equations:

dx

dt
=

∂H

∂v
,

dv

dt
= − ∂H

∂x

✦ Evolution conserves “energy”:

dH

dt
= 0, H(x(t), v(t)) = H(x(0), v(0))

✦ Volume in phase space is conserved:

F⃗ = (
dx

dt
,
dv

dt
); ∇ · F⃗ = 0
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Hamiltonian dynamics

Hamiltonian’s equation describe evolution of the system in the phase space
P parameterized by time t

p(t) = (x(t), v(t)))

However, from geometrical point of view, after removing “parameter ” t, this
evolution is represented by given trajectory in P space

Γ(x, v) = 0

Energy, and “volume” are conserved along this trajectory!

debski@igf.edu.pl: S10- 20 GEOPLANET, 3.06.2024



Advanced statistical methods and Bayesian inference in scientific research Lecture 10

Hamiltonian dynamics phase space trajectory

X

Y

P(x(ξ),y(ξ),z(ξ))

-1

1

ξ
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Hamiltonian MCMC

If we properly define “hamiltonian” for our sampled pdf σ(x) then, for any
point (x,vi) ∈ P one can run “dynamic evolution” to get trajectory
Γ(x, v) = 0 and pick up any point of this trajectory as a test sample for
metropolis acceptance step.

x∗ = xΓ : Γ(xΓ, vΓ) = 0

Energy conservation assures (if H is properly defined) that

σ(x∗) ≈ σ(xi)

So, it is very probably that the test sample will be accepted by MH selection
rule

xi+1 = x∗
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Hamiltonian Monte Carlo

✦ Extend the model parameter space: X → (X ,P)

✦ Build the Hamiltonian functional

H(x,p) = − ln(σ(x)) +
1

2
pTM−1p

✦ Choose starting point x0 and auxiliary p e.g. from N (0, IM)

✦ Repeat

★ evolve current state (xα,pα) over time τ according to Hamiltonian equ-
ations to get a proposal MCMC state xβ = xα(τ)

★ accept (reject) xβ with Metropolis Hasting acceptance kernel
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