Imaging seismic rupture process by Markov Chain Monte Carlo technique the case of Rudna (Poland) copper mine events

> Wojciech Dębski Institute of Geophysics Polish Acad. Sci., Warszawa, Poland

debski@igf.edu.pl,
www.igf.edu.pl/~debski

7 stycznia 2005

Plan of the talk

Numerical background

- ★ Inversion techniques
- ★ Markov Chain Monte Carlo
- ★ Pseudo-spectral parametrization

Relative Source Time Function

★ Information on rupture process

★ Empirical Green Function

Mining Induced Events - case study

- ★ Local seismic network
- **★** Examples

Inverse problem - Indirect Measurements

$$\mathbf{d}^{obs} \implies \mathbf{m}$$

Solution

$$||\mathbf{d}^{obs} - \mathbf{d}^{th}(\mathbf{m})|| + \lambda ||\mathbf{m}^{ml} - \mathbf{m}^{apr}|| = \min$$

Errors

$$\mathbf{m}^{true} = \mathbf{m}^{ml} + \epsilon_{\mathbf{m}}$$
 $\epsilon_{\mathbf{m}} = ???$

Inversion Algorithms

Method	Advantages	Limitations
Algebraic (LSQR)	- Simplicity	- Only linear problems
$\mathbf{m}^{ml} = (\mathbf{G}^T\mathbf{G} + \gamma\mathbf{I})^{-1}\mathbf{G}^T\cdot\mathbf{d}^{obs}$	- Large scale problems	- Lack of robustness
Optimization	- Simplicity	- Difficult error estimation
$\ \mathbf{G}(\mathbf{m}) - \mathbf{d}^{obs}\ + \lambda \ \mathbf{m}) - \mathbf{m}^a\ = \min$	- Fully nonlinear	
Bayesian	- Fully nonlinear	- More complex theory
$\sigma(\mathbf{m}) = f(\mathbf{m})L(\mathbf{m}, \mathbf{d}^{obs})$	- Full error handling	- Requires efficient sampler

Inversion algorithms

Back projection

Model space search

Bayesian Inversion - Basic Ideas

Bayesian Inversion

Probabilistic approach

A posteriori pdf $\sigma(m, d)$:

always exists

♦ is unique

describes all information

♦ is the solution of an inverse problem

When and why we need to use this approach ???

ERROR ANALYSIS !!!

Examination of $\sigma(\mathbf{m})$

Monte Carlo sampling

Markov Chain Monte Carlo technique

Elements of seismic tomography

Far field:

$$u_{i}^{obs}(t,\mathbf{r}) = \int_{t'} \int_{\Sigma} \mathcal{G}_{i}(t-t',\mathbf{r},\mathbf{r}')S(t',\mathbf{r}') d\mathbf{r}' dt'$$

$$u_{i}^{obs}(t) = \int_{t'} \mathcal{G}_{i}(t-t')\bar{S}_{i}(t') dt'$$

Seismic tomography - two step inversion

Apparent STF

$$\bar{S}_i(t) \approx \int_{\Sigma} S(t + \delta_i(\mathbf{r}'), \mathbf{r}') d\mathbf{r}'$$

Two steps inversion

$$u_i^{obs}(t) \Longrightarrow \bar{S}_i(t') \Longrightarrow S(t, \mathbf{r})$$

Apparent STF

$$u_i^{obs}(t) = \int_{t'} \mathcal{G}_i(t-t') \bar{S}_i(t') dt'$$

• Approximation \mathcal{G} : (e.g. Empirical Green Function (EGF)

- Discretization $\bar{S}(t) \Longrightarrow \{m_1, m_2, \ldots\}$
- Constraints
 - \star causality
 - \star finit duration
 - ★ positivity
 - \star limited frequency band

Empirical Green Function

Discretization

$$\bar{S}(t) = \sum_{i} a_{i}\phi_{i}(t)$$

$$\phi_{i}(t) = \begin{cases} \delta(t - t_{i}) \\ \exp\left(-\frac{1}{2}(t - t_{i})^{2}\right) \\ \sin(\omega_{i}t) \end{cases}$$

$$\bar{S}(t) \equiv \bar{S}(\mathbf{a}) \leftrightarrow \{a_{i}\}$$

Positivity constraint

No constraint

Station distribution

Event 1998.07.03

STF - channel 13

STF - channel 13

All channels

STF- errors

Synthetic vs. recorded seismograms

Moment sejsmiczny

Relative M_{\circ}

Rozkład kątowy

Station distribution

Station distribution

Empirical Green Functions

Synthetics/Main

Source Time Function

Scalar Moment

Root Mean Squares Residua

Empirical Green Functions

Synthetics/Main

Source Time Function

Scalar Moment

Root Mean Squares Residua

