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Abstract

Magnetic buoyancy instability in weakly resistive and thermally conductive plasma is an important mechanism of
magnetic field expulsion in astrophysical systems. It is often invoked, e.g., in the context of the solar interior. Here,
we revisit a problem introduc`ed by Gilman: the short-wavelength linear stability of a plane layer of compressible
isothermal and weakly diffusive fluid permeated by a horizontal magnetic field of strength decreasing with height.
In this physical setting, we investigate the effect of weak resistivity and weak thermal conductivity on the short-
wavelength perturbations, localized in the vertical direction, and show that the presence of diffusion allows to
establish the wavelength of the most unstable mode, undetermined in an ideal fluid. When diffusive effects are
neglected, the perturbations are amplified at a rate that monotonically increases as the wavelength tends to zero.
We demonstrate that, when the resistivity and thermal conduction are introduced, the wavelength of the most
unstable perturbation is established and its scaling law with the diffusion parameters depends on gradients of the
mean magnetic field, temperature, and density. Three main dynamical regimes are identified, with the wavelength
of the most unstable mode scaling as either d 3 5l ~ k or d 3 4l ~ k or d 1 3l ~ k , where d is the layer
thickness and k is the ratio of the characteristic thermal diffusion velocity scale to the free-fall velocity. Our
analytic results are backed up by a series of numerical solutions. The two-dimensional interchange modes are
shown to dominate over three-dimensional ones when the magnetic field and/or temperature gradients are strong
enough.
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1. Introduction

The instability triggered by magnetic flux tubes that locally
decrease the gas density, thus creating buoyancy, has been
known since Parker (1955) and Newcomb (1961). The
requirement for this type of instability to develop in
compressible plasma is the stratification of horizontal magnetic
fields. Since their discovery, the magnetic buoyancy instabil-
ities have been invoked numerous times in astrophysics in the
context of stars, accretion disks, and interstellar medium
(cf. Parker 1979 and Choudhuri 1998). In particular, according
to, e.g., Hughes (2007), They seem to be a promising candidate
for the mechanism of break-up and escape of a predominantly
toroidal magnetic field from the solar tachocline, which is then
dragged by the flow in the convection zone toward the Sun’s
surface, where it appears as active regions. Motivated by
magnetic field dynamics in the tachocline, we return to the
pioneering work of Gilman (1970), who studied the magnetic
buoyancy instability in the solar context, while neglecting all
diffusive processes, i.e., viscosity, the fluid’s resistivity and
thermal conduction, which are indeed very weak in the Sun’s
interior. He showed that the most rapidly growing perturbations
are short-wavelength in the horizontal direction, perpendicular
to the imposed, stratified horizontal magnetic field, which was
later confirmed by Acheson (1979). That work was recently
followed by Mizerski et al. (2013), who studied the same
idealized model of Gilman (1970) with the use of the
Rayleigh–Schrödinger asymptotic approach in the limit of
short perturbational wavelengths. They found the growth rate
and structure of the most unstable mode—however, they were
unable to determine the finite magnitude of its wavelength,

because the most unstable mode turns out to be the one with
infinite wavenumber in the absence of dissipation.
The magnetic buoyancy was studied in a broader context by

Cattaneo et al. (1990) and Hughes (1992), who described its
possible role in the formation of sunspots and in the solar
dynamo cycle. On the other hand, the effect of magnetic
buoyancy in magnetoconvection was studied by Hughes &
Proctor (1988), while the influence of shear was examined by
Tobias & Hughes (2004) and more recently by Bowker et al.
(2014). The joint effect of rotation and magnetic buoyancy was
investigated by Hughes (1985), while the possible large-scale
dynamo action triggered by the magnetic buoyancy instability
was studied by Davies & Hughes (2011), who calculated the
mean electromotive force induced by the instability.
A number of interesting results from numerical simulations

have also been reported. Cattaneo & Hughes (1988) studied the
nonlinear break-up of a magnetic layer, particularly in the
context of the instability of interchange modes. In a somewhat
wider context, the nonlinear evolution of the magnetic
buoyancy instability was investigated by Kersal et al. (2007).
Berkoff et al. (2010) compared the anelastic approximation
with the fully compressible equations for linear magnetocon-
vection and flow driven by the magnetic buoyancy effect.
Magnetic buoyancy instability was also considered in the

context of the Terrestrial magnetic field by Acheson
(1980, 1983) and Friedlander (1987). It was shown to influence
the propagation of magneto-gravitational waves by changing
their Brunt–Väisälä frequency and destabilizing them, thus
influencing the oscillations of the geomagnetic field.
The aim of this paper is to explain how the wavelength of the

fastest-growing perturbation is established by the presence of
magnetic and thermal diffusivity (which seem to be most
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important in the astrophysical context); in other words, at
which wavenumber magnitude the diffusive decay starts to
dominate and the growth rate starts to decrease with decreasing
wavelength. We follow the approach of Mizerski et al. (2013)
and apply the same asymptotic techniques. Several different
regimes are identified, which leads to quite diverse results. In
order to clearly classify all the possible regimes and minimize
the complexity of the cumbersome analytic calculations, we
consider only the most unstable modes; strongly oscillatory
solutions identified in Mizerski et al. (2013), which are never
the fastest-growing modes, are not presented. Moreover, for the
sake of clarity, we also consider only the so-called “body
modes,” i.e., the most unstable perturbations that develop in the
interior of the domain, as opposed to the “wall modes,” which
can develop near the boundaries under certain circumstances.
We also take advantage of the results of Mizerski et al. (2013),
who clearly showed how to approach the “wall modes” (the
approach being nearly the same as for “body modes”), and thus
our results can be easily generalized to the case wherein the
most unstable modes develop in the vicinity of boundaries.
Moreover, the oscillatory modes can also be found via the
WKB technique, in the same fashion as in Mizerski et al.
(2013), who have also performed numerical simulations of
evolution of the non-dissipative system from some initial state,
localized far from the growth rate maximum. They showed that
the boundary layer (BL)-type mode localized near the growth
rate maximum eventually dominates all others; however, it
must be said that, in the nonlinear regime, all the modes from
the spectrum would necessarily interact. Due to the local nature
of the instability it is possible, that an initial perturbation
localized far from the growth rate maximum could grow to a
magnitude large enough to put the system in a nonlinear
regime, even before the most unstable mode could take over.
Nevertheless, due to the possibility for simple generalization of
the results obtained here to other types of modes (for which the
detailed analysis can be found in Mizerski et al. (2013) and
easily repeated), for the sake of clarity, we concentrate here on
only the most unstable modes. In many applications, however,
it is in fact the most unstable mode that is most relevant,
because it is likely to dominate the dynamics.

Let us also mention that, from an astrophysical point of
view, we are considering a very simplified setting because the
influence of shear, which is vital in the context of the tachocline
(cf. Hughes 2007), is neglected here. Moreover, the effect
of the baroclinic instabilities, emphasized by Gilman (1967a,
1967b, 1967c, 1967d, 2014, 2015, 2017) is also not included.
However, this paper presents a clear study of the complicated
influence of weak resistivity and weak thermal conduction on
the magnetic buoyancy instability, so for the sake of clarity, it
is crucial to isolate this effect from other complex aspects of the
true dynamics (the results obtained here are reached in different
regimes and scalings for the wavenumber of the most unstable
mode with the diffusivities, and are clearly categorized).
Nevertheless, because the magnetic buoyancy is strongly
relevant to solar tachocline, we think it is worthwhile to
comment on the parameter regime that pertains to the
tachocline in this paper.

The paper is organized as follows. The governing equations
describing the magnetic buoyancy instability of a layer of gas
with a vertically stratified horizontal magnetic field are
provided in Section 2. For simplicity, we first restrict our
attention to two-dimensional (interchange) perturbations, for

which the magnetic field remains unidirectional. In Section 3,
we analyze the effect of electric resistivity alone, i.e., in an
isothermal fluid (with infinitely fast thermal relaxation), within
the asymptotic limit of small ratio of the free-fall timescale to
the resistive one. In Section 4, a similar asymptotic analysis is
carried out to study the joint effect of the resistivity and thermal
diffusion, with the latter much greater than the former, as
expected from estimates of physical parameter values at the
bottom of the solar convection zone, provided by Gough
(2007). Three distinct dynamical regimes are found and
thoroughly described in a short summary at the end of that
section. The joint influence of both diffusivities turns out to be
crucial in some cases, as the sole effect of thermal diffusion is
negligible for sufficiently weak mean temperature gradients. In
Section 5, we present the numerical solutions of the linear
stability equations and report a good agreement with the
asymptotic results of previous sections. In Section 6, we show
how the high-wavenumber analysis carries over to the case of
fully three-dimensional perturbations, and a final recipe for
determination of the most unstable mode in the analyzed
system is provided in 6.3. Our concluding discussion is
contained in Section 7.

2. Mathematical Formulation

We consider a plane layer of thickness d, filled with inviscid,
compressible, and electrically and thermally conducting fluid,
described by the perfect gas equation of state in the presence of
an external, horizontal magnetic field. We assume that the
boundaries are perfect electric conductors. The system of
evolution equations for this physical setting, for the velocityu,
magnetic field B, densityρ, pressurep, and temperatureT,
consists of the Navier–Stokes, magnetic induction, temper-
ature, and continuity equations, supplied by the state equation
of an ideal gas and Gauss’s law for magnetism. These are
expressed in the following nondimensional form:
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and ps, sr , Ts, Bs are the scales of pressure, density, temperature,
and the magnetic field, respectively. Plasma β is the ratio of the
gas pressure to the magnetic pressure: p Bs s0

2b m= , 0m is the
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vacuum permeability, and c cp vg = the specific heats ratio.
For the units of length, time, and velocity, we chose the layer
thickness d, the free fall time d g , and the freefall velocity

gd , respectively. The acceleration of gravityg, magnetic
diffusivityη, thermal conductivity k cp sk r= , and specific
heats cp and cv are assumed constant. Despite exclusion of
shear, which is significant in the solar tachocline, we will make
some references to the tachocline in the local context; i.e., we
adopt a Cartesian coordinate system for our model, in which
positive x points east, y points north, and z points radially (in
the direction opposite to gravity).

As advertised in the introduction, in order to thoroughly
study the effect of diffusion on the short-wavelength magnetic
buoyancy instability, two separate cases will be considered:
(i) isothermal with asymptotically small, dimensionless magn-
etic diffusivityh (Section 3), and (ii) non-isothermal with
both diffusivities, thermal k, and magnetic h asymptotically
small, and with an assumed scaling 3 2 ~h k that pertains to
the tachocline (Section 4).

We neglect here the effect of rotation, because the Sun is a
slowly rotating star and the magnitude of the Coriolis term
measured by the ratio of rotational speed to the freefall velocity
is on the order 10−4 (cf. physical parameter values for the
tachocline provided by Gough 2007) within the framework of
the adopted set of dimensional scales. Thus, we feel it is fully
justified to neglect the Sun’s rotation in the leading-order
analysis, although its effect should be included in possible
future studies concerning magnetic dynamo induced by
magnetic buoyancy, as it might be important in the process
of generation of a large-scale poloidal field.

3. Influence of Magnetic Diffusivity

Let us first treat the simplest case. Assume now that the
system is a conducting fluid with magnetic diffusivity 1h  .
We assume further that the system is isothermal. Thus, we do
not need the temperature Equation 1(c), and the parameterα
contains the constant temperatureT of the system. Under these
assumptions, we will now investigate the role of resistivity in
the dynamics of magnetic buoyancy instability.

To determine the basic state from Equations 1(a)–(f), which
will later be perturbed, we consider a layer of stationary fluid in
equilibrium, in dimensionless region z0 1  , with a
horizontal z- and time-dependent magnetic field,

B eB z t, , 3t t x=¯ ¯ ( ) ˆ ( )

which has to satisfy the equation of induction and the boundary
conditions on the perfect conductors at z 0, 1=

t
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The time dependence of the reference magnetic field on the
very slow diffusive timescale was introduced to allow for a
non-trivial solution satisfying the boundary conditions (5),
which would have to be spatially uniform for a stationary field.
Because it is known (cf. Gilman 1970; Mizerski et al. 2013)
that the magnetic buoyancy instability is excited only by
magnetic fields that decrease with height, we take the solution

of Equation (4) in the following form

B z t
B

e z, 1
2

cos 1 , 6t
t t2 p= +

D
+p- h¯ ( )

¯
( ( ) ) ( )

where B 0tD >¯ is the nondimensional value of the magnetic
field difference across the layer: B B t B t0, 1,t t tD = -¯ ¯ ( ) ¯ ( ).
However, because the diffusion is very weak and the timescales
of the instability are expected to be on the same order as the
ideal case (i.e., proportional to the freefall timescale but much
faster than the diffusive one), we can approximate the latter
solution for times t 1 h

- to the following expression for
stationary basic magnetic field B z¯ ( ) with only small corrections
for diffusivity:
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In the following analysis, we use the basic magnetic field
only in the time-independent form (7). The basic-state
pressurep z¯ ( ) and density zr̄ ( ) are determined from the
following equations:

d
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Thus, for the basic magnetic field given by (7), the
density zr̄ ( ) has the following form
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At this stage, we also define the following useful functions of
the basic-state variables
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where H z1
r
- ( ) and H zB

1- ( ) are the depth-dependent inverse
scale heights of density and magnetic field respectively, while
F z z1a c= +( ) ( ( )) and z B z z2 c ar= L( ) ¯ ( ) ( ¯ ( )) are the
same formulae as in Mizerski et al. (2013). The last two
functions are always positive in the considered domain.
We note that the static-state Equations (8) and (9) also imply

the following relation between those functions

H z z H z 0. 13B
1 1 1c a+ + =r

- - -( ) ( ) ( ) ( ) ( )

In this section, just as Mizerski et al. (2013), we assume that
the perturbations to the basic state have a form of interchange
modes, i.e., they are assumed to be two-dimensional and
varying in the y and z directions perpendicular to the basic
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magnetic field
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Due to homogeneity in the y direction, a simple Fourier-

mode type dependence is assumed, with the wavenumber
denoted by k and the growth rate by σ. Later, in Section 6, we
consider three-dimensional perturbations and derive the condi-
tion that has to be satisfied in order for the interchange modes
to dominate.

Introduction of perturbations in the form (14) and the basic-
state functions into Equations 1(a)–(f) and linearization yield
the following system of linear equations
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and (as already mentioned) perfectly conducting, which implies
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Due to the presence of the diffusive term in 15(c), the system
of Equations 15(a)–(e) reduces (without any approximations) to
one fourth-order ordinary differential equation for a chosen
variable. We choose to express the stability problem in terms
of a sole equation for the horizontal magnetic field
perturbationb zx ( ), with the growth rateσ determined as the
eigenvalue of the problem. The coefficients of this equation are
very complicated and therefore cumbersome. However, we can
express the equation in the simplified form
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where all the coefficients f zĩ ( ), i 0, , 4= ¼ , are dependent on
the basic-state functions and their derivatives, the horizontal
wavenumberk, the growth rateσ, and the dimensionless
constants of the system, particularlyh. Their general form is
provided in Appendix A.

In a general case, Equation (17) requires a numerical
approach. We postpone the presentation of numerical results
until Section 5. Following Gilman (1970), we first proceed by
considering the short-wavelength asymptotic limit, k 1 ,
which is equivalent to the weak resistivity limit 1h  in the
analyzed case. The Rayleigh–Schrödinger analytic method
utilized below for the asymptotic analysis is described in detail
in Bender & Orszag (1978), and Mizerski et al. (2013) have
applied it to the non-diffusive case.

All the details of the asymptotic analysis at the leading order
can be found in Appendix A. Here, we describe only major

concepts and results. We assume that all the basic-state
functions and their derivatives, the growth rate σ, and the
dimensionless parameters except h are on the order of unity.
As argued by Gilman (1970), Acheson (1979), and Mizerski
et al. (2013), the interchange modes become more unstable
with growing wavenumbers, and without diffusion, the growth
rate σ increases as k  ¥. Thus, we expect that the effect of
weak diffusion, which naturally tends to decrease the growth
rate, will be simply to establish a finite magnitude of the large
wavenumber kmax for the most unstable mode; for k kmax> ,
the diffusion is expected to continuously weaken the instability.
At this stage, it is useful to define an important function of

the basic-state variables, denoted here by zs ( ), which appears
in the leading-order analysis and will be called a “growth-rate
function”

z
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z F z
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In the following, the function zs ( ) always appears with an
argument, whereas the symbol σ is retained to denote the
true eigenvalue, which is a number. As demonstrated in
Appendix A, the growth-rate function plays an important role
in the analysis, because the most unstable mode localizes in the
vicinity of the position of its maximum value in the domain,
denoted by zmax. Its value at that point, zmaxs ( ), is equal to the
growth rate of that most unstable mode at leading order, which
we denote as 0s . Thus,

z
B z

z F z
H z H z ,

19

B0 max

2
max

max max

1
max

1
maxs s

r
= =

L
-r

- -( )
¯ ( )

¯ ( ) ( )
( ( ) ( ))

( )

and the situation is reminiscent of the non-diffusive case
described in Mizerski et al. (2013), i.e., the most unstable
eigenmode localizes in the vicinity of zmax, where a boundary/
internal layer is formed. In general, the modes can localize near
the boundary (BL type modes, sometimes called “wall modes”)
or inside the domain (internal-layer type, called “body
modes”). We restrict our attention to body modes, but the
results are easily generalizable to the case of wall modes (cf.
Section 4.2. at Mizerski et al. 2013).
Additionally, we can also derive a criterion for instability

(the same as in the non-diffusive case, cf. Acheson 1979 and
Mizerski et al. 2013). The general condition 0s >( )Re leads
to 00s >( )Re . Thus, from (19), we have

H z H z 0, 20B
1

max
1

max- > - >r
- -( ) ( ) ( )

where the density scale height Hr is negative because we
assume stable stratification. Therefore, the latter instability
criterion demands also that the magnetic scale height HB is
negative, i.e., the horizontal magnetic field must decrease with
height for the magnetic buoyancy instability to develop. By the
use of relations (12) and (13), this criterion could be rewritten
in the form

H z F z 0. 21B
1

max
1

max- > >- -( ) ( ) ( )

Instability occurs when this criterion is satisfied at least locally,
and the point zmax is most prone to the instability.
As a result of further asymptotic analysis (see Appendix A

for details), it occurs that the horizontal and vertical length
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scales of variation of the most unstable perturbation are scaled
with the fluid’s resistivity as

k , , 221 3 1 6 d~ ~h h
- ( )

where δ is the thickness of the boundary/internal layer of the
mode, cf. Equation (55). An approximate expression for the
growth rate of the most unstable mode takes the form
(cf. Equation (74))
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and the leading-order form of the magnetic field perturbation is
(cf. Equation (75))
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where C is an undetermined constant. The structure of the
mode at the leading order is identical to the one in the case with
no magnetic diffusion obtained in Mizerski et al. (2013), and
the eigenmode is localized in the vicinity of the same z zmax= .
However, here we have established the order of the magnitude
of the finite wavenumber of the most unstable mode, in terms
of the weak resistivity, as k 1 3~ h

- . The details of this
analysis can be found in Appendix A.

At this stage, let us comment on the influence of the choice
of boundary conditions in the analyzed problem. In the case of
body modes (which localize away from the boundaries) such as
(24), both the mode itself and its derivatives vanish at the
boundaries. Nevertheless, even in this case, the boundary
conditions are important when solving for the basic state,
particularly the imposed magnetic field (cf. Equation (7)). In a
diffusionless case, one can take a field linear in z, which one
cannot do in the presence of diffusion, when the most
reasonable and relatively simple boundary condition is to
assume perfect conductors outside the domain. Moreover, the
boundary conditions are important for the wall modes, i.e., the
ones that localize near the boundaries; they are created when
growth rate functions have their maximum values at the
boundary. Those modes were studied in detail Mizerski et al.
(2013). Because the approach in the case of wall modes is the
same as for body modes, with the only notable difference being
that their final structure is described by Airy instead of
parabolic cylinder functions, we decided not to include them in
the analysis presented here. Indeed, generalization of our
analysis to wall modes is very straightforward. In the case of
wall modes, the influence of the boundary conditions can be
seen in the value of the correction to the growth rate at the
order 2d , which differs depending on the choice of boundary
conditions (perfect conductor versus insulator, no-slip versus
stress-free). In each case, this correction is simply determined
by either a zero of the Airy function or the derivative of the
Airy function, but its order of magnitude remains the same,
thus not violating the final conclusions.

4. Joint Influence of Thermal and Magnetic Diffusivities

We will now consider the joint effect of the thermal and
magnetic diffusivities—both are small, but the former is much
greater than the latter—on the magnetic buoyancy instability in
the short-wavelength limit. Therefore, we assume that the
system is non-isothermal, and thus the energy Equation 1(c) is
now coupled to the momentum, induction, and continuity
equations through the equation of state. The thermal diffusion
is characterized by the dimensionless thermal diffusivity
parameter 1k  , which is assumed to be small. Such a
regime is, in fact, opposite to the one considered in the previous
section, where isothermal system was assumed, which is
formally equivalent of the assumption  = ¥k . On the other
hand, it can be easily shown that the governing equations from
this section can be reduced to those for the isothermal case by
taking a limit 0 k and 1g  with T=const. This is rather
nonphysical, but convenient from a practical point of view
because it is technically easy to apply and thus useful for
comparison of the results obtained here with those from the
previous section.
Guided by the parameter values for the solar tachocline

provided in Gough (2007), which allow to estimate
10 10 ~k

- and 10 15 ~h
- , we propose to study a regime

described by the following power-law relation between the two
diffusivities (see also Section 5 for numerical results)

, 253 2 ~h k ( )

which pertains to the tachocline. As in Section 3, we start by
determining the basic state solution. Hence, in short, we
consider a stationary layer of fluid in equilibrium, in
dimensionless region z0 1  , with a horizontal, time-
independent, and z-dependent magnetic field in the same form
as in the previous section (cf. derivation of Equation (7)):

B e eB z
B

z1
2

cos 1 . 26x xp= = +
D

+
⎛
⎝⎜

⎞
⎠⎟¯ ¯ ( ) ˆ

¯
( ( ) ) ˆ ( )

The basic-state pressurep z¯ ( ), density zr̄ ( ), and temperature
T z¯ ( ) are now determined by the following set of equations

d

dz
p

d

dz
B0

2
, 272 r= - -

L
-¯ ¯ ¯ ( )

d

dz
T

d

dz
B0

1
, 28

2

2

2




g
g

a
= +

- L
k h

⎛
⎝⎜

⎞
⎠⎟¯ ( ) ¯ ( )

p T. 29ar=¯ ¯ ¯ ( )
Thus, from Equation (28) and for the basic magnetic field

given by (26), the basic-state temperature T̄ has the following
form

T z T z z z

z

1 1

2
1 cos 2 , 30

2

2

q
q
p

p

= + D - - -

+ -

¯ ( ) ¯ ( ) ( )

( ( )) ( )

where 1 2 4 02 2   q g l p ag= - L >h k( )( ) ( ) and T 0D >¯
is the nondimensional temperature jump across the layer,

T T T0 1D = -¯ ¯ ( ) ¯ ( ). For the temperature given by the formula
(30), the basic-state densityr̄ can only be found numerically
from Equations (27) and (29). However, it is worth noting that,
with relation (25), parameter θ becomes of the order

11 2k  , and thus the basic-state temperature T̄ is approxi-
mately linear in z with a negative gradient of T-D ¯ .
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At this stage, it is useful to define the following functions of
the basic-state variables

H z T z
d

dz
T z

F z T z
B z

z
T z z

,

1 ,

31

T
1 1

2
 a g

r
a g c

=

= +
L

= +g g

- -( ) ¯ ( ) ¯ ( )

( ) ¯ ( )
¯ ( )

¯ ( )
¯ ( ) ( ( ))

( )

where HT
1- is a depth-dependent inverse scale height of the

temperature, while z B z T z z2 c a gr= Lg ( ) ¯ ( ) ( ¯ ( ) ¯ ( )) (cf.
similar definitions in (12) for the isothermal case). The
functions F zg ( ) and zcg ( ) are always positive in our domain.
In the following, we will also use functions F z( ) and zc( )
defined similarly as in (12), but in a non-isothermal form that
takes into account the basic temperature dependence of the
system. In other words, we now replace parameter α, in the
form utilized in previous sections, with the term T za ¯ ( ):

F z T z B z z

z B z T z z

,

. 32

2

2





a r
c a r

= + L
= L

( ) ¯ ( ) ¯ ( ) ¯ ( )
( ) ¯ ( ) ( ¯ ( ) ¯ ( )) ( )

From Equations (27) and (29), one can derive the following
useful relation for the scale heights

H z H z z H z T z 0. 33T B
1 1 1 1c a+ + + =r

- - - -( ) ( ) ( ) ( ) ( ¯ ( )) ( )

In this case, we also assume at the first stage that the
perturbations to the basic state have the following form of
interchange modes: two-dimensional and varying in the y and
z directions, perpendicular to the basic magnetic field. Their
wavenumber in the y direction is denoted by k and the growth
rate by σ. The more general case of three-dimensional modes is
presented in Section 6. Two-dimensional perturbations adopt
the following form

u bv z w z e b z e0, , , , 0, 0 ,
34a

t iky
x

t iky= =s s+ +( ( ) ( )) ( ( ) )
( )

p p z e z e

T T z e

, ,

. 34b

t iky t iky

t iky

r r= =

=

s s

s

+ +

+

˜ ( ) ˜ ( )
˜ ( ) ( )

Introducing 34(a) and (b) into Equations 1(a)–(e) and
linearizing, we obtain the following set of equations

v ik p Bb , 35axsr = - + L¯ ( ˜ ¯ ) ( )

w
d

dz
p Bb , 35bxsr r= - - + L¯ ˜ ( ˜ ¯ ) ( )

b ikBv
d

dz
Bw

d

dz
b k b , 35cx x x

2

2
2 s = - - + -h h¯ ( ¯ ) ( )

T T w
d

dz
T k T ikpv

p
d

dz
w B

d

dz
b

1

1 2 1
,

35d

x

2

2
2 




sr r g g
g
a

g
a

g
a

= - ¢ + - -
-

-
-

+
- L

¢

k k

h

¯ ˜ ¯ ¯ ˜ ˜ ¯

¯ ( ) ¯

( )

ik v
d

dz
w , 35esr r r= - -˜ ¯ ( ¯ ) ( )

p T T . 35far a r= +˜ ¯ ˜ ¯ ˜ ( )

The boundaries are assumed impermeable, perfectly conduct-
ing, and isothermal; for the perturbation fields, this yields:

w z w z

d

dz
b

d

dz
b

T z T z

0 1 0,

0,

0 1 0. 36

x
z

x
z0 1

= = = =

= =

= = = =
= =

( ) ( )

˜ ( ) ˜ ( ) ( )

By manipulating Equations 35(a)–(f), one could formally obtain
a single sixth-order differential equation for the vertical velocity
w z( ). However, such an equation has extremely cumbersome
coefficients, which makes the analysis very difficult. Thus, in the
current case, we adopt the following approach. First, guided by
the previously obtained results in Section 3 and Mizerski et al.
(2013), we derive scaling relations for the magnitudes of
perturbation fields w z( ), v z( ), b zx ( ), p z˜ ( ), zr̃ ( ), T z˜ ( ) for the
most unstable mode. These scalings, expressed in terms of the
large wavenumber, turn out to be the same in both already
resolved problems, i.e., the non-diffusive case analyzed in
Mizerski et al. (2013) and the isothermal case with non-zero
magnetic diffusion from the previous section. We then speculate
that these scalings persist also when the temperature variations
are allowed, and we apply them to the Equations 35(a)–(f).
Consequently, one second-order ordinary differential equation
for the vertical velocity perturbation w z( ) can be obtained at
the leading order. This equation is then analyzed to obtain the
structure of the most unstable mode, its growth rate, and
the magnitude of the wavenumber in terms of the diffusion
parameters k and h. This approach and its results were
validated by the numerical simulations of the full system of
perturbation (Equations 35(a)–(f)) presented in Section 5.
As remarked previously, the aforementioned scaling rela-

tions are obtained from careful consideration of the linear
equations for perturbations 15(a)–(e) in the previous isothermal
case. The derivation of Equation (73) and analogous Equation
33(c) in Mizerski et al. (2013), which both describe the
strongly localized, most unstable mode, can be traced back to
the set of original linear equations 15(a)–(e) (and (14)–(18) in
Mizerski et al. 2013) for all perturbation fields, which allow to
express the magnitudes of v z( ), b zx ( ), p z˜ ( ), and zr̃ ( ) via the
magnitude of the vertical velocity w z( ) in the following way

z p z b z w z v z k w z

z k w z

, ,

, 37
x

1 2

3 2

r
p

~ ~ ~ ~
~

-

-

˜( ) ˜ ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

where z p z Bb zxp = + L( ) ˜ ( ) ¯ ( ) is the total pressure. The
scalings (37) introduced into the Equations 35(a)–(f) imply
only one consistent relation between the scale of the
temperature perturbation function T z˜ ( ) and w(z), namely

T z w z . 38~˜ ( ) ( ) ( )

Application of (37) and (38) to the set of perturbation
Equations 35(a)–(f) allows to transform this set into one
sixth-order ordinary differential equation, which (in a local
variable) becomes second-order at the leading order. The
detailed analysis of this Equation (80) is provided in
Appendix B. Here, we present only the results and conclusions.
At this stage, we introduce the following notation for three

basic-state dependent functions (z-dependent only), which can
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be thought of as three independent growth-rate functions:

z
B z

z F z
H z H z , 39B
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1 1s
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=
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¯ ( )

¯ ( ) ( )
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=
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+
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z z
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F z
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F z2 2
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41

4 3
2

2 2 2   
s s

a a
= + -h h⎛

⎝⎜
⎞
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¯ ( )
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The function zs ( ) is similar to (18), but it takes into account the
non-uniform basic-state temperature profile in F z( ) and the
new form of zr̄ ( ). The functions zTs ( ) and z4 3s ( ) are the new
growth-rate functions, which have no analog in the isothermal
case. They all play an important role in the asymptotic analysis,
and each of them provides a dominant contribution to the
growth rate in different physical regimes. As demonstrated in
Appendix B, the most unstable mode localizes in the vicinity of
the position of maximum value of one of the above growth-rate
functions in the domain, denoted by z0,max, zT ,max, or zmax,
respectively, where the value of the corresponding growth-rate
function at that point z0,maxs ( ), zT T ,maxs ( ) or z4 3 maxs ( ) is equal
to the growth rate 0s of the most unstable mode at the leading
order.

Although it is not a trivial task to determine which of the
growth-rate functions describes the most unstable mode, some
general relations between those growth rare functions can be
obtained relatively easily. First, it is straightforward to see that,
for all z0 1  , we have z z4 3s s>( ) ( ). Furthermore, a
criterion for dominance of functions (39) and (40) can also be
found (cf. Equation (83) and the following comment)

H
F

z z
1

. 42T T
1 g

s s- >
-

>
g

- ( ) ⟺ ( ) ( ) ( )

We are now ready to summarize the results obtained via the
asymptotic analysis—presented in detail in Appendix B—and
speculate about their possible applications to the solar
tachocline. When both diffusivities are non-zero and related
through 13 2 ~h k  , the following distinct regimes can be
identified.

1. When the basic-state solution satisfies z0,maxs >( )
zT T ,maxs ( ) there are three possibilities:

(i) The wavenumber k is not large enough for the full
asymptotics to set in, and therefore the most unstable
mode chosen by the system is described by 0s =

z0,maxs ( ) and k 3 5~ k
- (together with k 1 2d ~ ~-

3 10k and k k ...0
1 2

1
1

2s s s s= + + +- - ). This solu-
tion, which we named a “partly asymptotic solution,”
was the only one that emerged in the numerical
simulations of this regime. It corresponds to diffusiv-
ities as low as 10 8 =k

- (and possibly even lower,
because the main requirement for this solution to set in
is that z z zT0,max

2
0,max

2
0,max

1 10s s s- ~ k( )( ( ) ( )) ,

which for 10 8 =k
- (k 5.5 104~ ´ ) gives 1 10 »k

0.16, whereas for 10 10 =k
- ( k∼106) two orders of

magnitude lower (k about 20 times larger) gives a very
similar value 0.11 10 =k ). By the use of the numerical
values of physical parameters obtained for the solar
tachocline from observations and provided by Gough
(2007), we can estimate the diffusivities at 10 10 ~k

-

and 10 15 ~h
- , which allows to provide an estimate

for the short-wavelength of the most unstable mode
k d2 2max

3 5l p p= ~ »k
220 m, where d 3.5 10 m7» ´ is the tachocline
thickness. An estimate of waves as short as hundreds
of meters in the tachocline seems rather short, although
it must be remembered that it utilizes only the order
of magnitude of the wavenumber. Thus, if
k 0.2 3 5~ ´ k

- for example, this would lead to
wavelengths of the most unstable mode at the order of a
kilometer. Whether such short waves can exist in the
tachocline is not clear at this stage.

(ii) The second possibility is that the system reaches
the final asymptotic limit, but a more restrictive
condition than z zT T0,max ,maxs s>( ) ( ) is satisfied, i.e.,

z zT T4 3 max ,maxs s>( ) ( ). In such a regime, the most
unstable mode is described by z0 4 3 maxs s= <( )

z0,maxs ( ), k 3 4~ k
- , k 1 2 3 8d ~ ~ k

- , and s =
k0

2 3s + - k ...1
1

2s s+ +- . An estimate of the
wavelength of the most unstable mode corresponding
to the solar tachocline conditions leads to nonphysi-
cally short waves with maxl at the order of meters.

(iii) The last possibility is also obtained in a fully
asymptotic regime, but under conditions corresp-
onding to z z zT T4 3 max ,max 0,maxs s s< <( ) ( ) ( ), which
leads to zT T0 ,maxs s= ( ), k 1 3~ k

- , k 1 2d ~ ~-

1 6k , and k ...0
1

2s s s= + +- for the most unstable
mode. In the context of the solar tachocline, this
regime corresponds to the most unstable modes with a
wavelength of 10 kmmax

2l » , which seems reason-
able for the tachocline.

2. In the opposite regime, characterized by z0,maxs <( )
zT T ,maxs ( ), the most unstable mode is always the one

described in the last case (iii) of point 1, i.e., 0s =
zT T ,maxs ( ), k 1 3~ k

- , k 1 2 1 6d ~ ~ k
- , and 0s s= +

k ...1
2s +- , which corresponds to 10 kmmax

2l » in the
parameter regime corresponding to that of the tachocline.

Approximate expressions for the growth rates of the most
unstable modes and the leading-order form of the vertical
velocity perturbation for the described regimes can be found in
Appendix B. In the case of regimes (1)(iii) and (2), strongly
influenced by thermal effects, the instability criterion differs
from the simple H 0B

1- >- (cf. Equation (20)) and takes the
form

H z z H z

F z z1 1 0. 43
B T

1
0

1
0

1
0

1
0

1
0

c

g c

- -

> + - >g

- - -

- -

( ) ( ) ( )
( )( ( ) ( )) ( )

It can be seen that, essentially, there are only two fully
asymptotic regimes, i.e., when z zT T4 3 max ,maxs s>( ) ( ), we get

the mode z4 3 maxs s» ( ) and k 3 4~ k
- ; in the opposite case

of z zT T4 3 max ,maxs s<( ) ( ), the dominant mode is characterized
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by zT T ,maxs s» ( ) and k 1 3~ k
- . However, there is also a

partly asymptotic solution, which dominates when z0,maxs >( )
zT T ,maxs ( ) (requiring also z z zT0,max

2
0,max

2
0,maxs s s- ~( )( ( ) ( ))

1 10k ), which is still achieved for very small diffusivities (as
small as 10 8 =k

- in the full numerical solutions) and large
wavenumbers (as high as k 5.5 104~ ´ ), corresponding to

z0,maxs s» ( ) and k 3 5~ k
- for the most unstable mode.

When relating the obtained results to the solar tachocline, in
order to obtain a rough picture of the true dynamics, it could be
reasonable to start by elimination of very short waves, e.g.,
with wavelengths at the order of meters, due to the large length
scales of the entire domain: a vertical span of10 m7 and axial of
10 m9 at the equator. Such short waves would correspond to
very high azimuthal wavenumbers and therefore are expected
to be initially very weak. Moreover, the unstable waves are
localized in the vertical direction; therefore, those with very
short wavelengths appear only in a very short vertical region. In
that spirit, the final conclusion depends on where we put such a
geometrical bound, but it is of some interest to observe,
that, e.g., if we expect k104 ( 2 10 m4l ´ ), only the two
cases corresponding to z0,maxs s» ( ) with k 3 5~ k

- or
zT T ,maxs s» ( ) with k 1 3~ k

- can be dynamically relevant
(however, in principle, it must be remembered that there is no
clear criterion that would allow to neglect the global dynamical
influence of very short waves with respect to that of longer
waves). Figure 1 presents a schematic diagram of the two (in
our opinion) most physically relevant dynamical regimes
among those described above, namely regimes described in
points (1)(i) and (2). The two distinct regimes determined by
the relation between system parameters and basic-state profiles
contained in the growth-rate functions z0,maxs ( ) and zT T ,maxs ( )
and the scalings for the wavenumber k of the most unstable
mode with the thermal diffusivity parameter k for each of the
dynamical regimes are clearly shown.

As remarked in the introduction, our analysis is deprived of
the vital influence of shear (to be included in future studies).
Hence, the discussion related to the tachocline is rather
speculative at this stage. However, on a final note, we would
like to comment on the relation (42). Namely, we speculate
which of the identified regimes could be expected in the

tachocline. In order to do that, we must estimate the magnitude
of the temperature scale height in the tachocline, which we
achieve by the use of pressure (Hp) and density (Hr) scale
heights estimates at the bottom of the solar convection zone
provided by Gough (2007) and the relation H HT

1 1- = -r
- -

Hp
1- satisfied by an ideal gas. This leads to H 0.2T

1- »- in
units of the tachocline thickness d 3.5 10 m7» ´ . The solar
tachocline parameters given in Gough (2007) allow to estimate
also the right-hand side of (42) at the bottom of the convection
zone, which yields F1 1 0.4g g g- » - »g( ) ( ) for g =
1.665. The estimates reveal that F1g - g( ) is about twice
the inverse temperature scale height, which could suggest,
according to inequality (42), that the tachocline, at least in
the upper parts, falls into the regime z zT T0,max ,maxs s>( ) ( )
(1i above) with the most unstable mode described by 0s =

z0,maxs ( ) and k 3 5~ k
- . However, with the current uncer-

tainty of the physical parameter values for the solar tachocline,
the factor of two appearing in the inequality (42) does not seem
convincing enough to determine which dynamical regime the
tachocline is in.

5. Numerical Simulations

In Sections 3 and 4, we presented the results of a linear
analysis of two-dimensional magnetic buoyancy instability
in the form of an eigenvalue problem for the systems of
Equations 15(a)–(e) and 35(a)–(f). Here we present the
numerical solutions of the both equation sets. The equations
were discretized using a standard second order finite difference
method and for the so-obtained matrices on the right-hand sides
of those equations the eigenvalues σ with the greatest positive
real parts (to find the most unstable modes) in each spectrum
corresponding to different values of the wavenumber and the
associated eigenfunctions were computed with the use of
standard MATLAB procedures. Since the modes are assumed
2D and in the form 34(b), one needs to maximize the
eigenvalueσ over all possible wavenumbersk 0,Î ¥( ),
for a fixed set of nondimensional parameters of the
system, in particular the magnetic diffusivityh and thermal
diffusivityk. Naturally in the numerical computations only a
finite set of the wavenumbers was used, however the results
seem to clearly indicate, that the obtained maxima of the ks ( )
dependence are global.

5.1. The Effect of Magnetic Diffusivity

We present the results of numerical analysis of the
isothermal case in the presence of asymptotically small
magnetic diffusivityh (cf. Section 3). We focus on the case
when the maximum of the so-called growth rate function zs ( )
defined in (18) is strictly inside the domain. The applied
boundary conditions are in the form of (16), i.e., we impose
impermeability for the vertical velocity and perfect conductors
outside the domain for the magnetic field, and the external
magnetic field is given by (7). Because we account for the
perfectly conducting boundaries, the basic magnetic field
differs from that assumed in the isothermal diffusionless case
analyzed in Mizerski et al. (2013). Despite that, for the sake of
correspondence, we choose here the same parameter values as
in “Case 1” of Section 5 in Mizerski et al. (2013): 1.00a = ,

0.20L = , B 1.35D =¯ , 1.90 = , z 0 1.39r = =¯ ( ) . For this

Figure 1. The schematic diagram shows the most unstable mode wavenumber
k scaled by the thermal diffusivity parameter k in a dependence from the
relation between the maxima of growth-rate functions zs ( ) and zTs ( ).
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set of parameters, the maximum of the function zs ( ) is now
equal to 0.45903maxs = and is achieved at z 0.4602max = .

Four different values of the magnetic diffusivity 10 3 =h
- ,

10−6, 10−9, 10−12 were studied. For each case, we found the
growth rateσ and the wavenumberk of the most unstable
mode, as well as its structure. The vertical velocityw(z) for the
most unstable modes is depicted in Figure 2(a) for all four
values of h, with the values of the adequate growth rates and
wavenumbers given in he caption. It can be seen that, for all
values of h between 10−3 and 10−12, the maximum of the
most unstable mode is located near the same point z 0.460 » ,
almost equal to the theoretical value of zmax, which is consistent
with the predictions and the results from Section 3, especially
the form of the mode given by the formula (24). However, with
decreasing magnetic diffusivity, the wavenumber k of the most
unstable mode increases, and thus the mode becomes more
localized. A relation (22) between the wavenumber and
magnetic diffusivity found at the end of Section 3 for the
most unstable mode is confirmed numerically, as Figure 2(b)
demonstrates, establishing the proportionality coefficient,
k 0.95 1 3» h

- , for the asymptotic regime 0 h . Moreover,
the presence of the magnetic diffusivity affects the growth rate
of the most unstable mode, which is getting closer to the
theoretical value of maxs when h tends to zero. This is
consistent with the asymptotic form of the growth rate given by
the formula (23).

In Figure 3, we show the relation between the growth rateσ
and the wavenumberk for magnetic diffusivity 10 9 =h

-

(a “dispersion relation”). The dots are the highest values of the
growth rate obtained for a specific value of k from numerical
solutions. The horizontal dashed line corresponds to the
theoretical value of the maximal growth rate at the leading
order, 0.45903maxs = . The most unstable mode for this value
of h has a wavenumber k=947, with growth rate

0.45797s = . All modes with greater wavenumbers have a
smaller growth rate, which tends to zero at fixed hwhen
k  ¥. This clearly shows the effect of magnetic diffusivity
on the short-wavelength modes; namely, to establish a finite
magnitude of the wavenumber of the most unstable mode
through dominance of the diffusive decay at large enough

wavenumbers, unlike in the case without dissipation, when
growth rate approaches its maximal value in the limit k  ¥.

5.2. The Effect of Thermal Diffusivity

We now turn to the numerical analysis of the case with
values for both diffusivities, thermal k and magnetic h, that
are non-zero but asymptotically small, related through (25),
namely 3 2 ~h k , which was analytically resolved in
Section 4. This case is non-isothermal and the basic-state
temperature is given by (30). The analysis of Section 4 has
provided us with knowledge of three functions zs ( ) (39), zTs ( )
(40), and z4 3s ( ) (41), whose maximum values determine the
growth rate and the region of localization of the most unstable
modes in different regimes. However, out of four different
theoretically discovered possibilities, only two regimes
corresponding to either z zT T0,max ,maxs s>( ) ( ) or z0,maxs <( )

zT T ,maxs ( ) are manifested in the numerical solutions, because
the other two cases require numerically unachievable small
diffusivities. The boundary conditions for perturbations are
given by formula (36). For the sake of clear comparison,
we choose here the same values of the physical parameters

Figure 2. (a) Vertical velocityw(z) of the most unstable modes for: 10 3 =h
- (k = 9, 0.35591;s = dotted line), 10 6 =h

- (k = 94, 0.44846;s = dotted–dashed
line), 10 9 =h

- (k = 947, 0.45797;s = dashed line), 10 12 =h
- (k = 9477, 0.45892;s = solid line). Other parameters values: 1.00a = , 0.20L = , B 1.35D =¯ ,

1.90 = , z 0 1.39.r = =( ) (b) Relation between the wavenumber k and magnetic diffusivity h. Numerical results are depicted as diamonds, and the analytic
relation k 1 3= h

- is shown as a dashed line.

Figure 3. The relation between the numerically found growth rateσ and the
wavenumberk for magnetic diffusivity 10 9 =h

- and  = ¥k (dots
connected by a solid line); analytically found growth rate at the leading order,

0s (dashed line). Other parameter values as in Figure 2.
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as in the section above: 1.00a = , 0.20L = , B 1.35D =¯ ,
1.90 = , z 0 1.39r = =¯ ( ) . Diffusivity parameters are related

through (25) in all the simulations.
The temperature jump across a layer TD ¯ , given in (30), plays

an important role in the dynamics. According to (83) when TD ¯
is greater than some critical value Tc1D ¯ , the function zTs ( ) will
always have a maximum value greater then the maximum value
of the function zs ( ). Hence in such case the growth rate and the
point of localization of the most unstable mode is determined
by the former function, which in turn results in a distinguished
limit, which establishes the order of magnitude of the
wavenumber and the mode structure, as demonstrated in
Section 4. For the assumed set of parameter values we get

T 0.18c1D »¯ , which slightly depends on the values of the
diffusivities. Furthermore, other critical value Tc2D ¯ determines
whether or not our basic stare density is monotonically
decreasing with increasing z, which is a physical requirement
imposed on the basic state solution. For the mentioned
parameter values T 0.23c2D »¯ which means, that for stronger
temperature jumps across the layer, T 0.23D >¯ the density
profile becomes unstable with a heavier fluid on top of the
lighter and the Rayleigh–Taylor instability enters the dynamics.
Such a situation is undesirable and we exclude it by taking the
temperature jumps T T 0.23c2D < D »¯ ¯ . This corresponds to
what we expect for the tachocline which is believed to have a
stable density stratification.

Figure 4 presents the vertical velocityw(z) and the k k( )
dependence for the most unstable modes for different values of
the thermal and magnetic diffusivities and for T 0.1D = <¯

Tc1D ¯ , so that z zT T0,max ,maxs s>( ) ( ). In this case the growth
rate functions have the following maximum values: z0,maxs =(
0.44880 0.46043=) and z 0.43207 0.38574T T,max ,maxs = =( )
for 10 2 =k

- and 10 3 =h
- , as well as z0,maxs =(

0.44775 0.46054=) and z 0.42735 0.38711T T,max ,maxs = =( )
for 10 8 =k

- and 10 12 =h
- . Since zs ( ) has a greater

maximum, the most unstable mode is localized in the vicinity
of the point z0,max and according to the analytic results of
Section 4 its wavenumber is established at k 3 5~ k

- .
The “dispersion relation” ks ( ) for 10 6 =k

- and 10 9 =h
-

is shown on Figure 5, in which case the most unstable
mode found from the numerical analysis has the growth

rate 0.45292maxs = and the wavenumber k 3033max = =
0.76 3 5k

- . Let us examine more closely the actual distin-
guished balance in the Equation (80) that emerges in the
numerical solution. The numerical values of all the terms in
the braces multiplying wBL x( ) can be easily computed for all
our numerical solutions. E.g., for 10 8 =k

- and 10 12 =h
-

we get T0 0
2 2s s s-( z 0.027821550,max »( )) , F T0

2 2g s s-(
z k0,max

2 rk( )) ¯ F 0.0566301» -g , T 0
2a g s -¯ ( H1 1g - -r

-(( )
HT

1- )/ k F2g h g) 5.1304 10 4» ´ - and T0s a g¯ k4 k h/ Fr »g¯
0.02796597, which clearly indicates that the first and the last
terms, 0.02782155 0.02796597 0.05578752+ = are in bal-
ance with the term F z k FT0

2 2
0,max

2g s s r- k g( ( )) ¯ which
determines the growth rate at the leading order. This
observation is in very good agreement with the balance
obtained for the partly asymptotic solution in Section 4.
Note, that we have tried many runs to invalidate

z 1T0 0
2 2

0,maxs s s- ( ( )) without success, thus the basic state
solution seems to somehow possess this property.
The opposite regime corresponding to z0,maxs <( )
zT T ,maxs ( ) is presented on Figure 6 where the plots of the

Figure 4. (a) Vertical velocityw(z) for the most unstable modes for T 0.1D =¯ , and: 10 2 =k
- and 10 3 =h

- (k = 10, 0.33844;s = solid line), 10 4 =k
- and

10 6 =h
- (k = 167, 0.43494;s = dashed line), 10 6 =k

- and 10 9 =h
- (k = 3033, 0.45292;s = dotted–dashed line), 10 8 =k

- and 10 12 =h
- (k = 54668,

0.45813;s = dotted line). Other parameter values as on Figure 2; (b) relation between the wavenumber k and thermal diffusivity k: numerical results (diamonds) and
analytic relation k 3 5= k

- (dashed line). T 0.1D =¯ , other parameters values as on Figure 2.

Figure 5. The relation between the numerically found growth rateσ and the
wavenumberk for 10 6 =k

- , 10 9 =h
- and T 0.1D =¯ (dots connected by a

solid line); analytically found growth rate at the leading order, 0s (dashed line).
Other parameter values as on Figure 2.
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vertical velocityw(z) and the k k( ) dependence for the most
unstable modes are provided for different values of the thermal
and magnetic diffusivities and for T T0.2 c1D = > D¯ ¯ . In that
case the growth rate functions have the following maximum
values: z 0.43789 0.460670,maxs = =( ) and zT T,max ,maxs =(
0.43312 0.4717=) for 10 2 =k

- and 10 3 =h
- , as well as

z 0.43696 0.460830,maxs = =( ) and z 0.42822T T,max ,maxs = =( )
0.47289 for 10 8 =k

- and 10 12 =h
- . Now it is the function

zTs ( ) which has a greater maximum, and therefore the most
unstable mode is localized in the vicinity of the point zT ,max and
its wavenumber is established at k 1 3~ k

- . The “dispersion
relation” ks ( ) for 10 6 =k

- and 10 9 =h
- is shown on

Figure 7 in which case the most unstable mode found from the
numerical analysis has the growth rate 0.46916maxs = and the
wavenumber k 266 2.66max

1 3= = k
- .

The numerical results are in a good agreement with the
theoretical predictions. It should also be emphasized, that the
numerical analysis greatly helped to identify the interesting,
partly asymptotic solution, which seems to naturally dominate
when z zT T0,max ,maxs s>( ) ( ), since the maximal growth rates in
this problem are typically smaller than unity, and the condition

z z zT0,max
2

0,max
2

0,max
1 10s s s- ~ k( )( ( ) ( )) (or 1 5k according

to the footnote 2) required for the partly asymptotic solution to
settle in is typically satisfied.

6. The 3D Case

In this section we present the leading-order analysis of the
three-dimensional perturbations of the basic state described in
Section 4, thus in the presence of magnetic and thermal
diffusion related through (25). We will refer to the Section 6 in
Mizerski et al. (2013), where the analysis of 3D modes for the
isothermal and diffusionless system is presented. The main
aims are to find the growth rate at the leading order, the
criterion for instability with respect to 3D modes and a criterion
for dominance of the 2D modes over the 3D ones.

We now introduce fully three-dimensional perturbations in
the form

u

b

u z v z w z e

b z b z b z e

, , ,

, , , 44a

t i k x k y

x y z
t i k x k y

x y

x y

=
=

s

s

+ +

+ +

( ( ) ( ) ( ))
( ( ) ( ) ( )) ( )

( )

( )

p p z e z e

T T z e

, ,

. 44b

t i k x k y t i k x k y

t i k x k y

x y x y

x y

r r= =

=

s s

s

+ + + +

+ +

˜ ( ) ˜ ( )
˜ ( ) ( )

( ) ( )

( )

into the Equations 1(a)–(f) and after linearization we obtain the
following system of equations

u ik p B b , 45ax zsr = - + L ¢¯ ˜ ¯ ( )

v ik p Bb ik Bb , 45by x x ysr = - + L + L¯ ( ˜ ¯ ) ¯ ( )

w
d

dz
p Bb ik Bb , 45cx x zsr r= - - + L + L¯ ˜ ( ˜ ¯ ) ¯ ( )

Figure 6. (a) Vertical velocity w(z) for the most unstable modes for T 0.2D =¯ for: 10 2 =k
- and 10 3 =h

- (k = 9, 0.37015;s = solid line), 10 4 =k
- and

10 6 =h
- (k = 68, 0.45669;s = dashed line), 10 6 =k

- and 10 9 =h
- (k = 266, 0.46916;s = dotted–dashed line), 10 8 =k

- and 10 12 =h
- (k = 1170,

0.47207;s = dotted line). Other parameters values like at the Figure 2; (b) relation between the wavenumber k and thermal diffusivity k: numerical results
(diamonds) and analytic relation k 1 3= k

- (dashed line). T 0.2D =¯ , other parameter values as on Figure 2.

Figure 7. The relation between the numerically found growth rate σ and the
wavenumber k for 10 6 =k

- , 10 9 =h
- and T 0.2D =¯ (dots connected by a

solid line); analytical found growth rate at the leading order, 0s (dashed line).
Other parameter values as on Figure 2.
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b ik Bv
d

dz
Bw

d

dz
b k k b ,

45d

x y x x y x

2

2
2 2 s = - - + - +h h¯ ( ¯ ) ( )

( )

b ik Bv
d

dz
b k k b , 45ey x y x y y

2

2
2 2 s = + - +h h¯ ( ) ( )

b ik Bw
d

dz
b k k b , 45fz x z x y z

2

2
2 2 s = + - +h h¯ ( ) ( )

T
p

ik u
p

ik v

T w
p d

dz
w

d

dz
T k k T

B d

dz
b

B
ik

d

dz
b

1 1

1

2 1

2 1
, 45g

x y

x y x

x z

2

2
2 2 







sr
g

a
g

a

r
g

a

g g
g

a
g

a

= -
-

-
-

- ¢ -
-

+ - + +
- L ¢

-
- L ¢

k k h

h

¯ ˜ ( ) ¯ ( ) ¯

¯ ¯ ( ) ¯

˜ ( ) ˜ ( ) ¯

( ) ¯
( )

ik u ik v
d

dz
w , 45hx ysr r r r= - - -˜ ¯ ¯ ( ¯ ) ( )

p T T , 45iar a r= +˜ ¯ ˜ ¯ ˜ ( )

ik b ik b
d

dz
b 0. 45jx x y y z+ + = ( )

It can be shown, that similarly as for the 2D modes
(cf. Section 4), in the 3D case there are also two distinct main
regimes, with different growth rates of the most unstable
modes, which manifest depending on the magnitude of the
temperature scale height. However, the value of the horizontal
wavenumber kx plays an important role. We consider only the
two dynamical regimes corresponding to physically realistic
settings as in 1i) and 2 in Section 4. Therefore the growth rate
values of the 3D modes will be denoted by 3Ds and T3Ds
respectively and are defined below in (99) and (102). Details of
the asymptotic analysis at large values of the horizontal
wavenumber k 1y  in the direction perpendicular to the
applied field are described in Appendix D.

6.1. The Most Unstable 3D Mode for T3D 3Ds s>

In this regime the magnetic diffusion is negligible at the
leading order and the thermal diffusion term in the energy
equation dominates all others in the BL region, hence the
system of governing equations becomes similar to the
isothermal and diffusionless case described in Mizerski et al.
(2013). The growth rate of the most unstable mode at the
leading order takes the form (99). As stated, we study only the
case of stably stratified fluid, that is H 0<r and therefore we
obtain the following criterion for instability of the 3D modes

k
B

H
T

H
1

, 46x B B
2

2
1 1



cr
a

< -
L

º -- -¯
¯ ¯ ( )

where B T2 c a r= L ¯ ( ¯ ¯ ) was defined in (32). The latter
criterion exhibits similarity to the diffusionless, isothermal case
(cf. Equation (71) in Mizerski et al. 2013). The long-
wavelength modes in the x-direction are favored and they are

destabilized only by the magnetic field decreasing with height,
just as in the isothermal case.
If the inequality (46) is satisfied and the system is unstable

with respect to 3D modes, the same reasoning as in the Section
6.2 of Mizerski et al. (2013) leads to a conclusion, that the 2D
(interchange) modes studied in Sections 4 and Appendix B.1
dominate over 3D modes if

H H

H H
T

2

2

1

2

1
, 47

B

B T

1 1

1
2

1
2

c
c
c

c
a c

- > - + 

- -
+
+

>
+
+

r
- -

- -

( )
( )
( )

( )
¯ ( )

( )

where in the latter formula the relation (33) was used. In stellar
interiors, where 1b  and 1a ~ , we have 1c  and we can
simplify the criterion for domination of interchange modes to

H H2 0.8B
1 1- - »r

- - (cf. Gough 2007 for the value of Hr in
the solar tachocline) in units of the tachocline thickness
d 3.5 10 m7» ´ , or equivalently to H T2B

1  a- +- ¯
H H T2 2B T

1 1  a- -- - ¯ according to (33) and our assump-
tion H 01 <r

- . Diffusionless and isothermal analog of the latter

inequality, i.e., H 2 1 2B
1 2 c a c a- > + + »- ( ) ( )

(cf. Equation (73) in Mizerski et al. 2013) is more restrictive,
therefore the presence of thermal effects relaxes the criterion
for domination of the interchange modes. When T3D 3Ds s>
and (47) are satisfied the most unstable mode is the partly
asymptotic 2D interchange mode obtained in Sections 4 and 5
with z0 0,maxs s= ( ) and k 3 5~ k

- .

6.2. The Most Unstable 3D Mode for T3D 3Ds s>

In this regime both the thermal and the magnetic diffusion
are negligible at the leading order. The growth rate of the most
unstable mode at the leading order takes the form (102). The
criterion for instability with respect to 3D modes yields now

k
B

H

T
H

1
, 48

x B

B

2
2

1 1

1 1






c r

a g

<-
L

+

º- +

g - -

- -

¯
¯ ( )

¯ ( ) ( )

where

H H

H H
T

1

1
1

, 49

T

T B

1 1 1 1

1 1 1





c g

c g g c
g
a

= - -

= + - +
-

r
- - - -

- - -⎜ ⎟⎛
⎝

⎞
⎠

( ( ) )

( ) ¯ ( )

B T2 c a gr= Lg
¯ ( ¯ ¯ ) was defined in (31) and 1- is negative

for a subadiabatic fluid layer. It is observed, that in this regime
the 3D modes are destabilized not solely by H 0B < , that is by
the mean magnetic field decreasing with height, but the entire
term H H H1B T

1 1 1c g+ - - r
- - -( ) must be negative, where

H 0<r . However, if the system is in a nearly adiabatic state,

then H H1 0T
1 1g- - »r

- -( ) and the condition for destabiliza-

tion of 3D modes reduces to H 0B < and k T H1x B
2 a g< - ¯

which is similar, however less restrictive than (46). Never-
theless, it is of interest to provide also a general requirement for
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the 3D instability to set in, which by (48) and (49) is

T
H H

T

1 1
0, 50B T

1 1 1

 c a
c

g
gc a

> - - >
-

>- - -
¯ ¯ ( )

where the left inequality results from (33) and our assumption
H 01 <r

- . As in the previous subsection we have a new
criterion for domination of interchange modes

H H

H H
T

2

2 1

1
. 51

B

B T

1 1 1

1 1 1
1

2





c

c
c g c

g a c

- + > - +

- - >
+ + -

+

g r

g

g

- - -

- - -
-

( ) ( )

( )
¯ ( )

( )

In stellar interiors, for 1c  and 1cg  , we can simplify

the criterion to H T1T
1  g g a- -- ( ) ¯ , which shows that in

the current case it is the magnitude of the negative temperature
gradient which mainly determines whether the 2D instability
dominates. However, as remarked, in a nearly adiabatic layer

01 »- and could be eliminated, which reduces the condition
(51) to H H2B

1 1c- > - + g r
- -( ) or equivalently HB

1- --

H2 1 2T
1c c c+ + +g g

-( ) ( ( )) 2 c> + g( )/ T 1 2a c+ +¯ ( (
cg)). When 1c  , 1cg  this gives H H2B T

1 1 - -- -

T2 a ¯ (i.e., H 0.8B
1 - - for the solar tachocline), which is

the same as the condition obtained in Section 6.1. When (51) is
satisfied the most unstable mode is the 2D interchange
mode obtained in Sections 4 and 5 characterized by 0s =

zT T ,maxs ( ), k 1 3~ k
- .

6.3. The Most Unstable Mode: Summary

Taking into account all the results of Sections 4–6, we are
now ready to provide a general recipe to find the most unstable
mode from among all the 2D (interchange) and 3D modes. In
the limit of weak thermal and magnetic diffusivities we have
found a criterion for the dominant type of 2D mode (cf. (83))
and for the domination of 2D instabilities over the 3D ones (cf.
(47) and (51)).1

To find the most unstable mode, at first one needs to estimate
the term z z zT0,max

2
0,max

2
0,maxs s s-( )( ( ) ( )), where growth-rate

functions are given in (39) and (40) to see, whether it is of the
order 1 10k (or 1 5k ). If this is satisfied, then the next step is to
find the maximum value among all the four growth-rate
functions: zs ( ) (39), zTs ( ) (40) and those obtained from the
formulae (99) and (102), that is z3Ds ( ) and zT3Ds ( ). This value,
say maxs , is the growth rate of the most unstable mode and in
case z0,maxs ( ) dominates the most unstable mode is character-
ized by zmax 0,maxs s= ( ) and k 3 5~ k

- (and localized
near z0,max), whereas if zT T ,maxs ( ) dominates we get maxs =

zT T ,maxs ( ) and k 1 3~ k
- (localization near zT ,max) for the most

unstable mode. Alternatively it is enough to check the criteria
(47) when T3D 3Ds s> and (51) for T3D 3Ds s> to determine at
first, whether the 2D or the 3D modes dominate and in the
former case determine the final dominant mode through the
criterion (83). Figure 8 shows the growth rate functions zs ( ),

zTs ( ), z3Ds ( ) and zT3Ds ( ) for the set of parameter values chosen
for numerical investigations of Section 5: T 0.2D =¯ ,

1.00a = , 0.20L = , B 1.35D =¯ , 1.90 = , and
z 0 1.39r = =¯ ( ) , as well as diffusivities 10 8 =k

- ,
10 12 =h

- . For the 3D functions on that plot, the horizontal

wavenumber was set at k 0.1x = . It can be seen that the
functions are very similar. For the given set of parameters, the
function zTs ( ) has the highest maximum value among all, and
thus the most unstable mode will be the one with the growth
rate zT T ,maxs ( ) at the leading order. When k 0x  , we have

z z3Ds s( ) ( ) and z zT T3Ds s( ) ( ), whereas according to
criteria (46) and (48) for emergence of the 3D instability, the
3D instability is suppressed when kx becomes too large.
In the case when the term z z zT0,max

2
0,max

2
0,maxs s s-( )( ( ) ( ))

is of order unity, not 1 10k or 1 5k (a case we were unable to
achieve numerically for reasons that are not fully understood)
in the 2D case, only fully asymptotic solutions correspond to
the most unstable mode. In such a case, zT T ,maxs ( ) can again
dominate, leading to zT Tmax ,maxs s= ( ) and k 1 3~ k

- for the
most unstable mode, which is then 2D. On the other hand, if

z4 3 maxs ( ) happens to dominate, the most unstable mode is also
2D and is characterized by zmax 4 3 maxs s= ( ) and k 3 4~ k

- .
Finally, let us stress that the importance of the 3D

instabilities for lower vertical field gradients in the solar
tachocline has been demonstrated in previous studies, such as
Newcomb (1961), Gilman (1970), and Acheson (1979). The
physical picture that we have in mind is as follows. The shear
in the tachocline has a certain, large magnitude, as is known
from observations. This magnitude is determined regardless
of any instabilities in the tachocline. This in turn produces
a large vertical gradient of the magnetic field. Therefore,
the magnitude of this gradient is mainly determined by
the magnitude of shear, u BB u BP T P T z T »   ¶ »· ·
B u uz z z T¶( ) , where the subscripts T and P indicate the toroidal
(azimuthal) and poloidal (vertical) components, respectively.
Consequently, once the magnitude of the vertical gradient of
the magnetic field is known, it can be determined whether its
value is small enough for the 3D modes to dominate. We have
shown above that the critical value of the vertical field gradient
for transition between the 2D and 3D instabilities in the
tachocline context is H 0.8B

1- »- , and the 2D interchange
modes dominate when the gradients are stronger.
In summary, the 2D modes are important in the dynamics as

long as the shear, determined otherwise, possesses a large
enough magnitude. Unfortunately, our linear analysis does not
allow us to draw any definite conclusions about saturation,
which is rather expected to become a 3D process at some point.

Figure 8. The growth-rate functions: zs ( ) (thick-dashed line), zTs ( ) (solid
line), z3Ds ( ) (dotted line), and zT3Ds ( ) (thin-dashed line) for 10 8 =k

- ,
10 12 =h

- , T 0.2D =¯ , 1.00a = , 0.20L = , B 1.35D =¯ , 1.90 = ,
z 0 1.39r = =¯ ( ) , and (for 3D case) k 0.1x = .

1 A criterion for the dominant type among the 3D modes also exists and, in
principle, could be derived, however, its form is very cumbersome.
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Nevertheless, the presented analysis simply allows to under-
stand how the fully 3D turbulence develops from initially
growing 2D perturbations. Moreover, it is possible that a
weakly nonlinear regime, which would then be strongly linked
to the discovered mode structure, could be sufficient to develop
some understanding of important dynamical aspects of the
tachocline. As is explained in Section 4, the 2D modes are
indeed localized in the vertical direction, but their vertical
thickness is k 1 2d ~ - . Thus, for the most unstable modes for
which the wavelengths were estimated at 102l ~ km or

1l ~ km, their vertical thickness is 1000 100d ~ - km,
which is small in comparison with the tachocline thickness
d 3.5 104= ´ km, but not so much as to become dynamically
unimportant.

7. Discussion

We have revisited the problem of short-wavelength magnetic
buoyancy instability in a plane layer of fluid, introduced by
Gilman (1970) and Acheson (1979) and studied the effect of
weak thermal diffusivity and electric resistivity, which turned
out to be quite diversified. We have assumed perfectly
conducting and impermeable boundaries, and followed the
asymptotic approach of Mizerski et al. (2013) to determine the
spatial and temporal timescales of variation of the most
unstable modes via the Rayleigh–Schrödinger perturbation
technique. The main profit of the analysis is the determination
of the short wavelengths of the most unstable modes through
introduction of weak diffusivities, because the diffusive decay
dominates the growth at short enough wavelengths, a
phenomenon that strengthens with increasing wavenumber
(cf. Mizerski et al. 2013) in the absence of diffusion. The
analysis is fully comprehensive for the most unstable mode in
the asymptotic limit k 1 , 1h  and 1k  . There are no
gaps in the parameter domain. We have separately considered
all possible cases for which the asymptotic relations between
all the terms in the Equations (17) and (80) are different, and
found a definite answer as to which of all the possible modes is
the most unstable one under certain conditions determined by
the basic state. However, there is a large variety of regimes and
scalings corresponding to growth rates and spatial scales of
variation of the most unstable modes. These are summarized at
the end of Section 4 and in Section 6.3. A curious result is that,
although the resistivity was always assumed much weaker than
the thermal diffusivity (both related through 3 2 ~h k ), the
magnetic diffusion nevertheless plays a vital role in the
dynamics. In particular, there exists a regime defined by

z zT T0,max ,maxs s>( ) ( ); when in the absence of magnetic
diffusion, the wavelength of the most unstable mode can not
be established. However, when weak resistivity is introduced,
both diffusivities interact in an interesting way and the
wavelength of the most unstable mode is determined at
k 3 5~ k

- or k 3 4~ k
- , depending on the properties of the

basic-state solution (cf. Section 4 and its summary at the end).
The opposite regime, z zT T0,max ,maxs s<( ) ( ), has been shown,
both analytically and numerically, to lead to k 1 3~ k

- for the
most unstable mode.

Another interesting result is the identification of what we
called a partly asymptotic solution, corresponding to the regime

z zT T0,max ,maxs s>( ) ( ), shown analytically and numerically to
dominate for diffusivities as low as 10 8 =k

- and 10 12 = - ,
characterized by the growth rate of z0,maxs ( ) and k 3 5~ k

- .

This solution requires z z zT0,max
2

0,max
2

0,maxs s s-( )( ( ) ( )) to be
of either order 1 10k or 1 5k , which was satisfied in all our
numerical simulations; interestingly, we were unable to find a
different numerical solution, possibly due to the fact that the
maximal growth rates found were always smaller than unity,
and thus a term that involves the third power of such a number
is necessarily quite small. A fully asymptotic solution in such a
regime, which would replace the partly asymptotic one with
diffusivities even smaller than 10 8 =k

- and 10 12 = - , was
also determined; it corresponds to the growth rate of z4 3 maxs ( )
and k 3 4~ k

- .
The fully three-dimensional perturbations were also con-

sidered, and criteria for domination of the interchange modes
were derived in Section 6. Similarly as in the isothermal and
diffusionless case analyzed in Mizerski et al. (2013), the 3D
modes are the dominant ones for weakly unstable magnetic
field gradients, whereas the interchange modes take over at
stronger field gradients. However, the influence of nonuniform
temperature distribution is reported, and there exists a regime
where the domination of the interchange or the 3D modes is
mainly determined by the magnitude of the temperature
gradient, with very little influence from the magnetic field
gradient.
The magnetic buoyancy instabilities are often invoked in the

context of stellar interiors, where the influence of velocity shear
is crucial. That effect was not included in our investigations,
but we plan to include it in future studies. In this sense, the
presented analysis can be thought of as a step toward achieving
a complete description of the full problem with shear and
diffusivities, which could then reliably model the stellar
interiors.
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Appendix A
Details of the 2D Asymptotic Analysis for 1h  ,  = ¥k

The coefficients f zĩ ( ) of Equation (17) have the following
form:

f z k f z k f z; , 52a4
2

41
4 3

42
2 s s s= +h h

- -˜ ( ) ( ) ( ) ( )

f z k f z k f z; , 52b3
2

31
4 3

32
2 s s s= +h h

- -˜ ( ) ( ) ( ) ( )

f z k f z k f z

f z k f z

k f z

;

; ,

; , , 52c

2
2 2

21
4 4

22
2

23
2

24
2 4

4 3
25

2 4

 



s s s
s s s s

s s s

= +

+ +

+
h h

h

- -

-

-

˜ ( ) ( ) ( )
( ) ( )

( ) ( )

f z k f z k f z

f z k f z

;

; , 52d
1

2 2
11

4 4
12

2

13
2 3

14
2 

s s s
s s s

= +

+ +h h

- -

-

˜ ( ) ( ) ( )
( ) ( ) ( )

f z f z k f z

k f z

k f z f z

k f z

; ; ,

; ,

; ,

; , , 52e

0 01
2 2 2

02
2 4

4 4
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2 4

2
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2 4

2 3
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2 4

 



s s s s
s s s
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+
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where the functions f zij̃ ( ) are dependent only on the basic-state
functions, their derivatives, and the dimensionless parameters
except h. The functions f z;ij sa˜ ( ) also include some terms
proportional to sa, where α is a rational number.

It is clear that, in the considered limit k 1 and 1h  at
the leading order, the above functions can be approximated by
the dominant terms only; the only functions that are utilized in
Section 3 are:

f z
F z

k , 53a4
2


a
s= h

-
⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

f z k
F z

2
, 53b2

2 2 
s

a
s= - - h

-
⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

f z
B z

F z z
H z H z

F z
k . 53c

B0
2

2
1 1

2


s
r

a
s

= -
L

-

+

r

h

- -
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
¯ ( )

( ) ¯ ( )
( ( ) ( ))

( )
( )

Equation (17) contains two asymptotically small parameters,
namely the inverse wavenumber (the wavelength)k 11-  and
the magnetic diffusivity 1h  , which are assumed to be
related through a simple scaling law

k , 54n1~ h
- ( )

for some n 0> , to be established. This assumption, later
validated by the asymptotic approach (and numerical simula-
tions), is simply a convenient way to mathematically relate two
positive quantities, which are expected to be related in the
considered asymptotic regime. Parameters n (and m in relations
(56) and (81) below) are used only to conveniently describe the
different cases corresponding to distinct balances of terms in
the equations, because all possibilities need to be considered in
order to prove the final results for most unstable modes.

The presence of small parameters (k 1- and h) in the
z-dependent coefficients in (17) suggests that the solutions
become localized in the vicinity of some specific point
corresponding to maximal growth rate in the system and adopt
a boundary/internal layer form, just as in the ideal case in
Mizerski et al. (2013).

The main aim of the current analysis is to identify the most
unstable mode (its form and growth rate σ) and the scaling law
for the horizontal variation length scale of perturbations given
by the relation (54). Therefore, we investigate Equation (17) for
all n 0> , utilizing the BL method in a way similar to how it
was described in Mizerski et al. (2013).

Let us therefore quickly summarize the mathematical
procedure. We consider separate cases corresponding to
different intervals of n 0,Î ¥( ) for which asymptotic relations
between terms in Equation (17) are different. In each case, we
use the method of dominant balance to analyze the equation in
the main flow region (MF), i.e., outside the BLs where the
z-derivatives of b zx ( ) are of order unity, and in the (possibly
internal) BL that forms in the vicinity of a certain point zmax

within the flow z0 1max  , which is determined from
the requirement of growth-rate maximization. In the MF, where
the leading-order term of the magnetic field perturbation will be
denoted by b zx

MF ( ), the dominant balance determines
the growth rate as a function of z, which can then be
maximized to determine zmax. On the other hand, we define a

scaled variable in the BL
z z

, 55maxx
d

=
- ( )

where d d= h( ) denotes the thickness of the BL, i.e., the
length scale for vertical variation of the perturbations. Thus, for
every n 0> there exists some m 0> that allows to define the
thickness δ in terms of the small parameters h or k 1- ,

k . 56m n md ~ ~h
- ( )

In the boundary-internal layer, all basic-state functions are
evaluated at z zmax= , and the magnetic field perturbation bx x( )
and the growth rate σ are expanded in powers of δ, i.e.,

...0 1
2

2s s ds d s= + + + , where 1j s = ( ) for all non-
negative integers j. Just as for the MF region, we only take
the leading-order term of the magnetic field perturbation, which
we denote as bx

BL x( ).
We require that the solutions are smooth, and because (17) is

a fourth-order ordinary differential equation, the following
matching conditions at the point zmax (ergo locally at 0x = ) are
imposed:

d b

d

d b

d
, 57

j
x

j

j
x

j

BL

0

BL

0

x
x

x
x

=
x x - +

( ) ( ) ( )

d b z

dz

d b

d
, 58a

j
x

j
z z

j
x

j

MF BL

0

x
x

=
x -¥-

( ) ( ) ( )

d b z

dz

d b

d
, 58b

j
x

j
z z

j
x

j

MF BL

0

x
x

=
x +¥+

( ) ( ) ( )

for 0d  + and j 0, , 4= ¼ , with j=0 corresponding to the
functions themselves, i.e., b zx

MF ( ) or bx
BL x( ). Finally, we find

the only possible distinguished limit in each case and
investigate whether it allows to determine the growth rate.
Three separate cases need to be analyzed: n 2< , n=2, and

n 2> . As will be shown below, it is the last one that leads to
the most unstable mode. In the other cases, either the
perturbations grow at a slower rate or no distinguished balance
is possible.

A.1. Case n<2

In such a case, the wavenumber satisfies k 1 2 h
- . Thus,

from Equation (17), the term without the derivative of b zx ( )
dominates in the MF. The equation reduces to

k f z b z 0, 59x
2

04
MF s =h[ ( )] ( ) ( )

which means that either 0s = or b z 0x
MF =( ) in the MF.

Inside the BL, Equation (17) reduces to

k
d

d
b

k
d

d
b b2 0. 60

x

x x

4 4
4

4
BL

2 2
2

2
BL BL

d
x

x

d
x

x x- + =

- -

- -

[ ] ( )

[ ] ( ) ( ) ( )

Here, we get two cases: either one of the terms dominates all
others, or the only possible balance between at least two terms
is obtained for m=1 i.e., k 1d ~ - and it contains all three
terms. The former case does not lead to solutions that could be
matched with b z 0x

MF =( ) in the limit x  ¥. For the latter
case, the only solution possible to match (localized around
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some z0 10< < ) is

b
A e

A e

1 0

1 0
, 61x

k

k
BL


x

x x
x x

=
- <
+

d x

d x-

⎧⎨⎩( )
( )
( )

( )
( )

( )

where A is a constant that remains undetermined. The matching
conditions for the first and second derivative of bx

BL x( ) were
used. However, there is no 0s in Equation (60) and the solution
has a discontinuous third derivative. Hence, there are no
smooth solutions in this case.

A.2. Case n=2

When n=2, the wavenumber satisfies k 1 2~ h
- . Thus,

from Equation (17), the term without the derivative still
dominates in the MF region. The equation reduces to

z k
F z

b z 0. 62x
2 2 2 MF


s s s

a
- + =h

⎡
⎣⎢

⎤
⎦⎥( )

( )
( ) ( )

Therefore, the only way to satisfy Equation (62) is for b zx
MF ( )

to be zero.
Inside the BL, Equation (17) takes the following form

k
F z

d

d
b

k
F z

d

d
b

z k
F z

b

2

0, 63

x

x

x

2 4
0

0
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4
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2 2
0
2 2

0
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2
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0
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0
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0
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x
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d s d s
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x

s s s
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where z0 is the point where z k F z22
0

2
0

2 s s a= + -h( ) ( ( ))
k F z22

0 ah ( ) for the mode associated with a specific
eigenvalue σ.

Three distinct ranges of parameter m, defined in (56), lead to
different types of balance in the Equation (63):

1. m 1> : the first term dominates, and therefore the
equation simplifies to 0d b

d
x

4 BL

4 =x
x

( ) , which does not provide
solutions that could be asymptotically matched with the
zero MF solution.

2. m 1< : the third term dominates, hence we get the

equation z k b 0
F z x0

2 2
0

2
0

BL

0
 s s s x- + =h

a⎡⎣ ⎤⎦( ) ( )
( ) , which

determines the leading-order term of the growth
rate as

z k
F z

k
F z2 2

. 640
2

0
2

0

2
2

0






s s

a a
= + -h h

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )
( )

This expression is always smaller than z0s ( ); hence the
solution, if it exists, does not correspond to the most
unstable mode.

3. m=1: this is the only possible balance between at least
two terms in (63) and it contains all three terms from this
equation. Therefore, we need to consider Equation (63) in
full, and we get several cases. First, we can assume a
constant solution, which means that the coefficient

z k
F z0

2 2
0

2
0

0
 s s s- + h

a⎡⎣ ⎤⎦( )
( ) has to vanish. This case

is the same as the one above for m 1< . Second, we can
assume that the coefficient next to bx

BL x( ) has to be zero,
which leads to non-trivial solutions in the following form

(for some constant α, Ai, Bi)

b
A e A A

B e B B

0,

0.
65x

BL 1 2 3

1 2 3 
x

x x
x x

=
+ + <
+ +

ax

ax-

⎧⎨⎩( ) ( )

However, this function can be of class C 0, 10 ([ ]) at most,
and thus there are no smooth solutions of such type. Third, we
can assume that the coefficient next to the second derivative
vanishes, k 0

F z
2 2

0
2 2

0
2

0
 d s d s+ =h

a- - -⎡⎣ ⎤⎦( ) , and solve (63);

however, this leads to 00s < . Lastly, we can solve the full
Equation (63) with non-zero coefficients, which leads to a
solution in the form

b
C e e

C e e

0

0
66x

BL

1

2

2 1

1

2

2 1 
x

x

x
=

- <

-

a
a

a x a x

a
a

a x a x- -

⎧
⎨⎪

⎩⎪
( )
( )

( ) ( )

for some non-zero constants C, 1a , 2a . This solution has a
discontinuous third derivative and does not lead to any
condition for 00s > .
In conclusion, when n=2, a positive growth rate is possible

only for the case of m 1 and constant bx
BL x( ), which leads to

z0 0s s< ( ). Because the results of Section 3 show that there
exist modes with the growth rate z0s ( ), the case n=2 does not
lead to the most unstable mode.

A.3. Case n 2>

We will now demonstrate, that the most unstable mode
appears when n 2> , and thus within a range of wavenumbers
bounded from above, k 1 2 h

- . In such a regime, the term
without derivatives of b zx

MF ( ) in the MF Equation (17)
dominates and the equation reduces to

z b z 0, 67x
2 2 MFs s- =[ ( )] ( ) ( )

which can be understood as a depth-dependent dispersion
relation (see Mizerski et al. 2013). The function zs ( ) is the so-
called “growth-rate function” defined in (18). Because the MF
Equation (67) has the form of a vanishing product of a function
of z multiplying the magnetic field b zx

MF ( ), the only way to
satisfy Equation (67) is for b zx

MF ( ) to be zero everywhere in the
MF. Thus, the situation is reminiscent of the non-diffusive
case, i.e., the most unstable eigenmode localizes in the vicinity
of zmax, where a boundary/internal layer is formed, because the
relation zmaxs s» ( ) can be approximately satisfied and hence
the magnetic field in (67) can be non-trivial in this region.
For n 2> inside the BL, Equation (17) expressed in terms of

the scaled variable ξ (55), reduces to

k
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for the most unstable mode associated with the eigenvalue
zmaxs s» ( ), and 0s is the leading-order term in the growth-rate
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expansion in powers of the BL thickness δ. We note here that
Equation (17) can, in fact, also be satisfied by oscillatory
modes with large z-derivatives in a significant part of the
domain. However, such modes, examined in the Appendix of
Mizerski et al. (2013) with the use of the WKB method, require
at least one turning point, i.e., σ must be less than zs ( ) in a
finite domain. Therefore, these modes are never the most
unstable ones. Furthermore, numerical simulations of Mizerski
et al. (2013) have clearly shown that evolution of the analyzed
linear system from some initial state, even localized far from
the point of maximum value of the growth rate function,
becomes quite quickly dominated by the most unstable mode
localized in the vicinity of zmax. Thus, here we concentrate only
on the most unstable modes.

Because the BL thickness δ, related to the wavenumber k and
magnetic diffusivity through the relation (56), is yet unknown,
we have to consider all possible forms of balance between
terms in Equation (68). There are three cases: two of them,
namely m n1 2 4= + and m n 2= , do not lead to smooth
solutions (which can be easily shown in way analogous to
Appendices A.1 and A.2). The last one, with m=1, i.e.,

k 1d ~ - , corresponds to balance between the second and third
terms in (68). For that case, the BL Equation (68) has the
following form

k
d

d
b

z b 0, 69

x

x

2 2
0
2

2

2
BL

0
2 2

max
BL

d s
x

x

s s x+ - =

- -[ ] ( )

[ ( )] ( ) ( )

which is analogous to Equation 33(a) in Mizerski et al. (2013).
Therefore, as in Mizerski et al. (2013), the only possible
sufficiently smooth solution (which can be later matched with
the zero solution in MF through internal layers) is a constant
function denoted by b Bx x

BL BLx =( ) with the leading-order term
of the growth rate 0s for the most unstable mode localized in a
vicinity of zmax given by z0

2 2
maxs s= ( ), which turns out to be

the same formula as in the non-diffusive case (cf. (35) in
Mizerski et al. 2013). Thus, another boundary/internal layer
must be introduced to match this constant solution Bx

BL with
b z 0x

MF =( ) in the MF.
However, before proceeding any further, we briefly

summarize the final results of the analysis at the leading order.
When n 2> and m=1, i.e., k n1 1 1 2 d ~ ~ h h

-  , the
growth rate at the leading order is z 00 maxs s= >( ) and it is
the greatest real positive one among any n 0> , m 0> .
Therefore, this growth rate is associated with the most unstable
mode, which is localized in the vicinity of the point zmax at
which the growth-rate function takes its maximum
value zmaxs ( ).

Returning to the analysis, we will now assume that the
function zs ( ) (defined by (18)) has a quadratic maximum at

z zmax= with z0 1max< < , and hence z 0d

dz z z

2

max

s =
=

( ) and

z 0d

dz z z

2
2

2
max

s <
=

( ) . The most unstable mode is the one

associated with the highest growth rate given by (19). It can be
shown that, under these assumptions (supplied by the matching
conditions (57) and (58)), one obtains the most unstable mode
for 01s = , thus o0

2
2

2s s d s d= + + ( ). This yields the

internal layer Equation (68) in the following form
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where the z-dependent functions have been expanded in Taylor
series around z zmax= . The Equation (70) is analogous to the
Equation 33(c) in Mizerski et al. (2013); however, the former
also contains a fourth-order derivative of the magnetic field
perturbation and a new constant term k F z2

0 max s ah ( ) in the
coefficient at the term without the derivative. Because we are
looking for the structure of the most unstable mode,
Equation (70) is investigated for all distinguished limits for
n 2> and m 0> . The only limits that lead to smooth
eigenmodes without being self-contradictory are obtained for
n 3 and m 1 2= .

For n 3> and m 1 2= , one obtains k n1 1 3 ~ h h
- - ,

and ;n1 2 1 6 d ~ h h Equation (70) takes the following form
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The solution of the latter equation was presented in
Section 4.1 of Mizerski et al. (2013). We get the same result
as (38) in that paper, which is
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Therefore, 02s < , and of course 12s ~∣ ∣ by assumption.
On the other hand, for n=3 and m 1 2= , the exponents in

relations (54) and (56) can be easily determined to yield
k 1 1 3~ h
- and 1 6d ~ h . In this regime, Equation (70)
simplifies to
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and the leading-order form of the magnetic field perturbation
expressed in terms of the global variable z takes the form

b z b z b z z

C
z z

k
d

dz
zexp

2 2
,
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where C is an undetermined constant and bx
BL x  ¥ =( )

b z 0x
MF =( ) (for details of the method of matching asymptotic

expansions, see chapter 9 in Bender & Orszag 1978).
Comparison of Equations (72) and (74), i.e., the order 2d

corrections to the growth rate for n 3> and n=3, leads to a
conclusion that, in both cases, the correction 2s in the
expansion o0

2
2

2s s d s d= + + ( ) is negative, but the BL
thickness δ is different in each of the cases. In the case n=3,
the BL thickness is asymptotically smaller than for n 3>
because n n

n
3

1 6
3

1 2 d d= =h h= > . Therefore, it can be
concluded that the growth rate of the mode obtained for n=3
is asymptotically greater, than that obtained for any finite n 3>
(the negative correction proportional to k2 2 dh

- in (74) does
not appear in formula (72) because for n 3> it is of the order

1n1 3h
-  , and only at n=3 does it reach the order of

unity). Hence, it is the case of n=3 that leads to the most
unstable mode with k 1 3~ h

- .
The formulae (72) and (74) for 2s were obtained as part of

solution of Equations (71) and (73), which can be transformed
into the parabolic cylinder equation (see Abramowitz &
Stegun 1972)

d
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for Equation (73). For the most unstable mode, one needs the
smallest possible 2s∣ ∣ ( 02s < ), which is obtained by taking the
largest possible a, namely a 1 2= - (see details in Section 3
of Mizerski et al. 2013). This establishes the value of 2s given
by in (72) and (74).

Appendix B
Details of the 2D Asymptotic Analysis for 13 2 ~h k 

Application of scalings (37) and (38) to the set of
perturbation Equations 35(a)–(f) in the asymptotic limit

13 2 ~h k  allows to transform the equations into one
second-order ordinary differential equation for the leading-
order term of the vertical velocity perturbation in the BL
around a given point z0 with z z0x d= -( ) ; namely, for
wBL x( ),
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Although the full equation for wBL x( ) is, of course, of the
sixth order, inclusion of higher derivatives in (80) does not lead
to any asymptotically distinguished balance. The corresp-
onding MF equation at the leading order, i.e., outside the BL, is
simply constructed of the last term in (80) without the
derivative of the vertical velocity equated to zero,

w z... 0MF =[ ] ( ) , where the growth rate σ is a number and the
rest of the terms in the square brackets are height-dependent
functions. In this sense, the problem corresponds directly to
that previously analyzed, so the only way to satisfy the MF
equation for the most unstable mode is that w zMF ( ) vanishes
everywhere in the MF and it is allowed to be non-zero only in
the vicinity of point zmax, where the square bracket ...[ ]
vanishes, i.e., the leading-order term of the entire z-dependent
function in the square bracket is equal to 3s- . Again, here we
will concentrate on the most unstable mode only, and therefore
do not consider oscillatory modes because they never grow at
the highest rate in the analyzed problem.
In the BL Equation (80), all basic-state functions are

evaluated at z zmax= , e.g., zmaxr rº¯ ¯ ( ), F F zmaxº ( ), etc.
Thus, all the coefficients in both the square brackets are
constant at the leading order. Equation (80) was obtained in the
asymptotic limit defined by k 1 , 1k  , 13 2 ~h k  ,
and , 1 d k h ( ) . As previously, we expect the power-law
relation between the wavenumber and the small diffusivity
parameters of the system, which due to the simplifying
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assumption 3 2 ~h k can be expressed solely in terms of k,

k k, , 81n m n m1 d~ ~ ~k k
- - ( )

for some n 0> and m 0> . The relation k n1~ k
- expresses

only the order of magnitude of the wavenumber, because the
same order can be achieved through a product of different
powers of both diffusivities by the use of 3 2 ~h k . Under the
stated assumptions, all the terms proportional to the first
derivative of wBL x( ) and derivatives higher than second are
always negligible at the leading order. Equation (80) constitutes
an eigenvalue problem for w z( ) with an eigenvalue σ, similarly
as in Section 3.

The main aim is to find the relation between large
wavenumber k and the diffusivities k and h for the most
unstable mode, as well as its growth rate σ and the structure at
the leading order. To this end, we need to consider the BL
Equation (80) in all ranges of values of the exponents n and m
for which the approximate form of the equation is different. In
the same way as in Appendix A, it can be shown that for m 1
and any n 0> , we can only obtain solutions that do not satisfy
the imposed boundary conditions and the requirement of
smoothness, nor do they lead to specification of 0s . Hence, here
we only study cases with m 1< i.e., 1n1 dk   .

To derive the expression for the leading-order term of the
growth rate 0s , we need to expand σ in powers of δ, i.e.,

...0 1
2

2s s ds d s= + + + , and then consider all possible
different cases for any n 0> . Eventually, the mixture of
numerical and theoretical analysis allows us to conclude that
there are only two subintervals of n 0,Î +¥( ) that lead to
interesting distinct regimes with different growth rates of the
most unstable modes:

1. For n4 3 2 < , Equation (80) at the leading order
takes the following form for the most unstable
mode: z w 00

2 2
0,max

BLs s x- =[ ( )] ( ) , which leads to
z0 0,maxs s= ( ) if we require non-trivial solutions; z0,max

is the point where the function zs ( ) has its maximum. We
have the same criterion for instability as in the isothermal
case with or without magnetic diffusion, namely
Equation (21). However, now the function F z( ) depends
on the basic-state temperature as was mentioned above.
This regime is observed in numerical solutions at the
values of k reaching k∼5×104 (which would corre-
spond to waves as short as 1 km in the tachocline
context). However, as demonstrated below, this is not a
truly asymptotic regime. Rather, it results from a balance
between terms in Equation (80) that are asymptotically
small with terms that are asymptotically of order unity,
but for the chosen basic state turn out to be significantly
smaller than unity. Nevertheless, this limit is clearly
shown to exist, and in fact is physically interesting,
because it already corresponds to very large wavenum-
bers. A truly asymptotic regime is obtained either for
n 4 3= or n 2> , but the former case may require
physically unachievable large values of k.

2. For n 2> , Equation (80) at the leading order for
the most unstable mode takes a different form:

z w 0T T0
2 2

,max
BLs s x- =[ ( )] ( ) , which leads to 0s =

zT T ,maxs ( ), but now zT ,max is the point where the function
zTs ( ) has its maximum. Thus, by (33) and (40), we have a

new criterion for instability, namely Equation (43).

Other possible regimes corresponding to different ranges of
the exponent n, which do not lead to the most unstable
modes, are:

1. For n 4 3< , Equation (80) at the leading order takes the
following form: w 00

BLs x =( ) , which does not lead to
unstable modes.

2. For n=2, Equation (80) at the leading order yields:
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which allows to determine 0s . However, in this case it can
be shown that, for any positive e 0s( )R and any

z0 10  , the following inequalities are satisfied:
e z0 0 0s s< ( ) ( )R and e z0 T0 0s s< ( ) ( )R , where

equality is possible if and only if e zT0 0s s= =( ) ( )R
z0s ( ). Thus, for n=2, the growth rate can not

correspond to the most unstable mode, except for the
case when the maximal values of both the growth-rate
functions zT maxs ( ) and zmaxs ( ) are equal, which can only
be realized for a unique set of values of the physical
parameters of the system (or in other words a very
specific basic state), if it is possible at all, because

z zTs s¹( ) ( ) in general. This situation is, therefore, not
considered physically realizable.

By the use of (39) and (40), one can derive a condition that
must be satisfied in order for one of the two possible highest
growth rates to dominate, namely

H
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z z

z z
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, 83
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g
s s

s s
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where zT ,max and z0,max are the points at which the growth-rate
functions zTs ( ) and zs ( ) take their respective maximum values.
We use zmax to denote the point where the most unstable mode
is localized; therefore, z0 1max  can be equal to either
zT ,max, z0,max, or neither of those, if the growth rate of the most
unstable mode at the leading order happens to be different than

zT T ,maxs ( ) and z0,maxs ( ). It is clear, therefore, that if the
temperature gradient is strong enough, the most unstable mode
will be the one associated with the growth-rate function zTs ( ).
However, we emphasize that there exist situations in which,
e.g., z zT T ,max 0,maxs s>( ) ( ) even if the left inequality in (83) is
not satisfied at every z, because z zT0,max ,max¹ in general.
Nevertheless, if zT T ,maxs ( ) is greater than z0,maxs ( ), the most
unstable mode is always associated with the growth rate

zT T ,maxs ( ) at the leading order and n 2> . If, however,
z zT T ,max 0,maxs s<( ) ( ), the truly asymptotic regime is achieved

either for n 4 3= with a growth rate of z4 3 maxs =( )
z k T F22

max
2 2 s a+ h( ) ( ¯ ) k T F22 a- h ¯ or for n 2>

when, despite the relation between the maxima of the two
growth-rate functions, z zT T ,max 0,maxs s<( ) ( ), the most
unstable mode still has a growth rate of zT T ,maxs ( ). However,
in the latter case, i.e., z zT T ,max 0,maxs s<( ) ( ), there exists a
distinguished limit, albeit not fully asymptotic, still achieved at
very short wavelengths, which corresponds to n4 3 2< <
and the growth rate z0,maxs ( ) of the most unstable mode.
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We now turn to the subcases n4 3 2< < , n 4 3= , and
n 2> and study them separately with an approach analogous
to the one presented in Appendix A. We assume, that the
growth rate function, which corresponds to the most unstable
mode (either (39), (40) or 4 3s has a quadratic maximum at zmax

and z0 1max< < . Hence, at zmax, the first derivative of one of
the three growth rate functions is equal to zero and the second
derivative is negative by assumption. The aim of the further
analysis is to obtain the expression for the leading-order
correction to the growth rate, the form of the most unstable
mode, and the magnitude of its horizontal wavelength.

B.1. Case n4 3 2< <

The most unstable mode can be obtained for n 2< only
when z zT T0,max ,maxs s>( ) ( ), which is a requirement for the
basic state. Under such conditions, there are in fact two
asymptotic regimes leading to distinguished limits, one for
n 4 3= and a second one, out of the bounds n4 3 2< < , for
n=3. However, we postpone the presentation of fully
asymptotic solutions for later and start by considering a limit,
which although it does not correspond to a fully asymptotic
solution, nevertheless is the only one that could be observed in
numerical simulations of the considered regime z0,maxs >( )

zT T ,maxs ( ) (see the next section), for k and h as low as 10−8

and 10−12, respectively, and kmax as large as 5.5 104´ . This
limit is determined by n 5 3= and m 1 2= , i.e., k 3 5~ k

-

and k 1 2 3 10d ~ ~ k
- , and k k ...0

1 2
1

1
2s s s s= + + +- - .

In such a regime, from (80) at leading order, one obtains
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and as in the case of (69), this leads to z0 0,maxs s= ( ), such that
at the leading order, the growth rate of the most unstable mode
is determined by the maximal value of the function zs ( ). Next,
as before, we expand all the z-dependent functions in (80)
about z0,max. Because the numerical solutions suggest

T
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1 1c+ g ( ) , the BL equation at the next orders takes the
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where all the z-dependent functions are evaluated at z z0,max= .
The distinguished balance occurs at the order k 2 3- between the
first two terms in (85), i.e., the second derivative term and the
one proportional to k wBL xk ( ). The function z0,max( ) gathers
all the contributions from terms at the order k 1 6- resulting

from Taylor expansions of all the terms in (80). On the other
hand, the entire expression in the braces in (85) corresponds to
the dominant order k 1 6- , and therefore has to be balanced
separately, thus establishing the value of the correction 1s . In
writing the above, guided by our numerical simulations (cf. the
next section), we have assumed that the properties of the basic
state are such that z z zT0,max

2
0,max

2
0,maxs s s-( )( ( ) ( )) and

z H H1 1T
2

0,max
1 1s g g c- - - +r g

- -( ( ) (( ) ) ) ( ) both hap-

pen to be as small as k 1 6 1 10~ k
- .2 Therefore, as in all the

previous cases of “body modes,” the structure of the most
unstable mode is Gaussian-like, i.e., determined by the
parabolic cylinder function.
As explained, the above solution requires basic-state

functions, which are asymptotically of order unity, to enter a
balance at an asymptotically small order. This can happen only
in a limit where the final asymptotics has not set in yet. Despite
the fact that the true asymptotic solutions may require
wavelengths that are unphysically short, it is of interest to
demonstrate the fully asymptotic solutions.

B.2. Case n 4 3=

The analysis shows that, in the non-isothermal limit with
0 ¹k , 0 ¹h , and 13 2 ~h k  , there are no asymptotic

solutions for the most unstable mode with the growth rate
determined solely by the function zs ( ). However, if the
following conditions are satisfied, i.e., z zT T0,max ,maxs s>( ) ( )
as well as z zT T4 3 max ,maxs s>( ) ( ), the only distinguished limit
at k  ¥ is the one leading to k 12 ~h and a leading-order
balance between the terms k2~ k and k4 ~ h k in (80) that
corresponds to n 4 3= , i.e., k 3 4~ k

- , k 1 2 3 8d ~ ~ k
- ,

k0
2 3s s= + - k ...1

1
2s s+ +- , and z0 4 3 maxs s= ( ), where

zmax is the point where the function z4 3 maxs ( ) has its maximum
value. The structure of the most unstable mode is, again,
similar to all the previous cases described by the parabolic
cylinder function. However, now the growth rate at the leading
order is decreased with respect to z0,maxs ( ). Note that, for all z
in the domain, z z4 3s s<( ) ( ).
It is also interesting to note that, in the specific case of

vanishing magnetic diffusivity (namely with 0 =h but
0 ¹k ) described in Appendix C, no influence of thermal

diffusivity on the most unstable modes is reported for
z zT T0,max ,maxs s>( ) ( ), hence the thermal diffusion does not

establish a finite wavenumber and the modes become more
unstable with increasing wavenumber, i.e., k

k
0s s =

¥
( ) ⟶

z0s ( ). Therefore, when z zT T0,max ,maxs s>( ) ( ) is satisfied, it is
the presence of magnetic diffusion that allows to establish the
wavelength of the most unstable mode in the range

n4 3 2< < , and thus for modes with a growth rate other
than zT T ,maxs ( ) occurring for n=3, as demonstrated in
Appendix B.3. However, when z zT T0,max ,maxs s>( ) ( ), but at
the same time z zT T4 3 max ,maxs s<( ) ( ), the dominant fully

2 Note that another distinguished balance is, in fact, possible for n 5 3= ,
with k k ...0

2 3
1

1
2s s s s= + + +- - , which requires z0,maxs ( )

z z kT
2

0,max
2

0,max
1 3 1 5s s- ~ ~ k

-( ( ) ( )) . Although the above solution with
k k ...0

1 2
1

1
2s s s s= + + +- - is less restrictive for the basic state, as it

requires the basic-state functions to be only of the order k 1 6- , it is not entirely
clear which of these two limits sets in as a numerical solution; it is
mainly determined by the order of magnitude of the expression

z z zT0,max
2

0,max
2

0,maxs s s-( )( ( ) ( )), either k 1 6- or k 1 3- . However, in both
of the limits, we get k 3 5~ k

- , z0 0,maxs s= ( ) and the structure of the most
unstable mode is very similar, with a slightly different function z0,max( ).
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asymptotic mode corresponds to the growth rate zT T ,maxs ( ) and
n=3, just like when z zT T0,max ,maxs s<( ) ( ), which are the
cases we turn to now.

B.3. Case n 2>

The most unstable mode corresponds to n 2> when
z zT T ,max 4 3 maxs s>( ) ( ) is satisfied, a condition resulting from

the form of the basic-state solution. In such a case, the growth
rate at the leading order, 0s , is equal to zT T ,maxs ( ) and the
wavenumber is bounded from above by k 1 2k

- . Moreover,
it can be shown that, for the most unstable mode, 01s = , and
thus o0

2
2

2s s d s d= + + ( ). Hence, Equation (80) takes the
following form
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The structure of the equation is very similar to (70), but here
we do not have the fourth-order derivative. Regardless of that,
the analysis is exactly the same and it can be easily shown that,
for any m0 1< < , the most unstable mode will occur for
n=3 and m 1 2= . Hence, we have k 1 3~ k

- and 1 6d ~ k .
The correction 2s to the growth rate has following form
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This leads to the following expression for the growth rate of
the most unstable mode

k
d

dz
z

F

F
k z o

1

2 2

2
, 88

T
z z

T

0
1

2

2
2

2
0

2
0
2 2

,max
1 3

T ,max

 

s s s

g
r

s s s

= - -

- - +
g

k k

-

=

-
⎛
⎝⎜

⎞
⎠⎟

( )

¯
( ( )) ( ) ( )

where zT T0 ,maxs s= ( ). When compared to the expression (23),
the growth rate (88) contains a derivative of a different growth-
rate function, the one specific for the non-isothermal case, the
most unstable mode is localized around different point, zT ,max,
and the diffusive correction is also different. In this case, the
magnitude of the wavenumber k, established by the thermal
diffusivity, is of the order 1 3k

- . This most unstable
eigenmode at the leading order takes the following form:
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where C is an undetermined constant. The structure of this
function is similar to the most unstable modes from previous
cases, but the eigenmode (89) is localized in the vicinity of
z zT0

max= and, as previously stated, the order of magnitude of
the wavenumber is now k 1 3~ k

- .

Appendix C
Analysis of Equation (B29) for 0 =h , 1k 

and z zT T0,max ,maxs s>( ) ( )
It is also of interest to consider the case with the extracted

influence of sole thermal effects on the stability of the analyzed
system (ergo in the absence of electrical resistivity).
For n 2< and 0 =h , Equation (80) at some z z0= takes

the following form
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It can be shown that, for any m0 1< < , the only
distinguished balances are

1. n 1< and m 1 2= . Hence, we have k n1 1 ~ k k
- -

and ;n1 2 1 2 d ~ k k Equation (90) takes the form
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which has the same structure as Equation (71), and thus
leads to a similar result:
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2. n=1 and m 1 2= . Here, we have k 1~ k
- and

;1 2d ~ k Equation (90) takes the form
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which has the same structure as Equation (73), hence
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In both cases, 02s < and 12s ~∣ ∣ . However, the thickness
of the BL δ is asymptotically smaller for the first case:

n n1 1d d< = . Therefore, if o0
2

2
2s s d s d= - +∣ ∣ ( ), it can be

seen that, for n 1< , the growth rate n 1s < is asymptotically
greater than n 1s = obtained for n=1. This leads to a conclusion
that the former case gives the most unstable mode with the
growth rate
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where z z0 0,max= . This result is similar to the one obtained in
Mizerski et al. (2013) for an isothermal case without
dissipation. The only difference is the inclusion of the T z¯ ( )
function in the latter formula. This means that, for

z zT T0,max ,maxs s>( ) ( ), the finite magnitude of the wavenumber
k is not established by the thermal diffusivity k. Moreover,
there is no explicit dependence of σ on k, at least within the
accuracy of terms of the order n1k . Thus, the most unstable
modes are those with k  ¥ (which means n 0 ), and
obviously z0,maxs s ( ). The leading-order approximation for
the most unstable mode takes following form
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where C is an undetermined constant. The structure of this
function is similar to the most unstable mode in the case with
only magnetic diffusion, but no thermal diffusion.

Finally, just like in Appendix B.3, when z0,maxs <( )
zT T ,maxs ( ), the most unstable mode corresponds to n=3 and

is described by zT T0 ,maxs s» ( ) and k 1 3~ k
- .

Appendix D
Details of the 3D Asymptotic Analysis for 13 2 ~h k 

To derive expressions for the leading-order term of the
growth rate in the 3D case, Equations 45(a)–(j) are analyzed
locally in the limit k 1y  via the use of the boundary/internal
layer approach—namely in terms of the local variable ξ
(expanding the growth rate and all depth-dependent functions
in powers of δ). All possible different cases for any n 0> with
ky

n1~ k
- can be considered similarly as in Section 4, but let

us concentrate only on the case where the partly asymptotic
solution with ky

3 5~ k is allowed (which seems natural, as
confirmed by all our 2D numerical simulations). This allows
for uniqueness because the partly asymptotic solution, when
allowed, dominates in the range n4 3 2< < , and the range
n 2> is characterized by a different growth rate ( Ts in the 2D
case). Therefore, under such circumstances, we obtain two
distinct regimes with two different growth rates of the most
unstable modes, denoted as 3Ds and T3Ds .

D.1. The Most Unstable 3D Mode for T3D 3Ds s>

When the inequality T3D 3Ds s> is satisfied, the exponent n
(where ky

n1~ k
- ) for the most unstable mode can be shown

to fall into the range n4 3 2< < . Thus, in the limit k 1,y 
1h  and 1k  , the system of Equations 45(a)–(j) can be

transformed at the leading order into a second-order ODE for
the vertical velocity perturbation in the local variable, wBL x( ),

d

d
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where the coefficients A1, A2, A3, and A4 are constants
dependent on the horizontal wavenumber kx and contain the
values of basic-state functions taken at a point z z0= , which
corresponds the region of localization of the most unstable
mode, e.g., z0r rº¯ ¯ ( ), F F z0º ( ), etc. They take the following
form

A
B

F 1 , 98a1

2
1 1 1

r
c=

L
º +- - -

⎛
⎝⎜

⎞
⎠⎟

¯
¯

( ) ( )

A
B

k F k
B

, 98bx x2
2

2 1
2 2 2

2 2
1s

r
s

r
c=

L
+ +

L
-

-
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

¯
¯

¯
¯

( )

A k
B

H H2 1 , 98cx B3
2

2
1 1 1

r
c=

L
+ - -r

- - -
⎛
⎝⎜

⎞
⎠⎟

¯
¯

( ) ( ) ( )

A k
B

k
B

H , 98dx x B4
2

2
2

2
1 1

r r
c=

L L
+- -

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

¯
¯

¯
¯

( )

where F and χ were defined in (32). The coefficients A1–A4 are
similar to those in the Equation (64) in Mizerski et al. (2013),
although our case is non-isothermal—and thus the basic-state
temperature of the fluid is non-uniform. Hence, the growth rate
of the most unstable mode at the leading order, D3 ,0s , is
determined by the solution of the algebraic equation (“disper-
sion relation”) A A A A 04

1 3
2

1 4s s+ + = with the greatest real
part. It takes the following form

A A
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2
4

1 2s = - + -[ ( )] ( )

As stated, we study only the case of stably stratified fluid,
i.e., H 0<r . Therefore, just as in the isothermal and non-
diffusive case studied in Mizerski et al. (2013), it can be shown
from the “dispersion relation” A A A A 04

1 3
2

1 4s s+ + = that
the instability sets in only as a direct mode with σ passing
through zero, which implies A A 01 4 < . Thus, we obtain the
criterion (46) for instability with respect to the 3D modes.

D.2. The Most Unstable 3D Mode for T3D 3Ds s>

When T3D 3Ds s> , the exponent n for the most unstable
mode is in the range n 2> . In this regime, both the thermal
and the magnetic diffusion are negligible at the leading order.
Thus, in the limit k 1,y  1h  , 1k  , the system of
Equations 45(a)–(j) can be transformed at the leading order into
one second-order ODE for the vertical velocity perturbation in
the local variable, wBL x( )

100
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where constant coefficients A1g, A2g, A3g , and A4g depend on
the horizontal wavenumber kx. Their explicit forms are:
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where Fg and cg were defined in (31). The latter set of
coefficients differs from the former with the presence of the γ

parameter in the χ function. Moreover, the parameters A3g and
A4g also have an additional term containing the inverse

temperature scale height HT
1- , denoted by 1- in Section 6.

This is a similar situation as in 2D case, cf. Equations (39)
and (40).

Hence, the growth rate of the most unstable mode at the
leading order, T3D,0s , is determined by the greatest solution of
the algebraic equation (“dispersion relation”) A A4

1 3
2s s+ +g g

A A 01 4 =g g (and, similarly as before, it can be shown that
A A 01 4 <g g , so the growth rate is real and positive at the
leading order). It takes the following form

A A
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2
4 . 102T 3D,0
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2
4

1 2s = - + -g g
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This results in (48), the criterion for instability with respect
to 3D modes.
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