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Rotne-Prager-Yamakawa approximation is a commonly used approach to model hydrodynamic inter-
actions between particles suspended in fluid. It takes into account all the long-range contributions to
the hydrodynamic tensors, with the corrections decaying at least as fast as the inverse fourth power of
the interparticle distances, and results in a positive definite mobility matrix, which is fundamental in
Brownian dynamics simulations. In this communication, we show how to construct the Rotne-Prager-
Yamakawa approximation for the bulk system under shear flow, which is modeled using the Lees-
Edwards boundary conditions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871113]

I. INTRODUCTION

Flow induced phenomena are at the core of soft mat-
ter physics – flow drives complex fluids out of equilib-
rium, changes their internal structure,1–3 unfolds proteins and
DNA,4, 5 accelerates the aggregation processes,6, 7 induces
polymer migration in capillaries8 and phase separation in
complex fluids.9, 10 Most of these phenomena are already ob-
served for a simple, linear shear flow, such as that which oc-
curs in a Couette device. In fact a nonzero shear component
appears whenever a fluid flows along a surface, including dif-
ferent kinds of capillary flows, hence the shear-induced ef-
fects are indeed ubiquitous in soft matter systems.

Another important aspect of the dynamics of suspended
particles is the presence of hydrodynamic interactions (HI):
the particles excite long-ranged flows as they move, which
then influence all other particles in the system and modify
the ambient fluid velocity field. The HI were shown to play
a key role in variety of processes: they affect the values of
diffusion coefficients in colloidal suspensions,11 change the
kinetic pathways of phase separation in binary mixtures,12 al-
ter the kinetics of macromolecule adsorption on surfaces,13

affect the characteristics of the coil-stretch transition
in polymers,14 the timescales of protein folding and
unfolding15, 16 and the dynamics of lipid membranes self
assembly.17 The inclusion of HI is thus essential for a proper
modeling of the dynamics of complex fluids and biopolymers,
both with and without the flow.

In general, there are two ways in which the uniform shear
can be introduced in the molecular dynamics simulations. The
first is to confine the system between two parallel plates and
translate one plate parallel to another at a constant speed. The
disadvantage of such a setup is the presence of strong wall ef-
fects, which are undesirable, unless our intention is to model

a)Electronic addresses: kamiz@igf.edu.pl; piotr.szymczak@fuw.edu.pl;
ewajnryb@ippt.gov.pl; and pawel.zuk@fuw.edu.pl

the flow in nanochannels. Alternatively, to mitigate wall ef-
fects and more effectively simulate the bulk, one uses the pe-
riodic cell of the Lees-Edwards kind,18, 19 which deforms, be-
coming progressively more titled with time (cf. Fig. 1). For a
simple shear of a form γ̇ zex the tilting angle (i.e., the angle
between the instantaneous direction of the tilted z axis and its
original direction) varies with the shear rate γ̇ and time t as19

θ = arctan

(
γ̇ Lzt mod Lx

Lz

)
, (1)

where mod stands for the modulo operation. The use of Lees-
Edwards cell allows the simulation of a bulk material under
shear, however the inclusion of HI in this case is far from triv-
ial, with the details strongly depending on a particular model
used to represent the hydrodynamic interactions, see, e.g.,
Ref. 20 for an implementation of the Lees-Edwards bound-
ary conditions for smoothed particle hydrodynamics; Ref. 21
for a similar derivation for the lattice Boltzmann method; and
Ref. 22 for multi-particle collision dynamics. In this paper,
we show how to include hydrodynamic interactions in the de-
formed Lees-Edwards cell using the Rotne-Prager-Yamakawa
(RPY) approximation for the hydrodynamic tensors. This ap-
proximation is based on the following idea: when a force (or
torque) is applied to particle i, that particle begins to move,
inducing flow in the bulk of the fluid. The extent to which
this additional flow affects translational and rotational veloc-
ities of another particle (j) is then calculated using Faxen’s
laws.23 In that way one neglects not only the multi-body ef-
fects (involving three and more particles) but also the higher-
order terms in two-particle interactions (e.g., the impact of
the movement of particle j back on particle i). The Rotne-
Prager-Yamakawa tensor is by far the most popular method
of accounting for HI in soft matter modeling.24 The RPY is
a far-field approximation: it incorporates all the long-ranged
contributions to the hydrodynamic tensors, with the correc-
tions decaying at least as fast as the inverse fourth power
of the interparticle distances, but is less accurate at smaller
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FIG. 1. Lees-Edwards boundary conditions for a simple shear flow: as time
advances the simulation cell is deformed with the shear flow such that the
shearing boundaries always align with the image cells. The initial cell is
depicted with the dashed line. Whenever the simulation cell deforms by
arctan Lx/Lz it is reset to prevent it from deforming indefinitely in one
direction.

distances. In particular, when the particles overlap, the hydro-
dynamic tensors calculated based on RPY may become non-
positive definite, which causes a problem in the Brownian dy-
namics simulations, where the square root of mobility matrix
is needed. To avoid this problem, one usually uses a regu-
larizing correction for the overlapping particles, which is not
singular at Rij = 0 and positive definite for all the particle con-
figurations. In a recent paper25 we have re-derived the origi-
nal RPY tensor using direct integration of force densities over
the sphere surfaces and used this approach to derive the reg-
ularizing corrections for rotational and dipolar components
of the generalized mobility matrix. We have also shown how
to generalize the RPY approach to different-sized particles.26

Here, this formalism will be used to derive the explicit form
of hydrodynamic matrices in the periodic system under the
shear.

II. THE ROTNE-PRAGER-YAMAKAWA
APPROXIMATION

We consider a suspension of N identical spherical parti-
cles of different radii ai, in an incompressible fluid of viscos-
ity η at a low Reynolds number. The particles are immersed
in a linear shear flow

v∞(r) = K∞ · r, (2)

where K∞ is the constant velocity gradient matrix, e.g., for a
simple shear flow

K∞ =

⎡⎢⎢⎣
0 0 γ̇

0 0 0

0 0 0

⎤⎥⎥⎦ , γ̇ = const. (3)

Due to the linearity of the Stokes equations, the forces and
torques exerted by the fluid on the particles (F j and T j )
depend linearly on translational and rotational velocities of
the particles (Ui , �i). This relation defines the generalized

friction matrix ζ(
F j

T j

)
= −

∑
i

(
ζ t t

j i ζ tr
j i ζ td

j i

ζ rt
j i ζ rr

j i ζ rd
ji

)
·

⎛⎜⎜⎝
v∞(Ri) − Ui

ω∞(Ri) − �i

E∞

⎞⎟⎟⎠ ,

(4)
where ζ pq (with p = t, r and q = t, r, d) are the Carte-
sian tensors and the superscripts t, r, and d correspond to
the translational, rotational, and dipolar components, respec-
tively. The tensor E∞ is the symmetric part of K∞ in (3) and
ω∞ = 1

2∇ × v∞(Ri) = 1
2ε : K∞ is the vorticity of the inci-

dent flow. Finally, Ri corresponds to the position of particle
i. The reciprocal relation giving velocities of particles mov-
ing under external forces/torques in external flow v∞ is deter-
mined by generalized mobility matrix μ is given by11(

Ui

�i

)
=
(

v∞(Ri)

ω∞(Ri)

)
+
∑

j

[(
μt t

ij μtr
ij

μrt
ij μrr

ij

)
·
(

F j

T j

)]

+
(

Ct
i

Cr
i

)
: E∞, (5)

where the shear disturbance tensor C elements are defined as

Ct
i =

∑
j

μtd
ij , Cr

i =
∑

j

μrd
ij . (6)

In the case of single-particle the mobility matrixes reduce to

μt t
ii = 1

ζ tt
1, μrr

ii = 1

ζ rr
1, μtr

ii = μrt
ii = 0, (7)

with the friction coefficients for a spherical particle given by
ζ tt = 6πηa and ζ rr = 8πηa3.

In Ref. 25 we have shown that within the Rotne-Prager-
Yamakawa formalism the mobility tensors can be expressed
as

μt t
ij = 〈

wt
i

∣∣TH

∣∣wt
j

〉
, μrr

ij = 〈
wr

i

∣∣TH

∣∣wr
j

〉
, (8a)

μrt
ij = 〈

wr
i

∣∣TH

∣∣wt
j

〉
, μtr

ij = 〈
wt

i

∣∣TH

∣∣wr
j

〉
, (8b)

μtd
ij : E∞ = 〈

wt
i

∣∣TH

∣∣wc
j

〉
: E∞, (8c)

μrd
ij : E∞ = 〈

wr
i

∣∣TH

∣∣wc
j

〉
: E∞, (8d)

where we use the bra-ket notation defined in the following
way

μ
pq

ij = 〈
wp

i

∣∣TH

∣∣wq

j

〉 = ∫
dr′

∫
dr′′[wp

i (r′)
]T

· TH(r′ − r′′) · wq

j

(
r′′), (9)

with p, q = r, t and in an analogous way for the dipolar com-
ponent. In the above the upper index T denotes the tensor
transposition and TH(r′ − r′′) is the Green’s function for the
Stokes flow, which for a periodic system is given by the Hasi-
moto tensor27 (see below). Next, the tensors wp(r) are defined
in the following way

wt
i(r) = 1

4πa2
1δ(ρi − ai), (10a)
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wr
i (r) = 3

8πa3
ε · ρ̂iδ(ρi − ai), (10b)

wc(r) : E∞ = 3ηδ(ρi − ai)E∞ · ρ̂i , (10c)

where (ε · ρ̂i)αβ = εαβγ ρ̂iγ , εαβγ is the Levi-Civita symbol,
and ρi = r − Ri . The first of the above tensors multiplied by
force, wt · F , corresponds to the force density on the surface
of a sphere due to the force F acting on that sphere. Similarly,
wr · T gives the contribution to the force density due to the
torque T . Finally, the product wc(r) : E∞ corresponds to the
surface force density due to the straining fluid motion E∞ · r.

Note that since in the evolution equations (5) the mobility
components μtd

ij and μrd
ij appear only in the form of a double-

dot product with a symmetric and traceless tensor E∞, there is
a certain freedom of choice of the final form of those matrices,
namely, addition of an antisymmetric tensor or a trace does
not alter the final equations. We will choose the simplest form,
desirable from the point of view of numerical modeling of
suspension dynamics.

The hydrodynamic tensors defined above can then be
used in the Brownian dynamics scheme describing the evolu-
tion of the position vector Ri and the direction vector êi (e.g.,
the magnetic dipole moment) of each particle i = 1, . . . , N:28

Ri(t + �t) = Ri(t) + UC
i �t +

∑
j

μt t
ij · F j�t

+
∑

j

μtr
ij · T j�t + �t

i , (11)

êi(t + �t) = êi(t) +
[
�C

i � t +
∑

j

μrt
ij · F j�t

+
∑

j

μrr
ij · T j�t + �r

i

]
× êi(t), (12)

where

UC
i = K∞ · Ri(t) + Ct

i : E∞, (13)

�C
i = 1

2
∇ × (K∞ · Ri) + Cr

i : E∞ = 1

2
ε : K∞ + Cr

i : E∞.

(14)
The stochastic displacement � is a Gaussian random variable
with zero mean and the covariance

〈�(�t)�(�t)〉 = 2kBT μ � t, (15)

kBT μ = E · ET , 〈gigj 〉 = δij , �(�t) =
√

2 � tE · g,

(16)

where the 6N × 6N matrix μ comprising μt t , μtr , μrt and
μrr is called the N-particle mobility matrix and g denotes a
vector of 6N independent, normalized Gaussian processes.
In the above we have neglected the terms involving diver-
gence of mobility tensors (cf. Ref. 28), since they vanish
within the RPY approximation. However, when one goes be-
yond RPY approximation and includes many-body effects in
hydrodynamic interactions, the divergence of mobility ma-
trix becomes non-zero and needs to be taken into account in
Brownian dynamics simulation schemes.29

III. THE HASIMOTO TENSOR

The Hasimoto tensor can be conveniently expressed as30

TH(r) = 1

4πη
(S1(r)1 − ∇∇S2(r)), (17)

where the two scalar functions S1 and S2 have the periodicity
of the lattice and satisfy

S1(r) =
∑

n

r−1
n erfc

(
rn√
2σ 2

)

+ 4π

V

∑′

n

1

k2
n

e−k2
nσ 2/2 cos(kn · r) − 2σ 2π

V
, (18)

S2(r) = 1

2
√

π

∑
n

[√
πrnerfc

(
rn√
2σ 2

)
−

√
2σ 2e−r2

n/2σ 2

]

− 4π

V

∑′

n

(
1 + 1

2
σ 2k2

n

)
1

k4
n

e−k2
nσ 2/2

× cos(kn · r) + σ 4π

2V
, (19)

where σ is a splitting parameter for the Ewald summations,
whereas n = [n1, n2, n3] is a vector of integers numbering the
cells in the real lattice,

rn = r + L · n, (20)

or in the reciprocal lattice,

kn = 2πn · L−1. (21)

The prime at the summation symbol in (19) indicates that the
term n = 0 is to be omitted. In the above L · n is the lattice
displacement between the particle and its periodic images and
L is the lattice matrix the columns of which are the lattice vec-
tors. Next, the volume of the elementary cell V = det L. In a
simulation, the implementation of the Lees-Edwards bound-
ary conditions requires that the lattice matrix depends on time,
as given by Eq. (1). In the case at hand, for the coordinate axes
defined as in (3), the lattice matrix takes the following form

L =

⎡⎢⎢⎣
Lx 0 γ̇ Lzt mod Lx

0 Ly 0

0 0 Lz

⎤⎥⎥⎦ , (22)

where Lx, Ly, and Lz determine the initial size of the cell.
In practice, the summations (18) and (19) are evaluated

including only the terms larger than a certain small value, i.e.,
satisfying the inequality

exp

[
− r2

n

2σ 2

]
≥ ε, (23)

in the real sum and

exp

[
−k2

nσ
2

2

]
≥ ε, (24)

in the reciprocal sum. Using (20) and (21), asymptotically (for
large |n|) this can be reduced to the following conditions for
vectors n,

n · NR · n ≤ 1, (25)
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n · NF · n ≤ 1, (26)

where

NR = 1

2σ 2 ln ε−1
(LT · L), (27)

and

NF = (2π )2σ 2

2 ln ε−1
(LT · L)−1. (28)

Equations (25) and (26) define the interiors of the ellipsoids in
(nx, ny, nz) space. Note that in the case of strongly skewed pe-
riodic cells the corresponding ellipsoids are highly elongated.

The number of terms satisfying the conditions (25) and
(26) (and thus the numerical cost) are measured by the vol-
umes of these ellipsoids,

VR = 1

det NR
= (2σ 2 ln ε−1)3V −2, (29)

VF = 1

det NF
=
(

2 ln ε−1

(2π )2 σ 2

)3

V 2, (30)

The optimal σ which minimizes VR + VF is evaluated from
the condition VR = VF and is given by

σ = V 1/3

√
2π

, (31)

independent of ε.
The two scalar functions S1(r) and S2(r) in (17) satisfy

∇2S2 = S1. However, direct computation of ∇2S2 − S1 leads
to a sum of non-zero terms both in the real and reciprocal
spaces. This sum vanishes because of the well-known Parse-
val’s equality.31 Therefore it is important to keep in mind that
if, e.g., ∇2S2 were used in the expression for the Hasimoto
tensor (17) instead of S1, the final formulae for the mobility,
although correct, would be given in a far more complicated
form, possessing a number of terms that could be gathered
to sum up to zero. In this paper we try to present all the
formulae in the simplest way possible, making use of the Par-
seval’s equality to remove terms that sum up to zero. In par-
ticular the tt component of the mobility matrix for periodic
systems has been obtained before in a quite complicated form
by Beenakker (1986)32 and modified to account for bead over-
laps by Jain et al. (2012).33 Stoltz et al. (2006)34 have con-
sidered the external shear flow and the Lees-Edwards bound-
ary conditions, however, just like Beenakker (1986)32 and Jain
et al. (2012)33 they studied only the translational degrees of
freedom and did not consider the effect of hydrodynamic in-
teractions on the flow, i.e., the μtd component of the mobility.
Monodisperse systems (with equal particle radii) with exter-
nal shear were also studied by Brady et al. (1988),35 but with-
out deriving the regularizing corrections for particle overlaps;
moreover, they have not provided the explicit formulae for all
the mobility matrix components. The same regularizing cor-
rection for overlaps as derived below has been used by Zhou
and Chen (2006),36 but, again only in the case of translational
degrees of freedom and in absence of external shear. Here we
present all the translational-rotational-dipolar components of
the mobility matrix, (see Appendix A for the explicit formu-
lae with the corrections for overlaps given in Appendix B),

and moreover, the final formulae are given in a compact and
attractive (simple) form from the point of view of numerical
computations.

IV. THE HYDRODYNAMIC MATRICES

The mobility matrix, including the additional corrections
for overlapping particles can be cast in the following form:

μt t
ij (Rij ; ai,, aj ) =

[
1

ζ tt
1 + Mt t

S (ai)

]
δij + [Mt t (Rij ; ai,, aj )

+ Yt t (R̃ij ; ai, aj )](1 − δij ), (32)

μrr
ij (Rij ; ai,, aj ) =

[
1

ζ rr
1 + Mrr

S

]
δij + [Mrr (Rij )

+ Yrr (R̃ij ; ai,, aj )](1 − δij ), (33)

μrt
ij (Rij ; ai,, aj )

= Mrt
S δij + [Mrt (Rij ) + Yrt (R̃ij ; ai,, aj )](1 − δij ), (34)

μtr
ij (Rij ; ai,, aj ) = μrt

ij (Rij ; aj,, ai), (35)

μtd
ij (Rij ; ai,, aj ) = Mtd

S (ai)δij + [Mtd (Rij ; ai,, aj )

+ Ytd (R̃ij ; ai,, aj )](1 − δij ), (36)

μrd
ij (Rij ; ai,, aj ) = Mrd

S (ai)δij + [Mrd (Rij ; aj )

+ Yrd (R̃ij ; ai,, aj )](1 − δij ), (37)

where R̃ij is the vector connecting particle i with the nearest
periodic image of particle j and the hydrodynamic interactions
with the particle’s own periodic images are included through
the following functions (self-interaction terms):

Mt t
S (a) = lim

r→0

(
1 + a2

3
∇2

)
[TH(r) − T0(r)], (38)

Mrr
S = −1

4
lim
r→0

∇2[TH(r) − T0(r)], (39)

Mrt
S = 1

2
lim
r→0

∇ × [TH − T0(r)] = 0, (40)

Mtd
S (a) : E∞ = 20

3
πηa3 lim

r→0

{[(
1 + 4a2

15
∇2

)

× (TH(r) − T0(r))

]←−∇}
: E∞ = 0, (41)

Mrd
S (a) : E∞ = 10

3
πηa3 lim

r→0
{[∇×(TH(r) − T0(r))]

←−∇ } : E∞,

(42)
with a = ai = aj, since MS is multiplied by δij in (32)–(37).
Next, T0(r) is the Oseen tensor:23

T0(r) = 1

8πηr
(1 + r̂r̂). (43)
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Note that Mrr
S and Mrt

S do not depend on ai but only on the lat-
tice characteristics. The interactions with other particles and
their periodic images are described by

Mt t (Rij ; ai,, aj ) =
(

1 + A2
ij

3
∇2

)
TH(Rij ), (44)

Mrr (Rij ) = −1

4
∇2TH(Rij ), (45)

Mrt (Rij ) = 1

2
∇ × TH(Rij ), (46)

Mtd (Rij ; ai,, aj ) : E∞

= 20

3
πηa3

j

{[(
1+ 4A 2

ij

15
∇2

)
TH(Rij )

]
←−∇
}

: E∞, (47)

Mrd (Rij ; aj ) : E∞ = 10

3
πηa3

j {[∇ × TH(Rij )]
←−∇ } : E∞.

(48)
In the above,

A2
ij = a2

i + a2
j

2
, A 2

ij = 5a2
i + 3a2

j

8
, (49)

where ∇ is a differential operator with respect to Rij and

[TH(Rij )
←−∇ ]αβγ = ∂γ TH αβ(Rij ). Note that here Mrr (Rij ) and

Mrt (Rij ) do not depend neither on ai nor on aj, whereas
Mrd (Rij ; aj ) does not depend on ai. The regularizing cor-
rections Yt t (R̃ij ; ai,, aj ), Yrr (R̃ij ; ai,, aj ), Yrt (R̃ij ; ai,, aj ),
Ytd (R̃ij ; ai,, aj ), and Yrd (R̃ij ; ai, aj ) are non-zero only in the
cases of overlap between the particles. They were derived
with the use of the method presented in Ref. 25 (for a de-
tailed explanation of steps leading to the final formulae see
the supplementary material of Ref. 25). For example, the
translational-translational correction can be written as

Yt t (Rij ; ai,, aj ) = 〈
wt

i

∣∣T0(Rij )
∣∣wt

j

〉
− Dt (Rij , ai)Dt (Rij , aj )T0(Rij ), (50)

where Dt (R; ai) is the differential operator defined by

Dt (R; ai) = 1
(

1 + a2
i

6
∇2

R

)
. (51)

These corrections were shown to be independent of the
form of the Green’s function for the particular geometry
considered.25

The complete set of explicit formulae for the regularizing
corrections for different-sized spheres, which can be derived
based on considerations presented in Ref. 26, is provided in
Appendix B. The final formulae for the hydrodynamic matri-
ces for nonoverlapping spheres are given in Appendix A.

It is of interest to point out that the representation chosen
in (32)–(37) for each matrix is, in fact, equivalent to

μ
pq

ij (Rij ; ai,, aj ) = Mpq(Rij ; ai,, aj ) + Ypq(R̃ij ; ai,, aj ),

(52)

which results from the fact that the full self term is obtained
as a limit of Mpq and Ypq , with p, q = t, r, d when Rij tends
to zero and ai = aj = a, i.e., limRij →0 Mpq(Rij ; a, a)
= Mpq

S (a) for any p and q, limRij →0 Yt t (R̃ij ; a, a) = 1/ζ tt ,
limRij →0 Yrr (R̃ij ; a, a) = 1/ζ rr , and limRij →0 Ypq(R̃ij ; a, a)
= 0 for (p, q) = (r, t), (t, r), (t, d), (r, d). Although this rep-
resentation is more compact, the second representation, with
the full self term explicitly written down is more useful from
the technical point of view.

This completes our derivation making all the terms in the
Brownian dynamics scheme (11)-(12) directly computable,
thus allowing for simulations of time evolution of peri-
odic systems with external shear under the Rotne-Prager-
Yamakawa approximation.

V. ILLUSTRATIVE EXAMPLE

To illustrate the accuracy of RPY approximation we will
compare it with virtually exact multipole series expansion
method (MLTP). The setup consists of two rigidly connected
particles (dumbbell) of the same radius a inside a cuboid of
dimensions 24a × 4a × 4a in periodic boundary conditions.
Both spheres lie on the x axis with the distance between their
centers, R12, in the range (0, 10a). Fig. 2 shows the friction
coefficient of such a dumbbell ζ‖ = ζ tt

xx and ζ⊥ = ζ
yy
tt = ζ zz

tt

as a function of R12. The discrepancy between both meth-
ods is negligible up to about R12 = 3a. For smaller dis-
tances the curves start to diverge with a relative error up to

0 2 4 6 8 10
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6.0

MLTP
RPY

0 2 4 6 8 10

0.5

1.0

1.5

2.0
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RPY

FIG. 2. Friction coefficient of the dumbbell parallel (ζ ‖) and perpendicular (ζ⊥) to its axis as a function of the distance between the spheres, R12.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

213.135.33.93 On: Fri, 09 May 2014 13:13:47



184103-6 Mizerski et al. J. Chem. Phys. 140, 184103 (2014)

10% at R12 = a. Note that the multipole results are plot-
ted down to R12 = a only. As noted in Ref. 26 this is due
to a fundamental property of the displacement theorem,37 by
means of which one expands the singular flows generated by
one sphere into regular flows about the centre of another
sphere in the multipole method. Namely, when the two
spheres are so close that the centre of the smaller one
gets inside the larger one, the aforementioned expansion
ceases to be convergent. Even though one cannot use the
displacement theorem to calculate the friction for R12 < a, one
can still get the limiting result limR12→0 ζ , as it corresponds
simply to a single-particle friction matrix in a periodic lattice.
The corresponding points are marked by red dots in Fig. 2.
For the particular lattice geometry considered here these lim-
iting results differ by less than 0.5% from the predictions of
RPY approximation (solid line in Fig. 2), although this error
would increase as the ratio of the particle radius to the box size
increases.

VI. CONCLUDING REMARKS

In this paper we have provided explicitly the full set of
equations and formulae for modeling the dynamics of peri-
odic suspensions of spherical particles with different radii in
external shear flow within the Rotne-Prager-Yamakawa ap-
proximation. Care has been taken to provide the final formu-
lae in a simple algebraic form, i.e., to remove terms which

can be summed up to zero due to the Parseval’s equality.
The regularizing corrections for both μ and C for the case
of overlaps between particles are also provided. The way that
hydrodynamic matrices are constructed ensures the positive
definiteness of the mobility matrix μ and both μ and C are
devoid of singularities, no matter the relative positions of
particles.

The obtained formulae allow for efficient numerical cal-
culation of bulk properties and dynamics of soft matter sys-
tems in the external shear flow.
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APPENDIX A: THE FINAL FORMULAE

Below we give explicit expressions for the components
of the mobility tensor for periodic systems with shear. From
(17) the Hasimoto tensor takes the following form:

TH(r) =
∑

n

{
erfc

(
rn√
2σ 2

)
T0(rn) + 1

4
√

2π3ησ
e−r2

n/2σ 2
r̂nr̂n

}
− σ 2

2ηV
1

+ 1

ηV

∑′

n

[
1 − k̂nk̂n

(
1 + 1

2
σ 2k2

n

)]
1

k2
n

e−k2
nσ 2/2 cos(kn · r). (A1)

The mobility matrix components according to the definitions (32)–(37) take the form:

Mt t (r; ai, aj ) =
∑

n

{
Mt t

np(rn; ai, aj )erfc

(
rn√
2σ 2

)

+
[

1

(
A2

ij

3σ 2
+ 2A2

ij

3r2
n

)
+ r̂nr̂n

(
A2

ij r
2
n

3σ 4
− 2A2

ij

3σ 2
+ 1 − 2A2

ij

r2
n

)]
1

4
√

2π3ησ
e−r2

n/2σ 2

}

− σ 2

2ηV
1 + 1

ηV

∑′

n

[
1 − k̂nk̂n

(
1 + 1

2
σ 2k2

n

)](
1 − A2

ij

3
k2

n

)
1

k2
n

e−k2
nσ 2/2 cos(kn · r), (A2)

Mt t
S (a) = 1

4
√

2π3ση

(
−1 + a2

9σ 2

)
1

+
∑′

n

{
Mt t

np(r0n; a, a)erfc

(
r0n√
2σ 2

)

+
[

1
(

a2

3σ 2
+ 2a2

3r2
0n

)
+ r̂0nr̂0n

(
a2r2

0n

3σ 4
− 2a2

3σ 2
+ 1 − 2a2

r2
0n

)]
1

4
√

2π3ησ
e−r2

0n/2σ 2

}

− σ 2

2ηV
1 + 1

ηV

∑′

n

[
1 − k̂nk̂n

(
1 + 1

2
σ 2k2

n

)](
1 − a2

3
k2

n

)
1

k2
n

e−k2
nσ 2/2, (A3)
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Mrr (r) =
∑

n

{
Mrr

np (rn) erfc

(
rn√
2σ 2

)

−
[

1
(

1

3σ 2
+ 2

3r2
n

)
+ r̂nr̂n

(
r2

n

3σ 4
− 2

3σ 2
− 2

r2
n

)]
3

16
√

2π3ησ
e−r2

n/2σ 2

}

+ 1

4ηV

∑′

n

[
1 − k̂nk̂n

(
1 + 1

2
σ 2k2

n

)]
e−k2

nσ 2/2 cos(kn · r), (A4)

Mrr
S = − 1

48
√

2π3σ 3η
1

+
∑′

n

{
Mrr

np (r0n) erfc

(
r0n√
2σ 2

)

−
[

1
(

1

3σ 2
+ 2

3r2
0n

)
+ r̂0nr̂0n

(
r2

0n

3σ 4
− 2

3σ 2
− 2

r2
0n

)]
3

16
√

2π3ησ
e−r2

0n/2σ 2

}

+ 1

4ηV

∑′

n

[
1 − k̂nk̂n

(
1 + 1

2
σ 2k2

n

)]
e−k2

nσ 2/2, (A5)

and

Mrt (r) =
∑

n

[
Mrt

np (rn) erfc

(
rn√
2σ 2

)
+ ε · r̂n

1

rn

1

4
√

2π3ησ
e−r2

n/2σ 2

]

+ 1

2ηV

∑′

n

ε · k̂n
1

kn
e−k2

nσ 2/2 sin(kn · r), (A6)

Mrt
S = 0, (A7)

Mtr (r; ai,, aj ) = Mrt (r; aj,, ai), (A8)

Mtd (r; ai, aj ) =
∑

n

Mtd
np

(
rn; ai, aj

)
erfc

(
rn√
2σ 2

)

+ 5a3
j

3
√

2πσ

∑
n

e−r2
n/2σ 2

{
−16

15
A 2

ij

(
1

σ 2rn
+ 3

r3
n

)
1r̂n

+
[
−4A 2

ij r
3
n

15σ 6
+
(

− 1

σ 2
+ 8A 2

ij

15σ 4

)
rn +

(
−3 + 8A 2

ij

3σ 2

)
1

rn
+ 8

A 2
ij

r3
n

]
r̂nr̂nr̂n

}

− 20πa3
j

3V

∑′

n

[
1 − k̂nk̂n

(
1 + 1

2
σ 2k2

n

)]
k̂n

15 − 4A 2
ij k

2
n

15kn
e−k2

nσ 2/2 sin(kn · r), (A9)

Mtd
S (a) = 0, (A10)

Mrd
(
r, aj

) =
∑

n

{
Mrd

np(rn; aj )erfc

(
rn√
2σ 2

)
− (ε · r̂n) r̂n

5a3
j

3
√

2πσ
e−r2

n/2σ 2

(
1

σ 2
+ 3

r2
n

)}

+ 10πa3
j

3V

∑′

n

(
ε · k̂n

)
k̂ne−k2

nσ 2/2 cos(kn · r), (A11)

Mrd
S (a) =

∑′

n

{
Mrd

np (r0n; a) erfc

(
r0n√
2σ 2

)
− (ε · r̂0n) r̂0n

5a

3
√

2πσ
e−r2

0n/2σ 2

(
a2

σ 2
+ 3a2

r2
0n

)}

+ 10πa3

3V

∑′

n

(
ε · k̂n

)
k̂ne−k2

nσ 2/2, (A12)
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where the primes at the summation symbol indicate that the
terms n = 0 are to be omitted,

r0n = L · n, (A13)

[ε · r̂]αβ = εαβγ [r̂]γ , [1r̂]αβγ = δαβ [r̂]γ , and the Greek in-
dices α, β = 1, 2, 3 correspond to the Cartesian components.
The non-periodic mobility components are

Mt t
np(r; ai, aj ) = 1

8πηr

[(
1 + 2A2

ij

3r2

)
1 +

(
1 − 2A2

ij

r2

)
r̂r̂

]
,

(A14)

Mrr
np(r) = − 1

16πηr3
(1 − 3r̂r̂) , (A15)

Mrt
np(r) = 1

8πηr2
ε · r̂, (A16)

Mtd
np(r; ai, aj ) = 5a3

j

6

[
−16

5

A 2
ij

r4
1r̂ +

(
−3

1

r2
+ 8

A 2
ij

r4

)
r̂r̂r̂

]
,

(A17)

Mrd
np

(
r; aj

) = −5a3
j

2r3
(ε · r̂) r̂. (A18)

The regularizing corrections for mobility, which are non-zero
only if the particles overlap, i.e., for rn ≤ 2a, can be found in
Appendix B.

APPENDIX B: THE REGULARIZING CORRECTIONS

Here we give the explicit expressions for the full correction matrix Y as defined in (32)–(37). In Ref. 25 it has been shown
that the same corrections as those derived for the infinite space can also be used for other boundary conditions, including
the periodic systems. The formulae for the hydrodynamic matrices for different-sized spheres, derived in Ref. 26, lead to the
following expressions for the correction matrix:

Yt t (r; ai, aj ) = �((ai + aj ) − r)

{

+�(r − (a> − a<))
1

6πηaiaj

[
16r3(ai + aj ) − ((ai − aj )2 + 3r2)2

32r3
1 + 3((ai − aj )2 − r2)2

32r3
r̂r̂
]

+�((a> − a<) − r)
1

6πηa>

− Mt t
np(r; ai, aj )

}
, (B1)

Yrr (r; ai, aj ) = �((ai + aj ) − r)

{
+�(r − (a> − a<))

1

8πηa3
i a

3
j

[
F(r; ai, aj )1 + G(r; ai, aj )r̂r̂

]
+�((a> − a<) − r)

1

8πηa3
>

1 − Mrr
np(r)

}
, (B2)

Yrt (r; ai, aj ) = �((ai + aj ) − r)

{

+�(r − (a> − a<))
1

16πηa3
i aj

⎡⎣ (ai − aj + r)2
(
a2

j + 2aj (ai + r) − 3(ai − r)2
)

8r2

⎤⎦ ε · r̂

+�((a> − a<) − r)θ (ai − aj )
r

ζ rr
i

ε · r̂ − Mrt
np(r)

}
, (B3)

Ytr (r; ai, aj ) = Yrt (r; aj , ai), (B4)

Ytd (r; ai, aj ) = �((ai + aj ) − r)

{
+�(r − (a> − a<))

5

6
aj

[
H(r; ai, aj )1r̂ + J (r; ai, aj )r̂r̂r̂

]
− �((a> − a<) − r)θ (aj − ai)r1r̂ − Mtd

np(r; ai, aj )

}
, (B5)
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Yrd (r; ai, aj ) = �((ai + aj ) − r)

{
−�(r − (a> − a<))

5

3a3
i

G(r; ai, aj ) (ε · r̂) r̂ − Mrd
np(r; aj )

}
, (B6)

where

F(r; ai, aj ) = 5r6 − 54r4A2
ij + 32r3

(
a3

i + a3
j

)− 9r2
(
a2

i − a2
j

)2 − (ai − aj )4
(
a2

i + 4aiaj + a2
j

)
64r3

, (B7a)

G(r; ai, aj ) = 3[(ai − aj )2 − r2]2
(
a2

i + 4aiaj + a2
j − r2

)
64r3

, (B7b)

H(r; ai, aj ) = 10r6 − 24air
5 + 15r4

(
a2

i − a2
j

)− (ai − aj )5(ai + 5aj )

40aiaj r4
, (B7c)

J (r; ai, aj ) = [(ai − aj )2 − r2]2[r2 − (ai − aj )(ai + 5aj )]

16aiaj r4
, (B7d)

[ε · r̂]αβ = εαβγ [r̂]γ , [1r̂]αβγ = δαβ [r̂]γ , a> (a<) denotes the radius of a larger (smaller) particle in the pair i and j and �(x)
is the Heaviside function. With so defined corrections the mobility matrix (the translational-rotational part) is always positive
definite, as demonstrated by Ref. 25, thus allowing for simulations of the Brownian dynamics of suspensions.
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