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We study the effect of stratification and compressibility on the threshold of convection and the
heat transfer by developed convection in the nonlinear regime in the presence of strong
background rotation. We consider fluids both with constant thermal conductivity and constant
thermal diffusivity. The fluid is confined between two horizontal planes with both boundaries
being impermeable and stress-free. An asymptotic analysis is performed in the limits of weak
compressibility of the medium and rapid rotation (��1/12�j�j� 1, where � is the Taylor
number and � is the dimensionless temperature jump across the fluid layer). We find that the
properties of compressible convection differ significantly in the two cases considered.
Analytically, the correction to the characteristic Rayleigh number resulting from small
compressibility of the medium is positive in the case of constant thermal conductivity of the
fluid and negative for constant thermal diffusivity. These results are compared with numerical
solutions for arbitrary stratification. Furthermore, by generalizing the nonlinear theory of
Julien and Knobloch [Fully nonlinear three-dimensional convection in a rapidly rotating layer.
Phys. Fluids 1999, 11, 1469–1483] to include the effects of compressibility, we study the Nusselt
number in both cases. In the weakly nonlinear regime we report an increase of efficiency of the
heat transfer with the compressibility for fluids with constant thermal diffusivity, whereas if the
conductivity is constant, the heat transfer by a compressible medium is more efficient than in
the Boussinesq case only if the specific heat ratio � is larger than two.

Keywords: Anelastic convection; Heat transfer; Compressibility

1. Introduction

An understanding of convection, is the key to determining the dynamics of the fluid

planetary cores and stellar interiors. It is believed that flow in the interiors of many

astrophysical bodies is convectively driven and this flow is important not only for

transporting energy, but also angular momentum. Moreover, if the medium is

electrically conducting the convectively driven flow may also generate planetary and

stellar magnetic fields (see, e.g. Soward 1991, Tobias and Weiss 2007). This is the reason

why the problem of convection has received so much attention in the astrophysical and

geophysical community over the last few decades. The Boussinesq approximation,

for thin layers of fluid in which variations in density are only included in the
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buoyancy force, has been extensively studied (e.g. Roberts 1968, Busse 1970, Matthews
1999, Jones et al. 2000, Dormy et al. 2004; see also Busse 1994, Busse 2002). In most
astrophysical applications, however, the thin layer approximation is not enough, since
the depth of the convective layer is comparable with (or larger than) a typical scale
height of the system. This led to the formulation of the anelastic approximation by
Ogura and Phillips (1962) and Gough (1969). The properties of convection under
this approximation have been investigated in many subsequent papers, which we
describe below.

In a series of papers Gilman and Glatzmaier (1981) and Glatzmaier and Gilman
(1981a, b) studied the linear problem and the effects of dissipation, boundary conditions
and zone depth in fully nonlinear compressible convection in spherical shell under the
anelastic approximation. One of their important discoveries was that the
depth-dependence of the thermal conductivity strongly influences the localization of
the region where the convective instability first sets in and in the case when thermal
diffusivity is assumed constant, anelastic convection develops small structures close to
the outer boundary. The onset of compressible convection in spherical geometry with
constant kinematic or dynamic viscosity was also investigated by Drew et al. (1995) and
an asymptotic linear theory under the anelastic approximation was developed for
rapidly rotating spherical shells by Jones et al. (2009). A very detailed derivation and
comprehensive discussion of the compressible convection equations in the geophysical
context was presented by Braginsky and Roberts (1995). Later Bannon (1996)
investigated the applicability of the anelastic approximation to the dynamics of a
compressible atmosphere and provided a survey of different approaches to stratified
convection. A comparison of the Boussinesq and anelastic approximations can be
found in Lilly (1996) and in the context of Earth’s core dynamics in Anufriev et al.
(2005). The anelastic formulation was also used by Julien et al. (1999) who derived a
reduced set of equations governing the evolution of stratified convection. Finally, Lantz
and Fan (1999) generalized this approximation to the magnetohydrodynamic case and
(Julien et al. 2000, 2003) exploited the MHD formulation of anelastic equations to
study the nonlinear effects in compressible convection in the presence of strong external
field oblique to the boundaries.

Our aim is to study the influence of compressibility, under the anelastic approxi-
mation, on the convection threshold and the total heat transfer by fully developed
rotating convection. We consider the simplest formalism of the anelastic approxima-
tion; for details of other formalisms and how they relate see Berkoff et al. (2010). We
consider both the linear and nonlinear problems analytically and numerically. Bassom
and Zhang (1994) by analytical methods determined the strongly nonlinear properties
of convection cells in rapidly rotating systems. Julien and Knobloch (1999) with the use
of similar techniques studied the nonlinear development of rapidly rotating Boussinesq
convection and derived an equation governing the nonlinear evolution of modes with
square planform. We generalize this equation to include the effects of stratification and
compressibility in the anelastic formulation. Two cases are considered for the thermal
properties of the system, i.e. first with the thermal conductivity assumed constant and
second with constant thermal diffusivity.

The structure of this article is as follows. First, we give the mathematical formulation
of the mathematical basis of the model including the equations (under the anelastic
approximation) and the boundary conditions. Then, we study the influence of
compressibility on the threshold of convection in section 3. In section 4, we generalize
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the Julien and Knobloch’s (1999) nonlinear equations for rapidly rotating Boussinesq
convection to a compressible case and investigate the influence of compressibility on the
heat transfer in a convective system. We end this article with some concluding remarks
in section 5.

2. Mathematical formulation

We analyse thermal convection in an infinite plane layer of fluid with gravity g pointing
downwards. The top and bottom boundaries are flat, and are situated at z¼ 0, d.
The equations describing the evolution of the system is the set of hydrodynamic
equations under the anelastic approximation (cf. Gough 1969, Lantz and Fan 1999).

The formalism is such that the basic state is assumed to be almost adiabatic, i.e. its
departure from adiabaticity

� ¼ �
d

Tr

d �T

dz

� �
r

þ
g

cp

� �
¼ �

d

cp

d�s

dz

� �
r

� 1 ð1Þ

is assumed to be small. Here the subscript ‘‘r’’ denotes a reference value (i.e. taken at the
bottom wall). The equations (2)–(5) are derived by expanding the pressure, density,
temperature and the entropy in the parameter �, i.e �pþ �p, ��þ ��, �Tþ �T,
�cp �sþ sð Þ þ const:, assuming additionally that velocity scales like �1/2 and time as
��1/2 (the origin of this scaling comes from an estimate obtained by assuming a balance
between the work done by the buoyancy force on a rising bubble over a characteristic
length and its kinetic energy gain. In addition Re0 1 and Rm0 1 must hold, where
Re and Rm are the Reynolds and magnetic Reynolds numbers, respectively). Then,
taking the leading order form of the Navier-Stokes, mass conservation and energy
equations yields

@u

@t
þ u � rð Þu ¼ �r

p

��

� �
þR�sêz � �

1=2�êz � uþ �
1

��
r � �, ð2Þ

r � �%uð Þ ¼ 0, ð3Þ

�� �T
@s

@t
þ u � r �sþ sð Þ

� �
¼ r � � ��ð Þ �Tr �sþ sð Þ

� �
�

�

2R

1

��
� : �, ð4Þ

p

�p
¼

T

�T
þ
�

��
, s ¼

1

�

p

�p
�
�

��
, ð5Þ

where we choose d2/	r, d and 	r/d as units of time, length and velocity respectively, with
	r being the reference value (i.e. taken at z¼ 0) of the thermal diffusivity. The ratio of
specific heats is denoted by �¼ cp/cv, &ij ¼ �� @jui þ @iuj � ð2=3Þðr � uÞ
ij

� �
is the symmet-

ric stress tensor and in dyadic notation � : �¼ �ij�ij. The dimensionless parameters in the
above equations are the Prandtl number �¼ �/	r, the Rayleigh number R¼ gd3�/	r�
and the Taylor number �¼ 4�2d4/�2, where � and � are the kinematic viscosity
(assumed constant) and the rotation rate, respectively.

Furthermore, we have assumed here that the conductive heat flux due to
molecular diffusion is an order of magnitude in � smaller than the turbulent heat flux
due to unresolved small scale turbulence expressed in terms of entropy as kTTrs
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(cf. Braginsky and Roberts 1995). Hence only this turbulent heat flux is included in the

entropy equation (4). We will consider two cases: in the first case (Case 1), the turbulent

thermal conductivity kT ¼ cp ��	T is constant, i.e. � ��ð Þ ¼ 1, whilst in the second case

(Case 2), the turbulent thermal diffusivity 	T is constant and then � ��ð Þ ¼ ��.
We consider a basic state, for which the temperature at the bottom of the layer is T0

and the temperature jump across the layer is iT5 0:

Case 1

�T ¼ 1þ �z, ð6aÞ

�� ¼ 1þ �zð Þ
m, ð6bÞ

�p ¼ �
R�m

��� mþ 1ð Þ
1þ �zð Þ

mþ1, ð6cÞ

�s ¼
mþ 1� �m

��
ln 1þ �zð Þ þ const: with

mþ 1� �m

�
¼ �

�

�
¼ O �ð Þ, ð6dÞ

where �¼iT/T0 (�15 �� 0).

Case 2

�T ¼ 1þ �zþ �
� � 1

� � � 2ð Þ
1� 1þ �zð Þ

ð��2Þ=ð��1Þ
� �

, ð7aÞ

�� ¼ 1þ �zð Þ
1=ð��1Þ

þ �
1

� � � 2ð Þ
1þ �zð Þ

ð2��Þ=ð��1Þ
� � � 1ð Þ

2
� �

, ð7bÞ

�p ¼ �
R�m � � 1ð Þ

����
1þ �zð Þ

�=ð��1Þ
þ �

� 1þ �zð Þ

� � � 2ð Þ
1þ �zð Þ

ð2��Þ=ð��1Þ
� � � 1ð Þ

� �� 	
, ð7cÞ

�s ¼
� � 1

�
1þ �zð Þ

1=ð1��Þ
þ const:, ð7dÞ

where �¼�gd/cpT0¼iT/T0þO(�) (�15 �� 0).
Since the analysis of both Cases 1 and 2 is very similar, we will only present the

analysis for Case 1 in detail, and only the results for Case 2 will be given. Upon

introducing the form of the Case 1 basic state into the equations (2)–(4), we obtain

@u

@t
þ u � rð Þu ¼ �r

p

�%

� �
þR�sêz � �

1=2�êz � uþ �r2u

þ
�m�

1þ �z

@u

@z
þ
2

3
ruz þ

1

3
1þ 2mð Þ�

uz
1þ �z

êz

� �
, ð8Þ

r � u ¼ �
m�

1þ �z
uz, ð9Þ

@s

@t
þ u � rs ¼

uz
1þ �z

þ
1

�%
r2sþ

�

1þ �zð Þ
mþ1

@s

@z

�
�

R

1

1þ �zð Þ
2
X3
i¼1

@ui
@xi

� �2

þ
X
i5j

@ui
@xj
þ
@uj
@xi

� �2

�
2

3
r � uð Þ

2

" #
, ð10Þ
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where, again, the kinematic viscosity � is assumed constant. The momentum and
mass-conservation equations for Case 2 are obtained by simple exchange m! 1/(�� 1).
and the entropy equation is

@s

@t
þ u � rs ¼ uz 1þ �zð Þ

�=ð1��Þ
þr2sþ

��

� � 1ð Þ 1þ �zð Þ

@s

@z

�
�

R

1

1þ �zð Þ
2
X3
i¼1

@ui
@xi

� �2

þ
X
i5j

@ui
@xj
þ
@uj
@xi

� �2

�
2

3
r � uð Þ

2

" #
: ð11Þ

The parameter �, which measures the temperature jump across the fluid layer is the
measure of stratification and compressibility of the system. Indeed, from (9) we get
r � u� �uz, so that if j�j� 1 the fluid is weakly compressible. In the following section we
will study the influence of the compressibility of the medium, defined in the above way,
on the onset of convective instability, in a plane, infinite layer both analytically for
weak compressibility and strong rotation and numerically for arbitrary compressibility
and rotation. However, it is crucial to understand that since we have already
incorporated the effects of small scale turbulence into the expression for conductive
heat flux and thus into all the diffusivity coefficients, the threshold of convection in our
analysis is approached from a developed convection state by decreasing the Rayleigh
number to a value close to critical but still above it, so that the unresolved small scale
turbulence is still present (cf. Jones et al. 2009). We are simply interested in the linear
theory as the small amplitude limit of the fully nonlinear problem, which is typically
dominated by turbulence. Of course, for very small amplitudes, at very small
supercriticality, the turbulence would not be present and then the molecular, not
turbulent diffusion, would be relevant. However, physical intuition suggests that even a
very little amount of turbulence would dominate the heat transport and thus the
turbulent diffusion would swamp the molecular diffusion. Therefore it is expected that
in compressible convection, i.e. for j�j� �, the range of Rayleigh numbers where the
flow is laminar and the molecular diffusion is significant, is most likely small. Since we
are interested in relating our results to fully developed, nonlinear convection,
the inclusion of turbulent effects seems appropriate, however, to distinguish between
the actual critical value of the Rayleigh number (and the wavenumber) for laminar
convection and the threshold value for large scale convection throughout this article we
call the latter a characteristic (as opposed to critical) Rayleigh number (and character-
istic wavenumber).

3. The onset of weakly compressible convection in a plane layer

3.1. Analytical results

We first present an asymptotic expansion for small � and rapid rotation. We linearize
the equations and assume the following form of the perturbations,

u ¼ û zð Þei k1xþk2yð Þet, � ¼ �̂ zð Þei k1xþk2yð Þet, s ¼ ŝ zð Þei k1xþk2yð Þet, ð12Þ

and

û ¼ û0 þ �û1 þOð�2Þ, �̂ ¼ �̂0 þ ��̂1 þOð�2Þ, ŝ ¼ ŝ0 þ �ŝ1 þOð�2Þ, ð13Þ
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where �¼ @xuy� @yux is the z-component of the vorticity and the z-component of the
velocity field u will be denoted by w. Taking the z-components of the curl and the

double curl of equation (8) and linearizing, we obtain at the lowest two orders: Order �0:

�̂0 ¼ �1=2�
dŵ0

dz
� �k2�̂0 þ �

d2�̂0

dz2
, ð14aÞ

 k2ŵ0 �
d2ŵ0

dz2

� �
¼ R0�k2ŝ0 þ �1=2�

d�̂0

dz
� � k4ŵ0 � 2k2

d2ŵ0

dz2
þ
d4ŵ0

dz4

� �
, ð14bÞ

ŝ0 � ŵ0 ¼
d2ŝ0

dz2
� k2ŝ0: ð14cÞ

Order �1:

�̂1 � �1=2�
dŵ1

dz
þ �k2�̂1 � �

d2�̂1

dz2
¼ �1=2�mŵ0 þ �m

d�̂0

dz
, ð15aÞ

 k2ŵ1 �
d2ŵ1

dz2

� �
�R0�k2ŝ1 � �1=2�

d�̂1

dz
þ � k4ŵ1 � 2k2

d2ŵ1

dz2
þ
d4ŵ1

dz4

� �

¼ m þ 2�k2

 � dŵ0

dz
� 2m�

d3ŵ0

dz3
þR1�k2ŝ0, ð15bÞ

ŝ1 � ŵ1 �
d2ŝ1

dz2
þ k2ŝ1 ¼ �z ŵ0 þm

d2ŝ0

dz2
�mk2ŝ0

� �
þ
dŝ0

dz
: ð15cÞ

The boundaries are assumed to be impermeable and stress-free. Condition of isentropy
is imposed at z¼ 0, 1, i.e.

ŵjz¼0,1¼ 0, ŝjz¼0,1¼ 0,
d�̂

dz

����
z¼0,1

¼ 0: ð16Þ

The leading order (in �) solution at the instability threshold, i.e. at ¼ 0 is, therefore
(cf. Chandrasekhar 1961)

ŵ0 ¼ A sin n�zð Þ, ŝ0 ¼
A

k2 þ n2�2
sin n�zð Þ, �̂0 ¼ �1=2

An�

k2 þ n2�2
cos n�zð Þ, ð17Þ

R0 ¼
1

k2
k2 þ n2�2

 �3

þ n2�2�
h i

, ð18Þ

where A is an arbitrary constant and in general n2N, however, at the instability
threshold n¼ 1. To facilitate the analysis, we assume that the system is rapidly rotating,

thus �� 1 (keeping �m¼O(1) and ��¼O(1)), which leads to the following scalings

(Chandrasekhar 1961)

R0 ¼ �2=3 ~R0, k ¼ �1=6 ~k and ~R0 ¼
1

~k2
~k6 þ n2�2

h i
: ð19Þ
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This yields the following set of equations for ŵ1, �̂1 and ŝ1 to leading order in � and
order � (cf (15a)):

��1=2
dŵ1

dz
þ �1=3 ~k2�̂1 ¼ �1=2mŵ0, ð20Þ

��R0 ~k2ŝ1 � �1=2
d�̂1

dz
þ �2=3 ~k4ŵ1 ¼ R1ŵ0, ð21Þ

�ŵ1 þ �1=3 ~k2ŝ1 ¼ m� 1ð Þzŵ0, ð22Þ

(here we have assumed, in addition, that j�j� ��1/12) from which we obtain

ŝ1 ¼
��1=3

~k2
m� 1ð Þzŵ0 þ ŵ1

� �
, ð23Þ

�2ŵ1 þ
d2ŵ1

dz2
¼ �m

dŵ1

dz
� ~k2 ��2=3R1 þ ~R0 m� 1ð Þz

h i
ŵ0, ð24Þ

and hence

ŵ1 ¼ C sin �zð Þ þ AD1z z� 1ð Þ cos �zð Þ þ AD2z sin �zð Þ, ð25Þ

ŝ1 ¼
��1=3

~k2
A D3z sin �zð Þ þ D1z z� 1ð Þ cos �zð Þ þ D2z sin �zð Þ½ 	 þ C sin �zð Þ
 �

, ð26Þ

where C is a new arbitrary constant. For Case 1 defined in (6a–d), D1, D2 and D3 are
defined in the following way:

D1 ¼
~k2 ~R0 m� 1ð Þ

4�
, D2 ¼ �

1

2�

~k2 ~R0 m� 1ð Þ

2�
þm�

" #
, D3 ¼ m� 1, ð27Þ

and in Case 2:

D1 ¼ �
~k2 ~R0�

4� � � 1ð Þ
, D2 ¼ �

1

2�

�

� � 1
�

~k2 ~R0�

2� � � 1ð Þ

" #
, D3 ¼ �

�

� � 1
: ð28Þ

Defining ��2=3R1 ¼ ~R1, the first order correction to the characteristic Rayleigh
number ðR 
 �2=3 ~R0 þ ��2=3 ~R1Þ resulting from the compressibility of the medium is

~R1 ¼ �
1

2
m� 1ð Þ ~R0 ð29Þ

in Case 1, and

~R1 ¼
�

2 � � 1ð Þ
~R0

ð30Þ

in Case 2. Since �� 0, these results suggest that it is easier to excite the convective
instability in a compressible medium with constant thermal diffusivity (Case 2) than in
an incompressible one at high rotation rates, in the sense that in the former case the
characteristic Rayleigh number for the onset of instability is smaller. On the other hand,
in a compressible medium with constant thermal conductivity (Case 1), the Rayleigh
number has to reach higher values than in the incompressible case for the instability to
settle in.
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Figure 1 shows the effect of small compressibility on the entropy at the onset of
convection. The convective rolls are shifted in the vertical direction, in Case 1 towards
the bottom boundary and in Case 2 towards the top boundary. The value of the shift is
�z¼ (�/�2)[�/4D1þD2þD3], thus for ~k ¼ ð�=

ffiffiffi
2
p
Þ
1=3 (the characteristic value mini-

mizing ~R0) and A¼C¼ 1 it becomes �z
�0.0056 in Case 1 and �z
 0.057 in Case 2.
Evidently, in Case 2 this shift is a manifestation of what appears to be a more general
fact, that the compressibility tends to decrease the size of the convective structures (see,
e.g. Glatzmaier and Gilman 1981a, Jones et al. 2009, Jones and Kuzanyan 2009), by
confining the convection to the region of small density (in Case 1 the size of convective
structures is also decreased with respect to the symmetric Boussinesq case, however, on
the contrary the region of convection is very slightly shifted towards larger densities; it
seems that such downward shift appears only for Case 1 rapidly rotating systems close
to onset, cf. figure 4 in section 3.2, and figure 6 in section 4.1). This can be clearly seen
for larger compressibilities and in nonlinear regime, cf. figure 6 in section 4.1. The
introduction of smaller scales into the dynamics can, in principle, have important
consequences for the evolution of the system.

3.2. Numerical linear results

We compare the analysis above with the numerical solutions of the linear eigenvalue
problem, which can be performed with no restrictions on � or �.

Linearization of the full system about the basic state yields

�
@

@t
r2wþ

@

@z

m�

1þ �z
w

� �� �
¼ �R�r2

Hsþ �
1=2�

@�

@z
� �r2r2wþ

3�m 2�mð Þ�4

1þ �zð Þ
4

w

�
2�m�

1þ �z

@

@z
r2
Hw�

2�m2�2

3 1þ �zð Þ
2
r2
Hw�

2�m�

1þ �z

@3w

@z3

þ
�m 4�mð Þ�2

1þ �zð Þ
2

@2w

@z2
�
3�m 2�mð Þ�3

1þ �zð Þ
3

@w

@z
, ð31Þ

@�

@t
¼ �1=2�

@w

@z
� r � u

� �
þ �r2� þ

�m�

1þ �z

@�

@z
, ð32Þ
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Figure 1. The solution s¼ (ŝ 0þ �ŝ1) cos kx (see (17) and (26)) for the entropy on an XZ plane with m¼ 2 and
�¼�0.1 for (a) Case 1 and (b) Case 2. The wave number is set to its characteristic value ~k ¼ ð�=

ffiffiffi
2
p
Þ
1=3 and the

constants A and C are taken equal to unity. The continuous lines are drawn at z¼ 0.5. At the onset at large
Taylor numbers the compressibility shifts the convective rolls downwards in Case 1 and upwards in Case 2.
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@s

@t
�

w

1þ �z
¼

1

1þ �zð Þ
m r

2sþ
�

1þ �zð Þ
mþ1

@s

@z
, ð33Þ

r � u ¼ �
m�

1þ �z
w ð34Þ

in Case 1, where rH¼ (@x, @y, 0) is the horizontal part of the differential operator.
Again, by simply substituting m! 1/(�� 1) in the above equation, we obtain an

analogous system of equations for Case 2 with the entropy equation replaced by

@s

@t
¼ r2sþ

��

� � 1ð Þ 1þ �zð Þ

@s

@z
: ð35Þ

We seek solutions/ exp(ik1xþ ik2yþt). The characteristic Rayleigh number can then
be calculated as occurring when Re{}¼ 0. If Im{} 6¼ 0 then the bifurcation is a Hopf

bifurcation and we set Im{}¼!. We consider, however, �¼ 1 (fixed) and find that

!¼ 0. The polytropic index is set to m¼ 1.4. Owing to the symmetry between x and y

we may calculate the characteristic Rayleigh number Rac as a function of k2 ¼ k21 þ k22.

This calculation is repeated at a number of different rotation rates for a few choices

of �. The results are shown in figure 2. In each case, the minimum value of the

characteristic Rayleigh number is found at �¼ 0. This is in agreement with the analytic

results for small � at high rotation rates.
The characteristic Rayleigh number and wavelength scale are as expected, as a

function of rotation rate, for both the unstratified and most stratified cases. We find

that the wavenumber scales as kmin� �
1/6 whilst Racmin

� �2=3, even when the layer is

highly stratified, as shown on figure 3 (we have also checked that the ‘‘compensated’’

(a) (b)

(d)(c)

Figure 2. Characteristic Rayleigh number versus k2 for �¼ 0 (solid), �¼�0.4 (dot-dot-dashed), �¼�0.784
(dotted), �¼�0.99898 (dot-dashed) and (a) �1/2¼ 0, (b) �1/2¼ 104, (c) �1/2¼ 105, (d) �1/2¼ 106. Note that in all
the cases compressibility increases the Rayleigh number optimized over k.
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Rayleigh number ~R and wavenumber ~k approach a constant value as the Taylor
number increases). This motivates our choice of scalings in the next section for the

nonlinear regime. The eigenfunctions for a selection of values of � for the non-rotating
and most rapidly rotating cases are shown in figure 4. Note that as � is decreased from

zero the eigenfunctions become weakly asymmetric as expected in both the cases. The

degree of asymmetry for rapidly rotating cases is less pronounced than that for weakly
rotating cases, and the sense is different with the eigenfunctions for the stratified rapidly

rotating case being shifted down relative to the non-stratified case (this shift was also

observed in the analytical results for small compressibility, cf. figure 1(a)).

4. Nonlinear anelastic convection in the rapid rotation limit

We now proceed by analysing nonlinear effects in rapidly rotating convection under the

anelastic approximation. After Julien and Knobloch (1999), who studied rapidly
rotating Boussinesq convection, we develop expansions in terms of "¼ ��1/6¼E1/3,

Figure 3. The scalings of the characteristic Rayleigh number Rac and the square of the characteristic
wavenumber k2c with the Taylor number Ta. The stars correspond to �¼ 0 and the crosses to �¼�0.99. The
solid lines indicate the analytic scalings obtained for small j�j, thus their slopes are 2/3 for the Rayleigh
number and 1/3 for the square of the wavenumber.

(a) (b)

Figure 4. Eigenfunctions for �¼ 0 (solid) and �¼�0.99898 (dashed) for (a) �1/2¼ 106 and (b) �1/2¼ 0.
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where E is the Ekman number, of the form

x ¼ "x0, "y0, zð Þ, t ¼ "2t0, ð36Þ

u ¼ "�1u0 x0, y0, z, t0ð Þ, s ¼ S zð Þ þ "s0 x0, y0, z, t0ð Þ, R ¼ "�4 ~R, ð37Þ

in which S(z) is the value of the entropy averaged over horizontal variables and time.
The primes will be dropped in what follows. From (8)–(10) we derive the equations for

the vertical components of velocity w and vorticity �, which in Case 1 are

�
@

@t
r2wþ

@

@z

m�

1þ �z
w

� �� �
¼ � r � r � u � rð Þu½ 	

 �
� êz �R�r

2
Hsþ �

1=2�
@�

@z

� �r2r2w�
2�m�

1þ �z

@

@z
r2
Hw�

2�m2�2

3 1þ �zð Þ
2
r2
Hw

�
2�m�

1þ �z

@3w

@z3
þ
�m 4�mð Þ�2

1þ �zð Þ
2

@2w

@z2

�
3�m 2�mð Þ�3

1þ �zð Þ
3

@w

@z
þ
3�m 2�mð Þ�4

1þ �zð Þ
4

w, ð38Þ

@�

@t
þ r � u � rð Þu½ 	
 �

� êz ¼ �
1=2�

@w

@z
� r � u

� �
þ �r2� þ

�m�

1þ �z

@�

@z
, ð39Þ

@s

@t
þ u � rs ¼

w

1þ �z
þ

1

1þ �zð Þ
m r

2sþ
�

1þ �zð Þ
mþ1

@s

@z

�
�

R

1

1þ �zð Þ
2
X3
i¼1

@ui
@xi

� �2

þ
X
i5j

@ui
@xj
þ
@uj
@xi

� �2

�
2

3
r � uð Þ

2

" #
, ð40Þ

r � u ¼ �
m�

1þ �z
w, ð41Þ

while in Case 2, as previously stated, m! 1/(� � 1) and the entropy equation should be
replaced by

@s

@t
þ u � rs ¼ w 1þ �zð Þ

�=ð1��Þ
þr2sþ

��

� � 1ð Þ 1þ �zð Þ

@s

@z

�
�

R

1

1þ �zð Þ
2
X3
i¼1

@ui
@xi

� �2

þ
X
i5j

@ui
@xj
þ
@uj
@xi

� �2

�
2

3
r � uð Þ

2

" #
: ð42Þ

After introducing the above scalings (36) and (37), into the Case 1 equations (38)–(41),
we obtain at leading order

�
@

@t
r2
Hw ¼ r

2
HN z � � ~Rr2

Hsþ �
@�

@z
� �r4

Hw, ð43Þ

@�

@t
¼ �

@N y

@x
�
@N x

@y

� �
þ �

@w

@z
þ

m�

1þ �z
w

� �
þ �r2

H�, ð44Þ

@s

@t
¼ �u � rHsþ

w

1þ �z
þ

1

1þ �zð Þ
m r

2
Hs� w

dS

dz
, ð45Þ

1

1þ �zð Þ
m

d2S

dz2
þ

�

1þ �zð Þ
mþ1

dS

dz
�

d

dz
wsh ix,y,t�

m�

1þ �z
wsh ix,y,t�

�

~R

1

1þ �z
VDh ix,y,t¼ 0

ð46Þ
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and finally

"�1rH � uþ
@w

@z
¼ �

m�

1þ �z
w, ð47Þ

where h�ix,y,t denotes average over the horizontal variables and time. We have also
assumed that u and s are periodic in x, y and t with zero average. Here the viscous
dissipation term is

VD ¼
4

3

@u

@x

� �2

þ
4

3

@v

@y

� �2

þ
@u

@y
þ
@v

@x

� �2

þ
@w

@x

� �2

þ
@w

@y

� �2

, ð48Þ

where u and v are the x and y components of the velocity field, respectively, and the
nonlinear terms are

N x ¼ u � rHð Þu, N y ¼ u � rHð Þv, N z ¼ u � rHð Þw: ð49Þ

Following Julien and Knobloch (1999) we now consider steady and oscillatory
solutions with square planform – although it may be that these are not the preferred
solutions when stratification is included – i.e. we set

w, �, s½ 	 ¼ ½ŵ zð Þ, �̂ zð Þ, ŝ zð Þ
�
ei$t cos kxþ cos kyð Þ þ c:c:þOð"Þ, ð50Þ

u, v½ 	 ¼ k�1
�
�sin ky, sin kx

�
�̂ zð Þei$t þ c:c:þO "ð Þ ð51Þ

for which

VDh ix,y,t¼ 2k2 ŵ zð Þ
�� ��2þ 2

���̂ zð Þ��2, ð52Þ

wsh ix,y,t¼ ŵ zð Þŝ� zð Þ þ ŵ� zð Þŝ zð Þ: ð53Þ

The great advantage of this choice of planform is that the nonlinear terms generated by
N x, N y and N z (see (43), (44) and (49)) vanish identically, considerably simplifying the
analysis. Hence equations (43)–(46) take the form

i$k2ŵ ¼ ~R�k2ŝþ �
d�̂

dz
� �k4ŵ, ð54Þ

i$�̂ ¼ �
dŵ

dz
þ

m�

1þ �z
ŵ

� �
� �k2�̂, ð55Þ

i$ŝ ¼
1

1þ �z
�
dS

dz

� �
ŵ�

1

1þ �zð Þ
m k2ŝ, ð56Þ

1

1þ �zð Þ
m

d2S

dz2
þ

�

1þ �zð Þ
mþ1

dS

dz
�

d

dz
ŵŝ� þ ŵ�ŝð Þ �

m�

1þ �z
ŵŝ� þ ŵ�ŝð Þ

�
2�

~R

1

1þ �z
k2 ŵj j2þ j�̂

��2� �
¼ 0: ð57Þ

It follows from (54)–(56) that the amplitude ŵ(z) obeys

d2ŵ

dz2
þ

m�

1þ �z

dŵ

dz
þ ~Rk2g zð Þ

i$=� þ k2

i$ þ k2
�
1þ �zð Þ

m � k2 i$=� þ k2

 �2

�
m�2

1þ �zð Þ
2

" #
ŵ ¼ 0:

ð58Þ
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Here g(z)¼ 1/(1þ �z)� (dS/dz) satisfies the following first-order non-homogeneous
equation:

d

dz
g zð Þ& ŵ, zð Þ½ 	 þ

�

1þ �zð Þ
g zð Þ ¼ �V ŵ, zð Þ, ð59Þ

with

& ŵ, zð Þ ¼ 1þ
2k2 ŵ zð Þ

�� ��2
$2 þ k4

�
1þ �zð Þ

2m
, ð60Þ

V ŵ, zð Þ ¼
2�

~R
1þ �zð Þ

m�1 k2 ŵj j2þ
�2

�2k4 þ$2

dŵ

dz

����
����2þ m�

1þ �z

d ŵj j2

dz
þ

m2�2

1þ �zð Þ
2
ŵj j2

 !" #
,

ð61Þ

which can be readily obtained by using (55) and (56) to express �̂ and ŝ in terms of ŵ and
introducing these expressions into (57). There is also a condition, which results from

imposing the conditions of isentropy at the boundaries, namely

Z 1

0

g zð Þdz ¼ �4 �s ¼
1

�
ln 1þ �ð Þ, ð62Þ

where �s zð Þ denotes the basic state entropy (6d). From equations (59)–(62) we can express
the function g(z) by the amplitude ŵ(z) as

g zð Þ ¼ �

Z z

0

V z0ð ÞeI z
0ð Þdz0 þ

I1 zð Þ � 4�s

I2 zð Þ

� 	
exp �I zð Þð Þ

& zð Þ
, ð63Þ

where

I zð Þ ¼ �

Z z

0

dz0

1þ �z0ð Þ& z0ð Þ
, ð64Þ

I1 zð Þ ¼

Z 1

0

exp �I z0ð Þð Þ

& z0ð Þ

Z z0

0

V z00ð ÞeI z
00ð Þdz00

� �
dz0, ð65Þ

I2 zð Þ ¼

Z 1

0

exp �I z0ð Þð Þ

& z0ð Þ
dz0 ¼

1

�
1� 1þ �ð Þ exp �I 1ð Þ½ 	
 �

þ

Z 1

0

exp �I z0ð Þ½ 	dz0: ð66Þ

In the next section we give the numerical solutions of the above set of equations for
steady states, but first we discuss some properties of the equations. (For the sake of

completeness the necessary equations for Case 2 are listed in the appendix.)
In the Boussinesq limit, when �¼ 0, the above equations simplify significantly

(I(z)¼ 0,
R 1
0 gðzÞdz ¼ 1, V(ŵ, z)¼ 0 and gðzÞ ¼ 1=½&ðzÞ

R 1
0 ð&ðz

0ÞÞ
�1dz0	) and the amplitude

equation (58) becomes

d2ŵ

dz2
þ ~Rk2

i$ð =� þ k2Þ �i$ þ k2

 �

$2 þ k4 þ 2k2 ŵ zð Þ
�� ��2 1R 1

0 ð& z0, ŵð ÞÞ
�1dz0

� k2 i$=� þ k2

 �2" #

ŵ ¼ 0, ð67Þ
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which agrees with the equation obtained by Julien and Knobloch (1999) in the
Boussinesq case (their equation (39) is for the amplitude of the velocity poloidal

potential which has to by multiplied by k2 in order to obtain the vertical velocity

amplitude ŵ(z)). On the other hand, in linear regime jŵ(z)j� 1 we get �(z)
 1, V(z)
 0,

g(z)
 1/(1þ �z), thus in the stationary case ($¼ 0) we obtain the following amplitude

equation

d2ŵ

dz2
þ

m�

1þ �z

dŵ

dz
þ ~Rk2 1þ �zð Þ

m�1
�k6 �

m�2

1þ �zð Þ
2

� �
ŵ ¼ 0: ð68Þ

Note that, as expected, the amplitude of the solution is not determined at this order.
Furthermore, if we introduce the sum of the convective and conductive vertical

heat flux,

fC zð Þ ¼ �T
d

dz
�sþ Sð Þ � �� �T wsh ix,y,t¼ � 1þ �zð Þ g zð Þ � 1þ �zð Þ

mþ1 wsh ix,y,t, ð69Þ

equation (46) can be rewritten in the following form:

dfC
dz
¼ �� 1þ �zð Þ

m wsh ix,y,tþ
�

~R
1þ �zð Þ

m VDh ix,y,t: ð70Þ

This, however, is not the total heat flux in the system at a given z 6¼ 0, 1, since it does not
include the viscous heating and the work done by the buoyancy force. The latter two,

represented by the two terms on the right-hand side of equation (70), in a stationary

state, are globally in balance. However, the local heat flux would, in general, be

influenced by viscous and buoyancy effects. Hence we may define the Nusselt number in

the following way:

Nu ¼ fT
��
z¼1
�fA


 ��
fBC � fAð Þ or Nu ¼ fT

��
z¼1

�
fBC, ð71Þ

where fA¼Kg/cp is the heat flux at the adiabatic state, fBC¼�KiT/d is the conductive
heat flux of the basic, static state and fT

��
z¼1
¼ �"kT �Tdð�sþ SÞ=dz is the conductive heat

flux at z¼ 1 in a convective state, which in a stationary state must be equal to the heat

flux at z¼ 0, fTjz¼0, and is the total heat flux of the system. Here K is the molecular

thermal conductivity coefficient (as opposed to the turbulent thermal conductivity

coefficient kT). When deriving the entropy equation (4), we have assumed that the

turbulent heat flux is much greater then the molecular, thus

K=kT ¼ � ¼ �ðd=cpÞðd�s=dzÞr � 1. This means that

Nu ¼
1þ �ð Þ g 1ð Þ þ �þ �

�

¼
� 1þ ��1

 �

g 1ð Þ þ � � 1ð Þ mþ 1ð Þ

�m�m� 1
or Nu ¼ � 1þ

1

�

� �
g 1ð Þ: ð72Þ

Such a definition, however, leads to very large Nusselt number in the Boussinesq limit
�¼O(�). Hence we may yet use a different definition, where the Nusselt number is a

ratio of the total heat flux fT
��
z¼1
¼ �"kT �Tdð�sþ SÞ=dz to the conductive heat flux of the

basic state expressed in terms of entropy fBCT ¼ �"kT �Td�s=dz, namely

Nu ¼ 1þ �ð Þ g 1ð Þ , ð73Þ
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which in the Boussinesq limit simply reduces to Nu¼ g(1)j�¼0 (because we shall seek
stationary solutions (1þ �)g(1)¼ g(0)). Hence in what follows we adopt the latter

definition (73) for Nu. It should be noted, that since the expression for conductive heat

flux in terms of entropy is valid only by incorporating small scale turbulence, the flux

fBCT is not a conductive heat flux of a static state. It should rather be interpreted as a

heat flux in a state approached from developed convection by decreasing the Rayleigh

number to value close to critical but still above it, in which small scale turbulence is still

present, and is incorporated into the turbulent heat flux coefficient kT�K.
The weakly nonlinear theory (WNT) performed in the stationary (and hence real)

case, under the assumptions that ŵ¼ (aŵ1þ a2ŵ2þ a3ŵ3)(cos kxþ cos ky)þO(", a4),
g¼ g0þ ag1þ a2g2þO(", a3) and ~R ¼ ~Rc þ a2 ~R2 þOð"2, a3Þ, where a� 1 is the

perturbation amplitude, leads to equation (68) with additional constraints for

the amplitude, which could also be used to find ŵ (it also gives the result ~R1 ¼ 0,

and hence a 

p
ð ~R� ~RcÞ ). Furthermore, under additional assumption of weak

compressibility the solvability conditions provide constraints for the constants A and C

in the equation (25) and also allow the calculation of g(1) and hence the Nusselt number

in terms of ~Rc,0 kð Þ and ~R2,0 kð Þ (the characteristic Rayleigh number and its order two

WNT correction in the Boussinesq case �¼ 0). The simplest assumption of

1�j�j � a2� " leads to

Nu ¼ 1þ 2a2
~R2,0

~Rc,0

þ � m� 1ð Þ in Case 1, ð74aÞ

Nu ¼ 1þ 2a2
~R2,0

~Rc,0

� �
�

� � 1
in Case 2. ð74bÞ

If, however, we assume slightly stronger compressibility (but still weak), i.e a�j�j� 1,
having two independent parameters we must modify the expansions, i.e. ŵ¼

(a
P

i, j¼0a
i� jŵiþ1, j)(cos kxþ cos ky), g¼

P
i, j¼0a

i� jgi, j and ~R¼ ~Rc,0 þ
P

i, j¼0 a
i� j ~Ri, j.

Interestingly, with stronger compressibility the first non-zero correction to the

Nusselt number resulting from the compressibility of the medium is smaller, of order

a2�, i.e.

Nu ¼ 1þ 2a2
~R2,0

~Rc,0

1þ
1

2
� m� 1ð Þ þ �

~R2,1

~R2,0

" #
in Case 1, ð75aÞ

Nu ¼ 1þ 2a2
~R2,0

~Rc,0

1�
1

2
�

�

� � 1
þ �

~R2,1

~R2,0

" #
in Case 2. ð75bÞ

From the above expressions (74) and (75) we infer that for all values of � in Case 2 and
only for m5 1 (i.e. �4 2þO(�)) in Case 1, weak compressibility increases the

efficiency of heat transfer by a convective system. In other words the total amount of

heat transferred by a convective system is greater in the compressible case than for a

Boussinesq fluid for the same departure from characteristic value ~R� ~Rc 
 a2 ~R2,0.

[On the other hand, if we compare the Nusselt numbers in the Boussinesq and anelastic

convection for the same departure from characteristic value defined as ð ~R� ~RcÞ= ~Rc,

for a�j�j� 1 the a2� correction in (75) vanishes for both compressible cases

considered and the heat transfer turns out to be independent of compressibility, at least

at the considered level of accuracy; for j�j � a2, exactly as above, the heat transfer is
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more efficient in the compressible Case 2 for all � and in Case 1 only for �4 2þO(�).]
Furthermore systems with constant turbulent thermal diffusivity 	T are, in general,

more efficient in heat transfer than those with constant turbulent thermal

conductivity kT.

4.1. Numerical nonlinear results

In this section we consider the effects of stratification and compressibility for nonlinear

steady convection in the rapid rotation limit. In particular, we solve the system

described by equations (58)–(62) as a nonlinear two-point boundary problem in z. For

steady solutions we set the frequency to be zero and solve the system using a

Newton–Raphson–Kantorovich (NRK) solver for a range of choices of stratification �.
As for the linear case we fix �¼ 1 and m¼ 1.4. We also fix the planform so that

kx ¼ ky ¼ k ¼ 1=
p
2 and k2x þ k2y ¼ 1 – hence the wavenumber has not been optimized

over (or we are considering a domain of fixed aspect ratio).
Figure 5 shows the convective heat transport (as measured by Nu� 1, with the

Nusselt number defined in equation (73)) as a function of Ra for a selection of �.
As j�j is increased (at fixed Ra) the heat transport decreases (in line with the

analytical results). The z-dependence of the nonlinear solutions for the vertical

velocity w is shown in figure 6. When �¼ 0 the solutions are symmetric about the

mid-plane and grow in amplitude as Ra is increased as expected (Julien and

Knobloch 1999). However, as j�j is increased, the nonlinear solutions become

asymmetric, particularly at large amplitude, with the solution becoming more and

more localized near the low density region where the basic state density is small.

This is to be expected and is in agreement with similar calculations in spherical

geometry (Glatzmaier and Gilman 1981a, b, Jones et al. 2009, Jones and

Kuzanyan 2009).

Figure 5. Nu� 1 versus Ra for �¼ 0 (solid), �¼�0.2 (dashed), �¼�0.893 (dot-dashed), �¼�0.965
(dot-dot-dashed) and �¼�0.998 (long-dashed).
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5. Concluding remarks

In this article, we have studied the influence of compressibility and stratification on the
convection threshold and on the nonlinear convective heat transfer in a rotating plane
layer. We utilized the simplest formulation of the anelastic approximation with the
thermal energy flux expressed in terms of the entropy gradient (Braginsky and Roberts
1995). We performed an asymptotic analysis in the limit of small compressibility and
rapid rotation ��1/12�j�j� 1. Firstly we reported that in compressible systems with
constant thermal diffusivity 	T convective instability is more easily excited (in other
words the characteristic Rayleigh number is smaller) than in incompressible systems.
On the other hand, if the thermal conductivity kT ¼ cp ��	T is constant, the characteristic
Rayleigh number for convection is often larger than in the incompressible case (smaller
only if the polytropic index m is smaller than unity). Moreover, we also calculated the
Nusselt numbers, i.e. the total heat transfer in both the compressible cases considered in
the limit of rapid rotation and small compressibilities in the weakly nonlinear regime.
We found that systems with constant turbulent thermal conductivity kT are less efficient
in transporting the heat than those with constant 	T and more efficient than Boussinesq
systems only if the polytropic index m5 1 (which corresponds to �4 2þO(�), where �
is the departure from adiabaticity). On the other hand constant diffusivity 	T always
leads to more efficient heat transfer by a compressible system than a Boussinesq
analogue. We compared these analytical results with numerical solutions of

(a) (b)

(d)(c)

Figure 6. Nonlinear solutions for w(z) for (a) �¼ 0 and R¼ 10.8697, 10.8703, 23.5669, 43.5010, 86.8195,
182.095, 395.166, (b) �¼�0.2 and R¼ 11.4002, 11.4006, 21.3462, 38.2638, 75.2033, 156.024, 336.153,
(c) �¼�0.965 and R¼ 20.9684, 20.9684, 22.2286, 27.8354, 50.9217, 128.793, 369.396 and (d) �¼�0.977 and
R¼ 21.4638, 21.4638, 22.3498, 26.4895, 45.0281, 112.353, 339.724.
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the equations, which can be performed for arbitrary stratification and rotation rate
in the linear regime and arbitrary stratification and rapid rotation in the nonlinear

regime. The numerical results are in good agreement with the asymptotic expansion and
demonstrate that the conclusions can be carried through to larger stratifications
(thus larger values of j�j).

We studied the dependence of the convective heat flux on the compressibility in
the nonlinear regime for the case of constant kT. With the choice of the polytropic
index greater than unity, namely m¼ 1.4 (and hence �
 1.7þO(�)), we reported,

that the total heat transferred by the system decreases with increasing compress-
ibility j�j. Furthermore, the numerical results for the characteristic Rayleigh number
obtained also for case 1 with m¼ 1.4 suggest that in non-rotating or weakly
rotating systems the dependence of Rc on the compressibility is not monotonic.
It increases with increase in the stratification parameter j�j up to a certain threshold

value, and then starts to decrease, however, it never seems to drop below the
Boussinesq value.

Glatzmaier and Gilman (1981a) studied the role of the kT¼ const versus 	T¼ const
assumption in spherical geometry and reported that because the basic state in the
	T¼ const case has much larger entropy gradients close to the outer (upper in our plane
layer model) boundary, small scale convective structures develop in that region. This is
so, since in the case 	T¼ const the conductivity coefficient kT ¼ cp ��	T and thus the

diffusive heat flux increases with depth. Therefore, in a stationary state the convective
heat flux must increase with z to compensate for the loss of the diffusive flux at every
z¼ const. However, a more general statement seems to be possible that in stratified
cases convection tends to localize in the low density region near the upper boundary
(Jones et al. 2009, Jones and Kuzanyan 2009), which was, in general, confirmed by our

analytical and numerical results for both cases kT¼ const and 	T¼ const, although in
rapidly rotating systems with constant kT at the convection threshold, i.e. in linear
regime, a slight downward shift of the convective rolls, towards larger densities, was
found. Nevertheless all our results seem to suggest that at least in a non-chaotic regime,
compressibility introduces smaller scales into the flow, which can have important

consequences for the dynamics of the system, in particular in the magnetohydro-
dynamic case.

We conclude by outlining future directions for our research. Clearly it is
important to compare our nonlinear results for asymptotically large rotation rates
with those obtained at finite rotation. To this end a nonlinear anelastic
time-stepping code has been developed and is currently being benchmarked.

Furthermore it is of interest to determine the dynamo properties of the nonlinear
flows that we have generated in this article, continuing the results of Soward (1974)
into cases where stratification is included. This is the subject of a follow-up article
Mizerski and Tobias (in preparation).
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Appendix A: Equations for Case 2

The nonlinear equations for Case 2 are given by

d2ŵ

dz2
þ

m�

1þ �z

dŵ

dz
þ ~Rk2g zð Þ

i$=� þ k2

i$ þ k2
� k2 i$=� þ k2


 �2
�

m�2

1þ �zð Þ
2

� �
ŵ ¼ 0, ðA:1Þ

d

dz
1þ �zð Þ

mg zð Þ& ŵ, zð Þ½ 	 þ � 1þ �zð Þ
m�1g zð Þ ¼ �V ŵ, zð Þ, ðA:2Þ

where m¼ 1/(�� 1), g(z)¼ 1/(1þ �z)mþ1� (dS/dz) and

& ŵ, zð Þ ¼ 1þ
2k2 ŵ zð Þ

�� ��2
$2 þ k4

, ðA:3Þ

V ŵ, zð Þ ¼
2�

~R
1þ �zð Þ

m�1 k2 ŵj j2þ
�2

�2k4 þ$2

dŵ

dz

����
����2þ m�

1þ �z

d ŵj j2

dz
þ

m2�2

1þ �zð Þ
2
ŵj j2

 !" #
,

ðA:4Þ

and g(z) must satisfy the following conditionZ 1

0

g zð Þdz ¼ �4 �s ¼
1

m�
1�

1

1þ �zð Þ
m

� �
: ðA:5Þ

These equations, obviously, have the same Boussinesq limit as (58)–(62) and in the
linear regime jŵ(z)j� 1 when �(z)
 1, V(z)
 0, g(z)
 1/(1þ �z)mþ1 the amplitude

equation becomes

d2ŵ

dz2
þ

m�

1þ �z

dŵ

dz
þ ~Rk2 1þ �zð Þ

�m�1
�k6 �

m�2

1þ �zð Þ
2

� �
ŵ ¼ 0: ðA:6Þ

Of course in Case 2 Nu¼ (1þ �)mþ1g(1)¼ g(0). The constants A and C, defining the
amplitude of the velocity field in both cases are

A2 ¼ 2k2
~R2,0

~Rc,0

and C ¼
A

2

~R2,1

~R2,0

�
1

2
mþ 1ð Þ � D2

" #
: ðA:7Þ
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