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We consider the effect of compressibility on mixed Ekman–Hartmann boundary layers on an
infinite plane (z¼ 0), in the presence of an external magnetic field oblique to the boundary. The
aim is to investigate the influence of the magnetic pressure on the fluid density, and hence, via
mass conservation, on the mass flow into or out of the boundary layer. We find that if the
z-component of vorticity in the main flow, immediately above the boundary layer, is negative,
then there is a competition between Ekman suction and the magnetic pressure effect. Indeed,
as the magnetic field strength is increased, the magnetic pumping may overcome the Ekman
suction produced by anti-cyclonic main flow vortices. Such a mechanism, based on the
competition between these effects, may be of importance for understanding the dynamics of
the magnetic field in stellar (or planetary) interiors. For the solar tachocline, we find that the
analysed magnetic pressure effect is unlikely to play a significant role; however, we give
examples of what changes in the assumed scalings would be necessary for the effect to become
important.

Keywords: Ekman–Hartmann boundary layers; Compressibility; Magnetic pressure

1. Introduction

Motivated partly by geophysical considerations and partly by the intrinsic magneto-
hydrodynamical interest of the problem, several studies have investigated the nature of
Ekman–Hartmann boundary layers, which may arise in rapidly rotating fluids
influenced by strong magnetic fields. The influence of a magnetic field on the classical
Ekman boundary layer was first considered by Gilman and Benton (1968), who
considered steady Ekman–Hartmann layers formed from imposing a magnetic field
aligned with the rotation axis. Gilman and Benton (1968) produced two main findings:
that Ekman suction (ES) is inhibited by the magnetic field, and that an induced
‘‘Hartmann current’’ in the main flow could be significant. The complementary, time-
dependent spin-up problem was first addressed by Benton and Loper (1969), who
showed that the characteristic spin-up time is reduced by the presence of a magnetic
field. The linear stability of Ekman–Hartmann layers was first studied by Gilman
(1971) and later extended, and applied to the core-mantle boundary, by Desjardins et al.
(2001). The nonlinear stability problem was first considered by Desjardins et al. (1999)
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and has been generalised by Rousset (2004). A full bibliography of related early work
can be found in Acheson and Hide (1973).

Studies to date of Ekman–Hartmann boundary layers have considered incompres-
sible fluids. In this article, motivated by astrophysical considerations, we investigate the
additional influence of compressibility, with a view to investigating the role of magnetic
pressure in compressible Ekman–Hartmann layers. The plane-layer model we consider,
described in section 2, represents the simplest possible configuration in which the
problem can be investigated. Ekman–Hartmann layers form when both the Hartmann
number and Taylor number are large, with the effects of the Coriolis and Lorentz forces
being comparable. For our study, we also require that the density is influenced, at
leading order, by magnetic pressure variations. The simplest ordering of the various
parameters that allows an investigation of compressible Ekman–Hartmann layers,
together with the ensuing analysis, is contained in section 3. In section 3.1, we consider
the simplified problem in the absence of rotation and consider the influence of
compressibility on pure Hartmann layers; the full problem of Ekman–Hartmann layers
is considered in section 3.2. Our main result is the identification of a new effect,
magnetic pressure pumping (MPP), which can compete with ES and indeed, for
sufficiently strong magnetic fields, can dominate.

In astrophysical situations, one can conceive that the role of magnetic pressure on
Ekman–Hartmann layers may be of importance in gas planets with a solid core, or in
stellar interiors where, although there are no strictly rigid boundaries, somewhat
analogous layers may form. The most exciting and important recent solar observational
finding is the determination, via helioseismology, of the solar internal rotation rate
(Schou et al. 1998; see also Christensen-Dalsgaard and Thompson 2007 for a review of
all the observational results). This revealed that the surface latitudinal rotation profile is
essentially maintained throughout the convection zone, and that the radiative zone
rotates as a solid body, at a rate equal to that on the surface at latitude approximately
30�. Furthermore, the differing angular velocity profiles �(r, �) at the base of the
convection zone and in the radiative zone are accommodated by a thin region of strong
radial variation in angular velocity, a region known as the tachocline; for low latitudes
@�/@r40, for high latitudes @�/@r50. Estimates of the radial extent of the tachocline
are in the range 2–5% of the solar radius, although it is too thin to be resolved precisely
with current seismic data (Gough 2007). Although it represents a simplification of the
true physics, the tachocline can sometimes profitably be modelled as an Ekman or
Ekman–Hartmann layer (see e.g. Ponty et al. 2001, Garaud 2007). In section 4, we
examine the parameter scalings that pertain to the tachocline and address the
applicability of our model. We show, possibly not surprisingly, that the MPP effect is
small in the tachocline; however, we then consider what differences would be necessary
for this effect to be astrophysically relevant.

2. Mathematical formulation

We consider a plane layer, compressible, magnetohydrodynamic system, with gravity
taken to act in the negative z-direction, and with rotation about the z-axis. The
governing equations are those of momentum (the Navier–Stokes equation), magnetic
induction and mass conservation, together with the solenoidal constraint for the
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magnetic field. If length, velocity, magnetic field and density are scaled with

representative values L, U, Bs and �s, then the equations may be expressed in

dimensionless form as

Re�
@u

@t
þ u �rð Þu

� �
¼�rpþ

M2

Rm
r�Bð Þ�B� �1=2�êz�u�G�êzþr

2uþ
1

3
r r �uð Þ,

ð1Þ

@B

@t
þ u � rB ¼ B � ru� Bðr � uÞ þ

1

Rm
r2B, ð2Þ

@�

@t
þ r � ð�uÞ ¼ 0, ð3Þ

r � B ¼ 0, ð4Þ

where

M ¼
BsLffiffiffiffiffiffiffiffiffiffiffi
�0��
p , � ¼

4�2s�
2L4

�2
, Re ¼

�sUL

�
, Rm ¼

UL

�
ð5Þ

are the Hartmann number, Taylor number, Reynolds number and magnetic Reynolds

number respectively; � is the (constant) shear viscosity, �0 is the magnetic permeability

and � is the (constant) magnetic diffusivity. The pressure has been scaled with �U/L

and the parameter G is given by

G ¼
�sgL

2

�U
: ð6Þ

The fluid is described by the perfect gas law and, for simplicity, is assumed to be

isothermal; hence, the (dimensionless) equation of state becomes

p ¼ ��, ð7Þ

where

� ¼
kB�sLT

mA�U
, ð8Þ

with kB the Boltzmann constant, mA the atomic mass of the gas atoms and T the

temperature of the gas.
In the analysis that follows, we shall pursue the traditional boundary layer approach

and decompose the field, flow, density and pressure into main flow and boundary layer

components. We shall assume the presence of an external magnetic field, oblique to the

boundary, and choose its z-component as the scale of the magnetic field (Bs); hence,

B ¼ Bêx þ êz þ b, ð9Þ

where B ¼ B0x=B0z is the ratio of the horizontal to vertical components of the external

field, and b is the induced magnetic field. Furthermore, we shall assume that the lower

boundary, which we take to be at z¼ 0, is rigid and non-slip, and that the horizontal

component of the induced magnetic field vanishes (an illustrative condition commonly

used in magnetoconvection studies). The solutions of the above equations are therefore
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subject to the following set of boundary conditions,

ujz¼0¼ 0, bHjz¼0¼ 0,
@bz
@z

����
z¼0

¼ 0, ð10Þ

where the subscript H denotes the horizontal component.

3. Magnetic pressure pumping

In order to provide a clean analytical example of MPP – which is essentially the mass
flow out of or into the Hartmann (or mixed Ekman–Hartmann) boundary layer, caused
by compressibility effects and the influence of magnetic pressure on the density of the
system – we assume the following scalings:

�1=2 �M2 � 1; Re �M; Rm � 1; � �M; G �M: ð11Þ

The first assumption, �1/2�M2
� 1, that the Coriolis and Lorentz forces are strong and

comparable in magnitude, is crucial for the formation of the mixed Ekman–Hartmann
boundary layer; assuming ��M allows for the density to be influenced at the leading
order by the magnetic pressure variations, which is essential for our analysis. The
orderings of the Reynolds numbers and of the gravitational term are adopted in order
to simplify the analysis. If we denote the thickness of the boundary layer by � and define
the boundary layer variable 	 by

	 ¼
z

�
, ð12Þ

then the approximate solution of equations (1)–(4) may be expressed as

u �
X
n	0


n uMn x, y, zð Þ þ uBn x, y, 	ð Þ � umatch
n x, yð Þ

� �
, ð13Þ

b �
X
n	0


n bMn x, y, zð Þ þ bBn x, y, 	ð Þ � bmatch
n x, yð Þ

� �
, ð14Þ

� �
X
n	0


n �Mn x, y, zð Þ þ �Bn x, y, 	ð Þ � �match
n x, yð Þ

� �
, ð15Þ

p �
X
n	�1


n pMn x, y, zð Þ þ pBn x, y, 	ð Þ � pmatch
n x, yð Þ

� �
, ð16Þ

where the superscripts M and B refer to the main flow and the boundary layer
respectively, and where 
 is a small parameter, with


 ¼ O M�1
� 	

, � ¼ O M�1
� 	

: ð17Þ

In the standard form of the singular perturbation series, the solution is divided into
three parts: the main flow, the boundary layer and the matching region (defined by
	!1, z! 0). It follows that all dependent variables must satisfy matching relations of
the form uB(	!1)¼ uM(z! 0)¼ umatch(x, y); furthermore, the boundary conditions
are applied to the boundary layer variables, i.e. uB|	¼0¼ 0, bBH

��
	¼0
¼ 0 and @	b

B
z

��
	¼0
¼ 0.

We seek steady solutions of the governing equations. The orderings assumed above
then lead to the following two sets of equations.
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In the main flow,

0 ¼
M2

Rm
r � bM0
� 	

� Bêx þ êz þ bM0
� 	

� �1=2�M0 êz � uM0 , ð18Þ

uM0 � rb
M
0 ¼ B@xu

M
0 þ @zu

M
0 þ bM0 � ru

M
0 � Bêx þ êz þ bM0

� 	
r � uM0
� 	

þ
1

Rm
r2bM0 , ð19Þ

r � �M0 uM0
� 	

¼ 0, r � bM0 ¼ 0; ð20Þ

and in the boundary layer, after introducing the approximate forms of variables
(13)–(16) into the equations and taking advantage of the main flow balance (18)–(20),

bB0x ¼ 0, bB0y ¼ 0, bB0z ¼ 0, uB0z ¼ 0, ð21Þ




�
@	 �

B
0 u

B
1z � %W

� 	
¼ �@x �

B
0 u

B
0x � %Vx

� 	
� @y �

B
0 u

B
0y � %Vy


 �
, ð22Þ

Rm @	u
B
0 þ




�
@2	b

B
1 ¼ 0, ð23Þ

�
�1=2

M2
%êz � V ¼ �

�1=2

M2
�B0 êz � uB0 þ




Rm �
@	b

B
1 þ

1

�2M2
@2	u

B
0 , ð24Þ

@	p
B
�1 ¼ �


2M2

Rm
B@	b

B
1x, ð25Þ

together with

pM,B
�1 ¼ 
��

M,B
0 , ð26Þ

where the boundary conditions (10) were used to derive (21); to simplify the notation,
we have introduced % 
 �M0 z ¼ 0ð Þ, V 
 uM0 z ¼ 0ð Þ and W ¼ uM1z z ¼ 0ð Þ. The latter is the
actual boundary layer pumping (BLP), which can be either positive (with fluid pumped
out of the boundary layer) or negative (when the boundary layer sucks in fluid from the
main flow). The pumping term, i.e. the z-component of the velocity uB1z, can be easily
found by the use of equation (22), after first resolving (23)–(26). From the last two
equations, (25) and (26), we infer that the density �B0 is a function of bB1x, and that,
therefore, the problem is nonlinear, with the nonlinearity mainly due to the presence of
the Coriolis force.

3.1. Compressible Hartmann layer

In this section we neglect the background rotation and concentrate solely on the effect
of MPP. Thus, we set the Taylor number to zero, �¼ 0, and seek an analytical solution
of the boundary layer equations (21)–(26). From (25) and (26) we obtain,

�B0 x, y, 	ð Þ ¼ %�

M2

�Rm
B bB1x x, y, 	ð Þ � bmatch

1x x, yð Þ
� �

: ð27Þ

Furthermore, in this case, �¼ 
¼M�1, and equations (23) and (24) can be easily solved
to give

uB0 ¼ �Ve
�	 þ V, ð28Þ

bB1 ¼ �
Rm �



Ve�	 þ

Rm �



V: ð29Þ
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Using (27) we now introduce the density jump across the layer,

4� 
 %� � z ¼ 0ð Þ ¼ �
M2�

�
BVx, ð30Þ

where �(z¼ 0) is the density at the base of the layer. Using (27), (28) and (29), equation

(22) can be integrated with respect to 	 to give the vertical momentum component,

�B0 u
B
1z ¼

M

�
B V � rVx þ VxrH � Vð Þ e�	 �

1

2
e�2	

� �
� rH � %Vð Þe

�	 þ %W: ð31Þ

With the use of the matching condition uB1z 	!1ð Þ ¼ uM1z z! 0ð Þ and the boundary

condition uB1z 	 ¼ 0ð Þ ¼ 0, we obtain the pumping term,

W ¼ �
1

2%

M

�
B V � rVx þ VxrH � Vð Þ þ

1

%
rH � %Vð Þ

¼
1

2%

4�

Vx
V � rVx þ VxrH � Vð Þ þ

1

%
rH � %Vð Þ: ð32Þ

If the density jump across the layer is zero, then the MPP term,

MPP ¼
1

2%

4�

Vx
V � rVx þ VxrH � Vð Þ, ð33Þ

is zero, and we are left with only one term in the pumping expression, namely

1

%
rH � %Vð Þ, ð34Þ

which we shall call the basic pumping (BP). Furthermore, if we assume that %¼ const

and that there is no vertical component in the leading order main flow velocity (or that

it does not depend on z), the BP term is zero. However, we emphasise that the BP does

not require compressibility, since even if the medium is incompressible it can still be

non-zero, provided that the vertical main flow velocity depends on z. If the medium is

compressible, no such requirement is needed, and the BP is, in general, non-zero.

Moreover, almost any type of boundary layer, not only a Hartmann (or an Ekman)

layer, would generate the BP, since it is a direct outcome of integration of equation (22)

and the dependence of V and/or % on x and y. It is also instructive to point out at this

stage that BP and MPP do not necessarily have the same signs and can either cooperate

(e.g. %¼ 1, Vx¼ const50, Vy¼�y, Vz¼ z¼)MPP ¼ ðMB=2�ÞVx < 0 and BP¼�1)

or compete (e.g. %¼ 1, Vx¼ const40, Vy¼�y, Vz¼ z¼)MPP ¼ ðMB=2�ÞVx > 0 and

BP¼�1) with each other.
To give a better physical description of the new phenomenon found here, namely the

MPP, we calculate the pressure jump across the boundary layer,

4p 
 pB�1 	 ¼ 0ð Þ � pM�1 z ¼ 0ð Þ ¼ �

2M2

Rm
Bbmatch

1x : ð35Þ

This pressure difference, which is a result of the influence of strong magnetic pressure,

accounts for a decrease (or increase) of the fluid density in the boundary layer,

which via mass conservation drives the mass flow out of (or into) the boundary layer.
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Not surprisingly, because of mass conservation, the pumping is non-zero only if there
are horizontal gradients of the magnetic field, and thus also of the velocity.

3.2. The competition between Ekman suction and magnetic pressure pumping

We now proceed to an analysis of MPP in a mixed Ekman–Hartmann boundary layer
and examine its competition with ES. As already pointed out, the full system of
equations (21)–(26) is nonlinear, and thus in general we can only provide its numerical
solution. Some analytical progress can, however, be made by simplifying the problem
via a suitable linearisation of equation (24). Equations (25) and (26) lead to the same
expression for the density as in the previous subsection,

�B0 x, y, 	ð Þ ¼ %�

M2

�Rm
B bB1x x, y, 	ð Þ � bmatch

1x x, yð Þ
� �

: ð36Þ

Thus, under our linearisation, equation (24) becomes

�
�1=2

M2
%êz � V ¼ �

�1=2

M2
%êz � uB0 þ




Rm �
@	b

B
1 þ

1

�2M2
@2	u

B
0 , ð37Þ

where in the linearisation procedure we have neglected terms only of the type u0b1 (i.e.
�B0 is replaced by %). The neglect of the term uB0 b

B
1x is crucial for analytical progress since

its retention makes the boundary layer problem strongly nonlinear. On the other hand,
it is only for the sake of simplicity that we neglect the term uB0 b

match
1x , and hence our

solution is only valid provided that the term ð
M2=�RmÞB bB1x � bmatch
1x

� �
êz � uB0 remains

small compared with the other terms in equation (24). However, even with these
simplifications, the model captures the essence of non-zero pumping. We specifically
choose not to linearise equation (22), since here the nonlinear terms are necessary for a
detailed study of the effects of compressibility and magnetic pressure.

The solutions of equations (23), (36) and (37) now take the form

uB0x ¼ �e
�	 Vx cos �	ð Þ þ Vy sin �	ð Þ
� �

þ Vx, ð38Þ

uB0y ¼ �e
�	 Vy cos �	ð Þ � Vx sin �	ð Þ
� �

þ Vy, ð39Þ

bB1x ¼ �
Rm �


 1þ �2ð Þ
e�	 �Vx � sin �	ð Þ � cos �	ð Þð Þ þ Vy sin �	ð Þ þ � cos �	ð Þð Þ
� �

þ
Rm �


 1þ �2ð Þ
Vx þ �Vy

� 	
, ð40Þ

bB1y ¼ �
Rm �


 1þ �2ð Þ
e�	 �Vy � sin �	ð Þ � cos �	ð Þð Þ � Vx sin �	ð Þ þ � cos �	ð Þð Þ
� �

þ
Rm �


 1þ �2ð Þ
Vy � �Vx

� 	
, ð41Þ

� ¼
2

M2 þ M4 þ %2�ð Þ
1=2

 !1=2

, � ¼
ðM4 þ %2�Þ1=2 �M2

%�1=2
¼

1

2
%�1=2�2, ð42Þ

where % 
 �M0 z ¼ 0ð Þ, V 
 uM0 z ¼ 0ð Þ, as previously, and 4� 
 %� � z ¼ 0ð Þ ¼

�½M2�=� 1þ �2
� 	

�B Vx þ �Vy

� 	
. Since % enters the expressions both for the boundary

layer thickness � and for � we will assume from now on that %¼ const. Having the
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solutions for uB0 and bB1x, and using uB1z
��
	¼0
¼ 0 and uB1z 	!1ð Þ ¼ uM1z z! 0ð Þ, we can

easily obtain the BLP term,

W ¼�
�2M2


� 1þ �2ð Þ

B

%

1� �2

2 1þ �2ð Þ
VxrH � Vþ

�

1þ �2
VyrH � Vþ

1� �2

1þ �2
�
1

2

� �
V � rVx

�

þ �
2

1þ �2
�
1

2

� �
V � rVy þ

�

2

1� �2

1þ �2

� �
Vx þ

�2

1þ �2
Vy

� �
!M
0z



þ
�




1

1þ �2

� �
rH � Vþ

�




�

1þ �2

� �
!M
0z , ð43Þ

where !M
0z is the main flow vorticity at z¼ 0. We can readily recover the result of the

previous section by setting the Taylor number to zero: �¼ 0¼)�¼ 0, �¼M�1.
There are three effects that contribute to the BLP in expression (43). The general

structure of the BLP can therefore be expressed as

BLP ¼MPPþ BP� ES: ð44Þ

The basic pumping term,

BP ¼
�




1

1þ �2

� �
rH � V, ð45Þ

results from the fact that uMz depends on z or that the medium is compressible (or both);

it is non-zero even if the magnetic pressure does not influence the density at the leading

order. Moreover, the expression for BP would be more complicated if we had not

assumed %¼ const. The magnetic pressure pumping term,

MPP � �
�2M2


� 1þ �2ð Þ

B

%
¼

�4 �


%ðVx þ �VyÞ
, ð46Þ

is an outcome of the magnetic pressure influencing the density distribution, an effect

somewhat reminiscent of magnetic buoyancy. The final term,

ES ¼
�




�

1þ �2

� �
!M
0z , ð47Þ

is simply the Ekman suction, which can be positive or negative depending on the sign of

the vorticity of the main flow. In general, there can be competition between these

effects. In particular, when the main flow vorticity !M
0z is negative and MPP is positive,

the latter may overcome the ES and produce positive BLP if the magnetic field is

sufficiently strong. To provide an example we may take,

Vx ¼ �y, Vy ¼ const, Vz ¼ 0,

bM1xjz¼0 ¼  �yþ �Vy

� 	
, bM1yjz¼0 ¼  Vy � ��y

� 	
, bM1z jz¼0 ¼ ��zþ const,

% ¼ const,

9>=
>; ð48Þ

where  ¼ Rm �=
 1þ �2
� 	

, and for which the main flow vorticity

!M
0z ¼ ��, ð49Þ
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and hence is negative, provided �40. This leads to the following pumping expression,

W ¼ �
�2M2


� 1þ �2ð Þ

B

%
�Vy

1� �2

1þ �2
�
1

2

� �
� ��

1� �2

2 1þ �2ð Þ
�yþ

�Vy

1þ �2

� �� 
�
�




��

1þ �2

� �
,

ð50Þ

which clearly demonstrates the competition between magnetic pressure pumping and

Ekman suction. The linearisation procedure requires that the term

ð
M2=�RmÞB bB1x � bmatch
1x

� 	
uB0 be small compared with uB0 and 1=RmbB1 ; thus Vx and Vy

must be small and hence the MPP term in expression (50) is much smaller than that

representing ES. However, the influence of the magnetic pressure on the BLP and the fact

that MPP can either compete or cooperate with ES can clearly be seen. Furthermore,

the gradients of velocity need not necessarily be small, which means that, for example,

we could assume the main flow velocity to be Vx ¼ �yþ ~�x, Vy ¼ � ~�y, with �� 1, but
~� � 1, and consider small values of the coordinates x and y. This would lead to comparable

MPP and ES and an actual competition between those effects, even in the linear regime.
For comparison with the nonlinear system examined below, we consider a specific

numerical example. Taking M2
¼ 106, 
¼ �, �¼M¼ �1/4, and %¼ 1, �¼ 0.65, Vy¼ 1 at

y¼ 1, we obtain W � 0:0174B� 0:2298, which is positive (i.e. the fluid is pumped out

of the boundary layer) for a strong horizontal component of the external magnetic field

(B4 13:2), and negative (with the fluid being sucked into the boundary layer) for

weaker horizontal fields. Varying the strength of the shear, �, gives a similar effect, i.e.

the MPP increases with the strength of the shear. In other words, a strong enough shear

may lead to MPP overcoming ES and producing an outward mass flow from the

boundary layer. The dependence on shear though, as is clear from expression (50),

is not monotonic. For the above choice of parameter values and with B ¼ 1:0, the
BLP is negative for �¼ 1, with W¼�0.2869. If the shear is increased to �¼ 2, the

suction is increased and now W¼�0.3463. However, for even stronger shear, the BLP

again becomes positive (e.g. W¼ 0.2177 when �¼ 4) and stays positive for all �4�c
where �c� 3.5.

To demonstrate this effect more clearly, we have resolved numerically the full

nonlinear system of the boundary layer equations,

@	u
B
0 ¼ �

1

Rm �
@2	b

B
0 , ð51Þ

�
�1=2

M2
%êz � V ¼ �

�1=2

M2
%�

M2
B

�Rm
bB0x � bM0x
� 	� 

êz � uB0 þ
1

Rm �
@	b

B
0 þ

1

�2M2
@2	u

B
0 , ð52Þ




�
@	 �

B
0 u

B
1z � %W

� 	
¼ �@x �

B
0 u

B
0x � %Vx

� 	
� @y �

B
0 u

B
0y � %Vy


 �
, ð53Þ

�B0 ¼ %�
M2

�Rm
B bB0x � bmatch

0x

� �
, ð54Þ

with the boundary conditions uB0 	 ¼ 0ð Þ ¼ 0, uB0 	!1ð Þ ¼ V, bB0 	 ¼ 0ð Þ ¼ 0,

b0 	!1ð Þ ¼ bmatch
0 , in the rectangular domain 0 y 1.2, 0 z 10. The main flow

velocity and magnetic field were chosen as in (48), and the parameter values were taken

as above, i.e. M2
¼ 106, 
¼ �, Rm¼�¼M¼ �1/4, and �¼ 0.65, %¼ 1, Vy¼ 1. The

solution for the horizontal magnetic field strength B ¼ 10 is presented in figure 1(a).

We see that for small values of the independent variable y, in the area where the vertical
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vorticity of the main flow is negative, the boundary layer sucks in the outside fluid.
However, as y increases, the MPP overcomes the ES and in the region where !M

0z < 0 the
fluid is pumped out of the boundary layer into the main flow. Figure 1(b) shows the
increase in the BLP strength with the increase in the horizontal magnetic field
intensity B. The comparison with the linear results in (50) highlights the importance of
the nonlinear effects in the problem, since forB ¼ 10 at y¼ 1, BLP calculated from (50)
is still negative. In this example, no BP is present, since for our choice of the main flow
solution, as in (48), rH �V¼ 0. This effect, however, is in general present for a com-
pressible medium.

One more word of comment seems to be necessary since, in the parameter regime
chosen for this section, defined by (11), the main flow leading-order momentum
equation (18) constitutes a balance between the Coriolis and Lorentz forces without the
inclusion of the pressure gradient (changing the order of the pressure gradient and
including it in the main flow balance by setting ��M2 and leaving other scalings in (11)
unchanged, would lead to a decrease in the MPP by an order of magnitude in M).
Although such a limit may seem a little unusual, our simple model provides a clear
example of the MPP. Clearly, in applications to stellar interiors, for example, further,
more complex, effects must be taken into account, rendering the main flow balance
more physical. The MPP would of course then be modified; however, it is unlikely to be
completely suppressed, since the leading order density would still be affected by the
magnetic pressure variations. In the following section, we consider different parameter
regimes, more closely related to that of the solar tachocline, to investigate the role of
MPP in more astrophysically realistic situations.

4. The solar tachocline regime

In section 3, in order to illustrate the effect of MPP, we chose a very simple model,
characterised by an isothermal equation of state, and governed by the specific

Figure 1. BLP for M2
¼ 106, 
¼ �, Rm¼M, �¼M¼ �1/4, �¼ 0.65, %¼ 1 and the main flow velocity field

chosen as in (48). (a) Colour map of the vertical momentum �B0 u
B
1z, with the horizontal component of the

external magnetic field B ¼ 10. The ES, caused by the anti-cyclonic vortex in the main flow, dominates, and
the fluid is sucked into the boundary layer for y9 0.83. For larger values of y, however, MPP becomes
stronger and overcomes ES. (b) Comparison of the BLP for different values of the horizontal magnetic field.
Only for sufficiently strong B is the MPP able to overcome the ES, and produce positive pumping
for y0 0.83.
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ordering (11). Moreover, the boundary conditions for the induced magnetic field and

the velocity, i.e. (10), may be regarded as idealised. However, the simplifications of our

model were introduced only so as to present a clear example of the analysed

phenomenon, and relaxing them will not necessarily lead to the suppression or

elimination of MPP. In fact it is likely to persist, although in a modified form, for many

types of boundary conditions leading to the formation of a boundary layer.
One possible astrophysical application of the ideas developed in this article is to the

solar tachocline, which may, in a simplification of the true physics, be described as an

Ekman or Ekman–Hartmann layer (see Garaud 2007). However, as stressed above,

MPP requires the magnetic pressure to influence the density at leading order, and hence

the magnetic pressure has to be of the same order as the gas pressure (i.e. plasma � of

order unity). Given that � at the base of the convection zone far exceeds unity, it may be

anticipated therefore that the role of MPP in the dynamics of the solar tachocline is

unlikely to be significant. That said, it is of interest to examine the estimates of the

magnitudes of the governing parameters for the tachocline, and then to discuss under

what circumstances MPP may be important in an astrophysical context.
The various important dimensional quantities, evaluated at the base of the

convection zone, may be estimated as follows:

g � 5:4� 102 m s�2, �s � 210 kgm�3, T � 2:3� 106 K,

� � 2:7� 10�6 s�1, U � 10m s�1, L � 2:1� 108 m, ð55Þ

� 

�

�s
� 2:7� 10�3 m2 s�1, � � 4:1� 10�2m2 s�1, BT � 105G:

The values of g, �s, T, �, L, � and � at the base of the convection zone, taken from

Gough (2007), are reasonably well-determined. We have adopted for L the depth of the

whole convection zone; however, it could plausibly be chosen to be smaller by about

one order of magnitude. The estimates for U, the magnitude of the toroidal velocity,

and BT, the strength of the toroidal magnetic field, taken from Gough (2007) and

Garaud (2007), are much more uncertain. For consistency with the foregoing analysis,

when estimating the parameter values, we have adopted the strength of the poloidal

component of the magnetic field, which we have assumed to be two orders of magnitude

weaker than the strength of the toroidal field. In addition, we make the assumption that

the gas is mainly hydrogen, and that therefore

mA � 1:7� 10�27 kg: ð56Þ

This leads to the following estimates of the parameters in equations (1) and (2),

M � 1011, �1=2 � 1014, Re � 1012, Rm � 1011, G � 1020, � � 1020: ð57Þ

This parameter regime is thus suggestive of the orderings,

�1=2 �M, Re �M, Rm �M, � �M2, G �M2, ð58Þ

although it can be seen that terms that differ fairly considerably, such as M and �1/2, are
assigned comparable magnitudes. Under the ordering (58), the governing equations
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take the following form:
in the main flow,

@zp
M
�2 ¼ �G�

M
0 and @xp

M
�2 ¼ @yp

M
�2 ¼ 0, ð59Þ

Re �M0 uM0 � r
� 	

uM0 ¼ �rp
M
�1 þ

M2

Rm
r � bM0
� 	

� Bêx þ êz þ bM0
� 	

� �1=2�M0 êz � uM0 � 
G�
M
1 êz, ð60Þ

uM0 � r
� 	

bM0 ¼ B@xu
M
0 þ @zu

M
0 þ bM0 � r

� 	
uM0 � Bêx þ êz þ bM0

� 	
r � uM0 , ð61Þ

r � �M0 uM0 ¼ 0, r � bM0 ¼ 0, ð62Þ

pM�2 ¼ 

2��M0 , pM�1 ¼ 


2��M1 ; ð63Þ

and in the boundary layer,

bB0z ¼ 0, uB0z ¼ 0, ð64Þ




�
@	 �

B
0 u

B
1z � %W

� 	
¼ �@x �

B
0 u

B
0x � %Vx

� 	
� @y �

B
0 u

B
0y � %Vy


 �
, ð65Þ

Rm �@	u
B
0 þ @

2
	b

B
0 ¼ 0, ð66Þ

�rH pB�2 � pmatch
�2

� 	
þ

1

Rm �
@	b

B
0 þ

1

�2M2
@2	u

B
0 ¼ 0, ð67Þ

@	p
B
�2 ¼ 0, @	p

B
�1 ¼ �


M2

Rm
B@	b

B
0x � 
�G �B0 � %

� 	
, ð68Þ

pB�2 ¼ 

2��B0 , pB�1 ¼ 


2��B1 , ð69Þ

where, as in section 3, % 
 �M0 z ¼ 0ð Þ, V 
 uM0 z ¼ 0ð Þ and W ¼ uM1z z ¼ 0ð Þ. The

boundary layer equations lead to pB�2 ¼ const, which means that the leading order

density in the boundary layer �B0 would also have to be constant. The magnetic pressure

influences the density at first order, which would lead to much weaker MPP and BP at

second order. In other words, the fact that the plasma �, the ratio of gas pressure to

magnetic pressure, is very large in the Sun means that the density cannot be influenced

by magnetic pressure variations at leading order.
To present some physical examples in which the MPP would play a significant role,

let us now consider slightly modified scalings to those applicable to the solar tachocline,

given by (58). Assuming, for example, as in section 3,

� �M and G �M, ð70Þ

leads to changes only in the last three equations, (67)–(69), which become

1

Rm �
@	b

B
0 þ

1

�2M2
@2	u

B
0 ¼ 0, ð71Þ

@	p
B
�1 ¼ �


M2

Rm
B@	b

B
0x, ð72Þ

pB�1 ¼ 
��
B
0 : ð73Þ

We now have the desired influence of the magnetic pressure on the leading order

density, and thus non-zero first order MPP. The BP term is, in general, also non-zero.
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However, the Coriolis force does not enter the leading order equations, and therefore

the ES influences the BLP only at higher orders. As a result, no competition can occur

between ES and MPP; however, there is still the possibility of competition between BP

and MPP. The set of equations (64)–(66), (71)–(73) is in fact the same as that describing

the pure Hartmann layer, discussed in section 3.1, except that the magnetic field is

stronger by an order of magnitude. Hence the formula for the BLP, expression (32),

derived in that section is exactly valid here. Furthermore, in the parameter regime

chosen here, the main flow momentum equation (60) no longer represents a balance of

just two forces (Coriolis and Lorentz), but also includes the pressure gradient.
Finally, with respect to this ordering, we should like to point out that the assumption

G�M, which eliminates gravity from our theory, is not strictly necessary, and that

taking G�M2 would not violate the conclusions. The density distribution would be

different, mainly giving stable stratification in the lower parts of the layer; however,

all three effects discussed in the pumping expression, i.e. MPP, BP and, in general, ES,

would still be present.
The scalings (58) proposed above lead to exclusion of the Coriolis effect in the BLP at

leading order, since the Sun’s rotation is not very rapid. However, if we consider rapid

rotation, i.e. �1/2�M2 and leaving all the other relations in (58) unchanged, an

additional assumption of very strong horizontal magnetic field with respect to the

vertical field, i.e.

�1=2 �M2, Re �M, Rm �M, � �M2, B �M, ð74Þ

leads to a system of equations similar to those in section 3.2.
In the main flow,

0 ¼ �
�2rp�2 � �
1=2�M0 êz � uM0 þ

M2
B

Rm
r � bM0
� 	

� êx, ð75Þ

0 ¼ B@xu
M
0 � Br � uM0

� 	
êx, ð76Þ

r � �M0 uM0
� 	

¼ 0, r � bM0 ¼ 0; ð77Þ

and in the boundary layer,

bB0z ¼ 0, uB0z ¼ 0, ð78Þ




�
@	 �

B
0 u

B
1z � %W

� 	
¼ �@x �

B
0 u

B
0x � %Vx

� 	
� @y �

B
0 u

B
0y � %Vy


 �
, ð79Þ

RmB�@x uB0 � V
� 	

þRm @	u
B
0 �RmB� rH � u

B
0 � V

� 	
þ



�
@	u

B
1z

h i
êx þ

1

�
@2	b

B
0 ¼ 0, ð80Þ

�
�1=2

M2
%êz � V ¼ �

1


2M2
rHp

0 �
�1=2

M2
�B0 êz � uB0 þ

1

Rm �
@	b

B
0 þ

1

�2M2
@2	u

B
0 , ð81Þ

@	p
B
�2 ¼ �


2M2

Rm
B@	b

B
0x, ð82Þ

together with

pM;B�2 ¼ 

2��M;B0 , ð83Þ
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where

p0 ¼ p�2 � pmatch
�2 þ


2M2
B

Rm
bB0x � bmatch

0x

� 	
, ð84Þ

and where, for simplicity, we have again assumed that G�M. The most important

differences between the above set of equations and the system (18)–(26) are that the

leading order, main flow, momentum equation now simply constitutes a magnetos-

trophic balance, and also that additional terms now appear in the boundary layer

induction equation. These terms significantly change the character of the boundary

layer equations, from ordinary to partial differential equations. Also, the boundary

layer induction and continuity equations are now coupled via the term ð
=�Þ@	u
B
1z, which

makes the problem strongly nonlinear. These additional terms do not, however, act to

suppress the MPP, which is still present in this case, since the density continues to be

influenced by the magnetic pressure at leading order (cf. equations (82) and (83)) and

the continuity equation (79) remains unchanged. Moreover, if we follow the

linearisation procedure introduced in section 3.2, the simple assumption that the

boundary layer solution and the main flow velocity at z¼ 0 depend only on y yields

precisely the same system of boundary layer equations as obtained in section 3.2; hence,

the results obtained there are also valid here. It is important to emphasise that a crucial

feature of the model with the parameter regime given by (74) is that the magnetic field

B �M has to be very strong in order for the MPP to enter the dynamics and to be able

to overcome the ES.

5. Concluding remarks

Through our study of the influence of compressibility on magnetic boundary layers of

Hartmann and mixed Ekman–Hartmann type, we have identified a new and potentially

important effect, which can influence the boundary layer pumping. The fluid can be

pumped out of or sucked into the boundary layer not only via the well-known

mechanism of Ekman suction, but also as a result of the change in density distribution

caused by the magnetic pressure (MPP). The compressibility of the main flow can also

create non-zero pumping (BP, which may also be due to the presence of the vertical

main flow velocity and its dependence on the distance from the boundary, and hence

may also be non-zero for an incompressible medium). The net result of these three

effects (ES, MPP and BP) can be to cause either boundary layer suction or pumping,

depending on the characteristics of the solution and the relations between the

parameters describing the system. In particular, as we have shown in section 3.2, in the

region of negative main flow vorticity, ES can be overcome by MPP if the horizontal

magnetic field is strong enough, causing the fluid to be pumped out of the boundary

layer into the main flow. The crucial characteristic of the analysed problem is that the

magnetic field has to become strong before the fluid can be pumped out of the layer

(dragging the magnetic field with it). This is because, first, the Hartmann numbers must

be large in order for the boundary layers to form, and, second, the intensity of the MPP

increases with the strength of the horizontal magnetic field, which, in the regions where
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other effects produce suction, has to be sufficiently strong to overcome the ES and/or
the basic suction.

We have studied here only the case for which the vertical component of the external
magnetic field is significant. However, the structure and properties of any magnetic
boundary layer are strongly dependent on the magnitude of the vertical component of
the field. In the case where the magnetic field is tangent to the boundary, the width of
the boundary layer is ��M�1/2 (Roberts 1967a), whereas if there exists only one
isolated point at which the external magnetic field is tangent to the boundary, the width
of the layer is ��M�2/3 (Roberts 1967b). The three possible cases, including that
analysed here, are shown schematically in figure 2. Since the BLP appears at the first
order of the perturbation analysis, it is proportional to the parameter of perturbative
expansion, �, and hence we could expect it to be stronger in those cases when
the vertical component of the magnetic field vanishes. Furthermore, the presence of
the vertical component of the field and also the conductivity of the boundary
strongly influence the currents flowing out of or into the boundary layer (Dormy et al.
2002, Mizerski and Bajer 2007, Soward and Dormy 2010), which may also
have important consequences for the dynamics of the flow at the base of the solar
convective zone.

The Sun is not a very rapidly rotating star, and therefore the Coriolis force enters the
boundary layer dynamics only at higher orders (at first order, to be precise). This means
that ES occurs at O(M�2) and hence, in the solar tachocline, ES does not enter the
leading order BLP. Moreover, the magnetic pressure is about five orders of magnitude
smaller than the gas pressure, and thus the MPP is weak and unlikely to play any
significant role in the dynamics. Competition between ES and MPP could, however,

M−2/3

M−1

M−1/2

MAIN FLOW

BOUNDARY LAYER

Figure 2. The width of the magnetic boundary layer in three cases: (a) ��M�1 if the vertical component of
the magnetic field is of the same order as the value of the whole magnetic field vector; (b) ��M�2/3 in the
neighbourhood of an isolated point, where a magnetic field line is tangent to the boundary; (c) ��M�1/2 in a
region where the magnetic field is tangent to the boundary.
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happen in more rapidly rotating stellar objects, where the proposed scalings are more

likely to occur.
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