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ABSTRACT

In this paper application of Multi-Layer Perceptr@MLP) Neural Networks to the
prediction of dispersion coefficients in a smateain (the Murray Burn in Edinburgh, UK) is
presented. Data from eighteen tracer experimentsmpeed in that river are used to test the
MLP networks, which were trained and validated odatabase of information from other
published work. Results from the MLP networks ammpared with results from other
techniques, such as: the method of moments apgiedmplete concentration distributions
and to distributions with tails truncated at 10%té peak value; an example empirical
formulae and Fischer’s routing procedure. Two défé MLP networks are presented, one
trained on all the data in the database and anatherthat used only data from “smaller
rivers”. The performance of the methods was asdellgecomparing the results from each
one with those from the routing method. The netwaakned on “smaller rivers” proved to be
the most reliable. Results from the network traioedall the data in the database predicted
smaller dispersion coefficients, and they were alsaller than those from Fischer's routing
procedure. On the other hand, the method of monstmiwed the poorest correlation with the
routing method. This is caused by a large degresaiter in the method of moments results,
which emanates from it being heavily influenced thyg tails of the concentration-time
profiles measured in the experimental programme.
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1 INTRODUCTION

The task of predicting the fate of pollutants tbater watercourses is undertaken by the
water industry throughout the world. Although nelgas and models are proposed from time
to time, few have made any real impact, and thertgjof current best practice relies on the
pioneering work of Taylor (1954) and Fischer (1960n) this approach, pollutant transport
predictions are based on the Advection-Dispersigmaon, satisfactory application of which
rests on an ability to estimate dispersion coeffits for rivers and streams. Despite much
work that has improved our understanding of thesptay processes that cause dispersion, the
prospect of robustly evaluating dispersion coefiits across a wide range of hydraulic
conditions still evades us. A recent developmeat #hows some promise for improving this
situation, however, lies in the application of Millayer Perceptron (MLP) Neural Networks
(Kashefipour et al., 2002; Rowinski et al., 200&yfur & Singh, 2005).

This paper contributes to the above topic by dbswithe application of MLP networks
to the prediction of dispersion coefficients in madl stream, for which data from a
programme of tracer experiments were available. dine of the paper is to examine the
performance of the MLP networks by comparing tipeedictions against those derived from
several other popular methods. Section 2 reviewsieg methods for predicting dispersion
coefficients, Section 3 provides background on Mh@&dels and Section 4 presents details of
the experimental programme. The results are predeartd discussed in Section 5, where a



new equation for predicting dispersion coefficiemts small streams is proposed, and
conclusions are drawn in Section 6.

2 BACKGROUND
The transport of a conservative soluble pollutalon@ a uniform channel may be
described by the following well-known Advection-persion Equation:
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whereC is the cross-sectional average solute concentrdtias the cross-sectional average
longitudinal flow velocity,D is the longitudinal dispersion coefficient,is the longitudinal
co-ordinate and is time. In this equatiol quantifies the downstream movement of solute
and D quantifies the longitudinal spreading (dispersiaf)solute. Several assumptions
underlie the derivation of this equation, principdhat the solute should be cross-sectionally
well mixed and that the cause of the longitudinpteading is a shear flow dispersion
mechanism. In regard to the latter, it is also ae=i that the tendency of cross-sectional
gradients of longitudinal velocity to create creestional gradients of solute concentration is
in equilibrium with the tendency of cross-section@king (due to turbulence and secondary
currents) to erode those concentration gradierdgl¢F, 1954). In rivers and streams Fischer
(1967) demonstrated that dispersion occurs predamtn by the interaction of transverse
velocity gradients and transverse mixing, the ébation from the equivalent vertical flow
structure being small.

Clearly, to apply equation (1) to a practical secenghe dispersion coefficient for the
reach is required. Since dispersion coefficientsno&d be measured in-situ directly from a
simple individual measurement, several technigueg tbeen devised for estimating them.
The four most common approaches are the methodafants; Fischer's routing procedure;
empirical equations and numerical integration of flow structure. Details of these are
commonplace in the literature (appearing, for edamim Fischer et al., 1979; Rutherford,
1994; Singh & Beck, 2003; Wallis & Manson, 2004heTiirst three of these techniques rely
directly or indirectly on observations of the dispen process that are provided by solute
tracer experiments. The experiments provide saateentration-time profiles at the ends of
the reach under study, the analysis of which esahlke dispersion coefficient to be estimated.
Since these three methods are used later in ther,ptqe essential ingredients of them are
given below. The flow structure integration meth®dtess popular because it requires detailed
measurements of, or estimates of, the transverdégsrof (a) (depth averaged) longitudinal
velocity and (b) transverse mixing rates. The metlsonot used in this paper, because the
required data were not available.

2.1 METHOD OF MOMENTS

This is the traditional method of estimating digpien coefficients from a pair of
observed concentration-time profiles. It involvedcalating the variances and centroids of the
profiles using their first two temporal moments.véwer, it is well known that the method
can be unreliable because the results are vernjtigsen® the information in the tails of the
concentration—time profiles. In an attempt to redtie resulting uncertainty on the moments,
truncation of the profiles at the point where tlmmaentration drops below 3% of the peak
concentration has been reported (Mazijk & Veling)2). Here, truncation at the point where
the concentration dropped below 10% of the peakeatnation was used, referred to below
as the truncated method of moments. Jobson (18p6)ts the use of 10% truncation, but for
other reasons.



2.2 FISCHER'S ROUTING PROCEDURE
This method involves optimising the dispersion fioent to obtain a best fit between a

predicted downstream concentration-time profile andbserved downstream concentration-
time profile. The predicted downstream profile @nputed by routing the observed upstream
concentration-time profile through the reach usanganalytical solution of equation (1). The
velocity in equation (1) can be optimised at thensaime or it can be assumed that the
velocity is known from the value given by dividirtige reach length by the centroid travel
time of the solute cloud. The latter method waslusehe current work.

2.3 EMPIRICAL EQUATIONS

Several workers have proposed empirical equatiweitshiave been derived by correlating
observed values of dispersion coefficients to Wldw hydraulic parameters. In the majority
of cases the observed dispersion coefficients wsed estimated from tracer experiments and
the method of moments, but recently some workersgfample, Seo & Cheong (1998)) have
preferred the use of Fischer's routing proceduree&iimating the dispersion coefficients
because this reduces the uncertainty in the valaesed by the difficulties of dealing with the
tails of the concentration-time profiles. Most bése empirical equations take the following
non-dimensional form:
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whereB is the channel width is the mean depth of flow)- is the shear velocityg andb
are constants (>1) arféis a function that ranges in complexity from a gienconstant (for
example, Fischer (1975); Seo & Cheong (1998)) texression involving measures of one
or more of channel shape, transverse mixing andretasinuosity (for example, Seo & Baek
(2002); Deng et al. (2002)). The constamtndb are both frequently 2, but not in every case.
The nature of equation (2) exposes the roles ofirblaaspect ratio and friction (through the
shear velocity). Increases in the former tend twaase dispersion (Rutherford, 1994), while
rougher channels tend to create more turbulenciehwdy encouraging more cross-sectional
mixing, tends to reduce dispersion. One of thestated most promising of these equations
has been used in this work, namely that due to @¢md (2001). In thisa = 2,b = 5/3 andF

= (0.15/(&)), where k is the transverse mixing coefficient that is eesdd using the
following equation.
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3 ARTIFICIAL NEURAL NETWORKS

Multi-Layer Perceptron (MLP) Neural Networks are lweknown “universal
approximators” and have been successfully appledispersion coefficient assessment in
recent years (Kashefipour et al., 2002; Rowinskiakt 2005; Tayfur & Singh, 2005;
Piotrowski et al., 2006). In the current work MLEtworks, with one hidden layer and with a
sigmoidal activation function applied only to hisddaodes, were employed. The networks
used the following data: reach mean values of cdlamdth @), channel depthH), flow
velocity (U), shear velocityy-) and river sinuosity indexsi), arranged in the form d&/H,
U/U+, 3UB, sin. A database composed of measured dispersion cieets and various bulk
flow hydraulic parameters from 81 river reaches lighled in Deng et al. (2001) and




Sukhodolov et al. (1997) was available. These 84 dere divided into training (50) and
validation (31) sets, as in Rowinski et al. (2088y Piotrowski et al. (2006). The networks
were trained by means of the Levenberg-Marquagtirahm (Haykin, 1994) with a multi-
start approach.

The first neural network (MLPA) was trained andifred on all the data in the database,
while the second neural network (MLPS) was traiaed verified on a sub-set of the database
that excluded large rivers, i.e. those with widsh500m or dispersion coefficients > 108
Thus this second network was trained on "smallemsvonly. Clearly, these numerical
boundaries for width and dispersion coefficient i@ther arbitrary, and in view of the size of
the stream used in this study (see Section 4), matiye rivers in the truncated database are
still "large". However, there were not enough "dthelers in the database to optimise the
network effectively if the values defining thesaubdaries were reduced.

Both MLP networks, trained and verified on the Den@l. (2001) and Sukhodolov et al.
(1997) data base, were then applied to a set ofétr@xperiments performed on the Murray
Burn, Edinburgh. Since these data had not been dseidg the training of the MLP
networks, this use of the networks was a truly peadelent test of their ability to predict
dispersion coefficients.

4 APPLICATION OF DISPERSION COEFFICIENT PREDICTORS

Data for this study were derived from a programrhdgwenty-six tracer experiments
undertaken in the Murray Burn, which is a strearat thows through the Heriot-Watt
University Campus at Riccarton in Edinburgh. Theeskments were conducted in a 0.5 km
reach of the stream, and each experiment consitin (gulp) injection of a known mass of
Rhodamine WT dye followed by the measurement ofitsotoncentration-time profiles at
four sampling sites further downstream (Burke, 300Phe profiles were obtained by
collecting water samples from the central parthef €ross-section. Tracer concentrations in
the samples were determined under laboratory donditusing a single calibrated Turner
Designs fluorometer and allowing for temperatufeas. The sampling interval was matched
to the flow rate of each experiment, with the aifn capturing well-resolved profiles.
Typically, sampling intervals of 30s, 60s and 12@sre used for high, medium and low
flows, respectively.

Dispersion coefficients were derived from the sigthods referred to earlier: the two
artificial neural networks; the two methods of manse Fischer's routing procedure; and the
empirical equation given by Deng et al. (2001).dRrieons were obtained for the first sub-
reach of the Murray Burn, i.e. the reach betweenfitist and the second sampling sites. This
reach is 137m long with a mean width of 3.7m anuean longitudinal slope of 0.025. It
contains two bends and has a sinuosity of 1.08.sfiteam bed is covered with cobbles and
boulders of nominal sizes ranging between the aoflécm and the order of 15cm. Eighteen
sets of tracer concentration-time data were auaildh the first sub-reach from the
experimental programme (these covered the floweahg 1n¥/s). Only cases containing
complete (or very nearly complete) concentratiometiprofiles were included in the analysis.
For each experiment, the flow rate was estimateuah fthe tracer data using dilution gauging
applied to the concentration-time curve at thet fsl@mpling site, by dividing the mass of
tracer used by the area under the concentratiomtirofile.

Other data required for the application of the rad¢hdescribed in Sections 2 and 3 were
obtained as follows. The channel width was deriiein measurements of the stream
channel. These were undertaken at one (medium) o only, and so no information was
available on any variations of width with flow raféhe average width of the channel was
used for all experiments in all the analyses. Tioev fvelocity for each experiment was
estimated by dividing the reach length by the trawvee of the centroid of the tracer cloud



between sampling sites 1 and 2. For each experjniemtchannel depth was estimated by
dividing the cross-sectional area of the flow by tmean channel width, with the cross-
sectional area of the flow being calculated fromflow rate and the flow velocity.

5 RESULTS AND DISCUSSION

Results from the six methods described above asepted in Table 1 for each of the
eighteen tracer experiments referred to earliene@aly, the dispersion coefficients are very
small (being of the order of 1%8), which befits the size of the stream, and iheyease with
flow rate, which is consistent with other studi®uiherford, 1994). In order to compare the
results from the different methods it was assuntet the values from Fischer's routing
procedure were the most reliable ones. This wastas a number of considerations. Firstly,
the method gave consistently good fits to the dosgasn data: an example is shown in Figure
1. Secondly, the nature of the method is that d&spe coefficients derived from it are
representative of the change in shape of the entireentration-time profile as it passes
through the reach: it is not, for example, excedgiinfluenced by the tails. Finally, several
other workers have adopted the method as theirepesf way of estimating dispersion
coefficients from tracer data of the type beingdusere (for example, Seo & Cheong,
(1998)). It is interesting to note that Figure lustrates a general trend found in most of the
routing procedure results, namely that the pealceotnation and the tail were reproduced
well, but the routed peak showed a small phasedagpared to the observed peak.
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Figure 1. Result of Fischer's routing procedureEgperiment 10.

The performance of the other five methods is nosessed by comparing the results
from each method with those from the routing methable 2 presents some statistics that
summarise these comparisons. The statistics, whiehe evaluated over the eighteen
experiments, were derived as follows:

« Mean of ratio — this is the average value of thmeraf the dispersion coefficient from
a method to the corresponding dispersion coeffidiam the routing method



- Standard deviation of ratio - this is the stand#ediation of the ratio of the dispersion
coefficient from a method to the corresponding eispn coefficient from the routing
method

+ RMSE - this is the root mean square value of ther €or difference) between the
dispersion coefficient from a method to the coroesjfing dispersion coefficient from
the routing method

« R - this is the correlation coefficient between tfispersion coefficients from a
method and those from the routing procedure.

Table 1. Predicted dispersion coefficients from migthods: MLPA = neural network using
complete database; MLPS = neural network usingbdata with large rivers excluded; Deng
= Deng et al. (2001); MOM = method of moments; TM@Mruncated method of moments;
RP = Fischer's routing procedure.

Dispersion Coefficient (Ats)
ExperimentFlow (I/s)| MLPA MLPS Deng MOM TMOM RP
2 68.0 0.43 0.72 1.01 0.82 0.58 0.59
4 43.6 0.38 0.59 0.78 0.91 0.43 0.43
5 47.5 0.39 0.58 0.75 1.16 0.46 0.43
6 128.5 0.52 0.97 1.56 1.62 0.80 0.83
7 134.2 0.53 1.04 1.75 1.02 0.67 0.88
8 45.9 0.39 0.63 0.84 0.28 0.60 0.38
9 35.3 0.36 0.62 0.83 0.06 0.75 0.52
10 56.3 0.41 0.68 0.93 1.07 0.76 0.58
15 49.5 0.40 0.73 1.03 0.41 0.61 0.5p
16 15.6 0.30 0.29 0.34 0.78 0.34 0.2P
17 13.9 0.29 0.31 0.37 0.65 0.52 0.38
18 33.0 0.36 0.47 0.58 0.74 0.51 0.50
20 261.0 0.69 1.36 2.86 3.84 2.24 2.18
21 162.1 0.57 1.13 2.03 1.98 0.58 0.7
22 2575 0.67 1.28 2.52 3.08 1.45 1.76
23 62.1 0.42 0.66 0.88 0.65 0.55 0.4p
24 535.4 0.91 1.45 2.97 2.99 1.81 1.9
26 952.4 2.84 1.97 6.36 0.48 2.20 2.74

Table 2. Summary statistics of the performanceivd fmethods in relation to the results of
Fischer's routing procedure.

Statistic MLPA MLPS Deng MOM TMOM
Mean of ratio 0.74 1.13 1.73 1.56 1.06
Standard deviation of 0.21 0.31 0.45 0.78 0.25
ratio
RMSE 0.51 0.34 1.04 0.91 0.19
R 0.80 0.94 0.94 0.59 0.97

Some clear trends are apparent in the resultseXample, the empirical equation of Deng
et al. (2001) and the method of moments signifigamter predict the dispersion coefficient,



while the first artificial neural network (MLPA) gificantly under predicts it. The truncated
method of moments and the second artificial nenedwork (MLPS) both over predict the
coefficient, but to much smaller extents than thpieical equation of Deng et al. (2001) or
the method of moments. The two former methods stheav the highest correlation with, and
the smallest root mean square error with, the mgutiethod results.

It is worth noting that the method of moments shdins poorest correlation with the
routing method. This is caused by a large degresaiter in the method of moments results,
which emanates from the heavy influence of thes tail this method. Even when the tails are
complete, defining where they finish is far fromsgaand can have a surprisingly large
influence on the dispersion coefficients. In congar with the method of moments, the
results from the truncated method of moments arehmmore consistent, showing a much
reduced scatter and, interestingly, much closexeagent with the routing procedure results.

A useful way of portraying the dispersion coeffittie is in the non-dimensional form of
equation (2). Hence, Figure 2 shows the method mhemts results, and Figure 3 shows the
artificial neural network results plotted in thisasyy assuming that the constaatandb are
both 2. Results from Fischer's routing method amws on both figures. Figure 2 reinforces
the earlier comments on the reduced scatter inmiaod of moments results when the tails
of the concentration-time profiles are truncateufe 3 shows the closer agreement with
Fischer's routing method of the MLPS network coredaio the MLPA network. It is also
noticeable that the scatter is also much reducetkdd, the results from the MLPS network
show a good linear trend, and the linear trend (amnstrained to pass through the origin) is
shown on the figure. The equation of this liné €R0.83) is proposed as a new predictor of
dispersion coefficient in small streams, and igiby:
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Figure 2. Non-dimensional dispersion coefficienteethod of moments and routing
procedure.
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Figure 3. Non-dimensional dispersion coefficierastificial neural networks and routing
procedure.

It is interesting to note that equation (4) is qudimilar to the first empirical equation
proposed for predicting dispersion coefficientss@fer, 1975) in which the numerical
constant is 0.011.

6 CONCLUSIONS
Dispersion coefficients for a reach of a small atne(the Murray Burn) have been
estimated using six methods. Comparisons of thdteelead to the following conclusions:
« A neural network trained on "small" rivers (MLP$rh a database of observed cases
of dispersion yields a robust predictor of dispanstoefficients for the Murray Burn
« Results from a neural network trained on all théadam the database (MLPA)
predicted coefficients that were smaller than théreen MLPS and which were
significantly smaller than those from Fischer'stirmy procedure
« The truncated method of moments gave dispersiofficieats that were significantly
more robust than those from the traditional metbiochoments
- The empirical equation of Deng et al. (2001) sigaifitly over predicted the
dispersion coefficients in the Murray Burn.
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