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ABSTRACT  
In this paper application of Multi-Layer Perceptron (MLP) Neural Networks to the 

prediction of dispersion coefficients in a small stream (the Murray Burn in Edinburgh, UK) is 
presented. Data from eighteen tracer experiments performed in that river are used to test the 
MLP networks, which were trained and validated on a database of information from other 
published work. Results from the MLP networks are compared with results from other 
techniques, such as: the method of moments applied to complete concentration distributions 
and to distributions with tails truncated at 10% of the peak value; an example empirical 
formulae and Fischer’s routing procedure. Two different MLP networks are presented, one 
trained on all the data in the database and another one that used only data from “smaller 
rivers”. The performance of the methods was assessed by comparing the results from each 
one with those from the routing method. The network trained on “smaller rivers” proved to be 
the most reliable. Results from the network trained on all the data in the database predicted 
smaller dispersion coefficients, and they were also smaller than those from Fischer's routing 
procedure. On the other hand, the method of moments showed the poorest correlation with the 
routing method. This is caused by a large degree of scatter in the method of moments results, 
which emanates from it being heavily influenced by the tails of the concentration-time 
profiles measured in the experimental programme. 
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1  INTRODUCTION 

The task of predicting the fate of pollutants that enter watercourses is undertaken by the 
water industry throughout the world. Although new ideas and models are proposed from time 
to time, few have made any real impact, and the majority of current best practice relies on the 
pioneering work of Taylor (1954) and Fischer (1967). In this approach, pollutant transport 
predictions are based on the Advection-Dispersion Equation, satisfactory application of which 
rests on an ability to estimate dispersion coefficients for rivers and streams. Despite much 
work that has improved our understanding of the physical processes that cause dispersion, the 
prospect of robustly evaluating dispersion coefficients across a wide range of hydraulic 
conditions still evades us. A recent development that shows some promise for improving this 
situation, however, lies in the application of Multi-Layer Perceptron (MLP) Neural Networks 
(Kashefipour et al., 2002; Rowinski et al., 2005; Tayfur & Singh, 2005). 

This paper contributes to the above topic by describing the application of MLP networks 
to the prediction of dispersion coefficients in a small stream, for which data from a 
programme of tracer experiments were available. The aim of the paper is to examine the 
performance of the MLP networks by comparing their predictions against those derived from 
several other popular methods. Section 2 reviews existing methods for predicting dispersion 
coefficients, Section 3 provides background on MLP models and Section 4 presents details of 
the experimental programme. The results are presented and discussed in Section 5, where a 



new equation for predicting dispersion coefficients in small streams is proposed, and 
conclusions are drawn in Section 6.  

 
2 BACKGROUND 

The transport of a conservative soluble pollutant along a uniform channel may be 
described by the following well-known Advection-Dispersion Equation: 
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where C is the cross-sectional average solute concentration, U is the cross-sectional average 
longitudinal flow velocity, D is the longitudinal dispersion coefficient, x is the longitudinal 
co-ordinate and t is time. In this equation U quantifies the downstream movement of solute 
and D quantifies the longitudinal spreading (dispersion) of solute. Several assumptions 
underlie the derivation of this equation, principally that the solute should be cross-sectionally 
well mixed and that the cause of the longitudinal spreading is a shear flow dispersion 
mechanism. In regard to the latter, it is also assumed that the tendency of cross-sectional 
gradients of longitudinal velocity to create cross-sectional gradients of solute concentration is 
in equilibrium with the tendency of cross-sectional mixing (due to turbulence and secondary 
currents) to erode those concentration gradients (Taylor, 1954). In rivers and streams Fischer 
(1967) demonstrated that dispersion occurs predominantly by the interaction of transverse 
velocity gradients and transverse mixing, the contribution from the equivalent vertical flow 
structure being small. 

Clearly, to apply equation (1) to a practical scenario the dispersion coefficient for the 
reach is required. Since dispersion coefficients cannot be measured in-situ directly from a 
simple individual measurement, several techniques have been devised for estimating them. 
The four most common approaches are the method of moments; Fischer's routing procedure; 
empirical equations and numerical integration of the flow structure. Details of these are 
commonplace in the literature (appearing, for example, in Fischer et al., 1979; Rutherford, 
1994; Singh & Beck, 2003; Wallis & Manson, 2004). The first three of these techniques rely 
directly or indirectly on observations of the dispersion process that are provided by solute 
tracer experiments. The experiments provide solute concentration-time profiles at the ends of 
the reach under study, the analysis of which enables the dispersion coefficient to be estimated. 
Since these three methods are used later in the paper, the essential ingredients of them are 
given below. The flow structure integration method is less popular because it requires detailed 
measurements of, or estimates of, the transverse profiles of (a) (depth averaged) longitudinal 
velocity and (b) transverse mixing rates. The method is not used in this paper, because the 
required data were not available.  

 
2.1 METHOD OF MOMENTS 

This is the traditional method of estimating dispersion coefficients from a pair of 
observed concentration-time profiles. It involves calculating the variances and centroids of the 
profiles using their first two temporal moments. However, it is well known that the method 
can be unreliable because the results are very sensitive to the information in the tails of the 
concentration–time profiles. In an attempt to reduce the resulting uncertainty on the moments, 
truncation of the profiles at the point where the concentration drops below 3% of the peak 
concentration has been reported (Mazijk & Veling, 2005). Here, truncation at the point where 
the concentration dropped below 10% of the peak concentration was used, referred to below 
as the truncated method of moments. Jobson (1996) reports the use of 10% truncation, but for 
other reasons.  



2.2 FISCHER'S ROUTING PROCEDURE 
This method involves optimising the dispersion coefficient to obtain a best fit between a 

predicted downstream concentration-time profile and an observed downstream concentration-
time profile. The predicted downstream profile is computed by routing the observed upstream 
concentration-time profile through the reach using an analytical solution of equation (1). The 
velocity in equation (1) can be optimised at the same time or it can be assumed that the 
velocity is known from the value given by dividing the reach length by the centroid travel 
time of the solute cloud. The latter method was used in the current work.  

 
2.3 EMPIRICAL EQUATIONS 

Several workers have proposed empirical equations that have been derived by correlating 
observed values of dispersion coefficients to bulk flow hydraulic parameters. In the majority 
of cases the observed dispersion coefficients used were estimated from tracer experiments and 
the method of moments, but recently some workers (for example, Seo & Cheong (1998)) have 
preferred the use of Fischer's routing procedure for estimating the dispersion coefficients 
because this reduces the uncertainty in the values caused by the difficulties of dealing with the 
tails of the concentration-time profiles. Most of these empirical equations take the following 
non-dimensional form: 
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where B is the channel width, H is the mean depth of flow, U* is the shear velocity, a and b 
are constants (>1) and F is a function that ranges in complexity from a simple constant (for 
example, Fischer (1975); Seo & Cheong (1998)) to an expression involving measures of one 
or more of channel shape, transverse mixing and channel sinuosity (for example, Seo & Baek 
(2002); Deng et al. (2002)). The constants a and b are both frequently 2, but not in every case. 
The nature of equation (2) exposes the roles of channel aspect ratio and friction (through the 
shear velocity). Increases in the former tend to increase dispersion (Rutherford, 1994), while 
rougher channels tend to create more turbulence, which by encouraging more cross-sectional 
mixing, tends to reduce dispersion. One of the latest and most promising of these equations 
has been used in this work, namely that due to Deng et al. (2001). In this, a = 2, b = 5/3 and F 
= (0.15/(8k)), where k is the transverse mixing coefficient that is evaluated using the 
following equation. 
 

38.1

*3520

1
145.0





























+=
H

B

U

U
k         (3) 

 
3 ARTIFICIAL NEURAL NETWORKS 

Multi-Layer Perceptron (MLP) Neural Networks are well known “universal 
approximators” and have been successfully applied for dispersion coefficient assessment in 
recent years (Kashefipour et al., 2002; Rowinski et al., 2005; Tayfur & Singh, 2005; 
Piotrowski et al., 2006). In the current work MLP networks, with one hidden layer and with a 
sigmoidal activation function applied only to hidden nodes, were employed. The networks 
used the following data: reach mean values of channel width (B), channel depth (H), flow 
velocity (U), shear velocity (U*) and river sinuosity index (sin), arranged in the form of B/H, 
U/U*, 3UB, sin. A database composed of measured dispersion coefficients and various bulk 
flow hydraulic parameters from 81 river reaches published in Deng et al. (2001) and 



Sukhodolov et al. (1997) was available. These 81 data were divided into training (50) and 
validation (31) sets, as in Rowinski et al. (2005) and Piotrowski et al. (2006). The networks 
were trained by means of the Levenberg-Marquardt algorithm (Haykin, 1994) with a multi-
start approach.   

The first neural network (MLPA) was trained and verified on all the data in the database, 
while the second neural network (MLPS) was trained and verified on a sub-set of the database 
that excluded large rivers, i.e. those with widths > 100m or dispersion coefficients > 100m2/s. 
Thus this second network was trained on "small" rivers only. Clearly, these numerical 
boundaries for width and dispersion coefficient are rather arbitrary, and in view of the size of 
the stream used in this study (see Section 4), many of the rivers in the truncated database are 
still "large". However, there were not enough "small" rivers in the database to optimise the 
network effectively if the values defining these boundaries were reduced. 

Both MLP networks, trained and verified on the Deng et al. (2001) and Sukhodolov et al. 
(1997) data base, were then applied to a set of tracer experiments performed on the Murray 
Burn, Edinburgh. Since these data had not been used during the training of the MLP 
networks, this use of the networks was a truly independent test of their ability to predict 
dispersion coefficients.  

 
4  APPLICATION OF DISPERSION COEFFICIENT PREDICTORS  

Data for this study were derived from a programme of twenty-six tracer experiments 
undertaken in the Murray Burn, which is a stream that flows through the Heriot-Watt 
University Campus at Riccarton in Edinburgh. The experiments were conducted in a 0.5 km 
reach of the stream, and each experiment consisted of the (gulp) injection of a known mass of 
Rhodamine WT dye followed by the measurement of solute concentration-time profiles at 
four sampling sites further downstream (Burke, 2002). The profiles were obtained by 
collecting water samples from the central part of the cross-section. Tracer concentrations in 
the samples were determined under laboratory conditions using a single calibrated Turner 
Designs fluorometer and allowing for temperature effects. The sampling interval was matched 
to the flow rate of each experiment, with the aim of capturing well-resolved profiles. 
Typically, sampling intervals of 30s, 60s and 120s were used for high, medium and low 
flows, respectively.  

Dispersion coefficients were derived from the six methods referred to earlier: the two 
artificial neural networks; the two methods of moments; Fischer's routing procedure; and the 
empirical equation given by Deng et al. (2001). Predictions were obtained for the first sub-
reach of the Murray Burn, i.e. the reach between the first and the second sampling sites. This 
reach is 137m long with a mean width of 3.7m and a mean longitudinal slope of 0.025. It 
contains two bends and has a sinuosity of 1.08. The stream bed is covered with cobbles and 
boulders of nominal sizes ranging between the order of 1cm and the order of 15cm. Eighteen 
sets of tracer concentration-time data were available in the first sub-reach from the 
experimental programme (these covered the flow range 0 – 1m3/s). Only cases containing 
complete (or very nearly complete) concentration-time profiles were included in the analysis. 
For each experiment, the flow rate was estimated from the tracer data using dilution gauging 
applied to the concentration-time curve at the first sampling site, by dividing the mass of 
tracer used by the area under the concentration-time profile. 

Other data required for the application of the methods described in Sections 2 and 3 were 
obtained as follows. The channel width was derived from measurements of the stream 
channel. These were undertaken at one (medium) flow rate only, and so no information was 
available on any variations of width with flow rate. The average width of the channel was 
used for all experiments in all the analyses. The flow velocity for each experiment was 
estimated by dividing the reach length by the travel time of the centroid of the tracer cloud 



between sampling sites 1 and 2. For each experiment, the channel depth was estimated by 
dividing the cross-sectional area of the flow by the mean channel width, with the cross-
sectional area of the flow being calculated from the flow rate and the flow velocity. 
 
5  RESULTS AND DISCUSSION 

Results from the six methods described above are presented in Table 1 for each of the 
eighteen tracer experiments referred to earlier. Generally, the dispersion coefficients are very 
small (being of the order of 1 m2/s), which befits the size of the stream, and they increase with 
flow rate, which is consistent with other studies (Rutherford, 1994). In order to compare the 
results from the different methods it was assumed that the values from Fischer's routing 
procedure were the most reliable ones. This was based on a number of considerations. Firstly, 
the method gave consistently good fits to the downstream data: an example is shown in Figure 
1. Secondly, the nature of the method is that dispersion coefficients derived from it are 
representative of the change in shape of the entire concentration-time profile as it passes 
through the reach: it is not, for example, excessively influenced by the tails. Finally, several 
other workers have adopted the method as their preferred way of estimating dispersion 
coefficients from tracer data of the type being used here (for example, Seo & Cheong, 
(1998)). It is interesting to note that Figure 1 illustrates a general trend found in most of the 
routing procedure results, namely that the peak concentration and the tail were reproduced 
well, but the routed peak showed a small phase lag compared to the observed peak.  
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Figure 1. Result of Fischer's routing procedure for Experiment 10. 

 
The performance of the other five methods is now assessed by comparing the results 

from each method with those from the routing method. Table 2 presents some statistics that 
summarise these comparisons. The statistics, which were evaluated over the eighteen 
experiments, were derived as follows: 
 

• Mean of ratio – this is the average value of the ratio of the dispersion coefficient from 
a method to the corresponding dispersion coefficient from the routing method 



• Standard deviation of ratio - this is the standard deviation of the ratio of the dispersion 
coefficient from a method to the corresponding dispersion coefficient from the routing 
method 

• RMSE – this is the root mean square value of the error (or difference) between the 
dispersion coefficient from a method to the corresponding dispersion coefficient from 
the routing method 

• R – this is the correlation coefficient between the dispersion coefficients from a 
method and those from the routing procedure. 

 

Table 1. Predicted dispersion coefficients from six methods: MLPA = neural network using 
complete database; MLPS = neural network using database with large rivers excluded; Deng 
= Deng et al. (2001); MOM = method of moments; TMOM = truncated method of moments; 
RP = Fischer's routing procedure. 

 

 Dispersion Coefficient (m2/s) 

Experiment Flow (l/s) MLPA MLPS Deng MOM TMOM RP 

2 68.0 0.43 0.72 1.01 0.82 0.58 0.59 
4 43.6 0.38 0.59 0.78 0.91 0.43 0.43 
5 47.5 0.39 0.58 0.75 1.16 0.46 0.43 
6 128.5 0.52 0.97 1.56 1.62 0.80 0.83 
7 134.2 0.53 1.04 1.75 1.02 0.67 0.88 
8 45.9 0.39 0.63 0.84 0.28 0.60 0.38 
9 35.3 0.36 0.62 0.83 0.06 0.75 0.52 
10 56.3 0.41 0.68 0.93 1.07 0.76 0.58 
15 49.5 0.40 0.73 1.03 0.41 0.61 0.56 
16 15.6 0.30 0.29 0.34 0.78 0.34 0.29 
17 13.9 0.29 0.31 0.37 0.65 0.52 0.38 
18 33.0 0.36 0.47 0.58 0.74 0.51 0.50 
20 261.0 0.69 1.36 2.86 3.84 2.24 2.13 
21 162.1 0.57 1.13 2.03 1.98 0.58 0.72 
22 257.5 0.67 1.28 2.52 3.08 1.45 1.75 
23 62.1 0.42 0.66 0.88 0.65 0.55 0.45 
24 535.4 0.91 1.45 2.97 2.99 1.81 1.92 
26 952.4 2.84 1.97 6.36 0.48 2.20 2.74 

 
Table 2. Summary statistics of the performance of five methods in relation to the results of 
Fischer's routing procedure. 
 

Statistic MLPA MLPS Deng MOM TMOM 

Mean of ratio 0.74 1.13 1.73 1.56 1.06 
Standard deviation of 

ratio 
0.21 0.31 0.45 0.78 0.25 

RMSE 0.51 0.34 1.04 0.91 0.19 
R 0.80 0.94 0.94 0.59 0.97 

 
Some clear trends are apparent in the results. For example, the empirical equation of Deng 

et al. (2001) and the method of moments significantly over predict the dispersion coefficient, 



while the first artificial neural network (MLPA) significantly under predicts it. The truncated 
method of moments and the second artificial neural network (MLPS) both over predict the 
coefficient, but to much smaller extents than the empirical equation of Deng et al. (2001) or 
the method of moments. The two former methods also show the highest correlation with, and 
the smallest root mean square error with, the routing method results. 

It is worth noting that the method of moments shows the poorest correlation with the 
routing method. This is caused by a large degree of scatter in the method of moments results, 
which emanates from the heavy influence of the tails on this method. Even when the tails are 
complete, defining where they finish is far from easy and can have a surprisingly large 
influence on the dispersion coefficients. In comparison with the method of moments, the 
results from the truncated method of moments are much more consistent, showing a much 
reduced scatter and, interestingly, much closer agreement with the routing procedure results. 

A useful way of portraying the dispersion coefficients is in the non-dimensional form of 
equation (2). Hence, Figure 2 shows the method of moments results, and Figure 3 shows the 
artificial neural network results plotted in this way, assuming that the constants a and b are 
both 2. Results from Fischer's routing method are shown on both figures. Figure 2 reinforces 
the earlier comments on the reduced scatter in the method of moments results when the tails 
of the concentration-time profiles are truncated. Figure 3 shows the closer agreement with 
Fischer's routing method of the MLPS network compared to the MLPA network. It is also 
noticeable that the scatter is also much reduced. Indeed, the results from the MLPS network 
show a good linear trend, and the linear trend line (constrained to pass through the origin) is 
shown on the figure. The equation of this line (R2 = 0.83) is proposed as a new predictor of 
dispersion coefficient in small streams, and is given by: 
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Figure 2. Non-dimensional dispersion coefficients: method of moments and routing 
procedure. 
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Figure 3. Non-dimensional dispersion coefficients: artificial neural networks and routing 
procedure. 
 
It is interesting to note that equation (4) is quite similar to the first empirical equation 
proposed for predicting dispersion coefficients (Fischer, 1975) in which the numerical 
constant is 0.011. 

 
6  CONCLUSIONS 

Dispersion coefficients for a reach of a small stream (the Murray Burn) have been 
estimated using six methods. Comparisons of the results lead to the following conclusions:  

• A neural network trained on "small" rivers (MLPS) from a database of observed cases 
of dispersion yields a robust predictor of dispersion coefficients for the Murray Burn 

• Results from a neural network trained on all the data in the database (MLPA) 
predicted coefficients that were smaller than those from MLPS and which were 
significantly smaller than those from Fischer's routing procedure 

• The truncated method of moments gave dispersion coefficients that were significantly 
more robust than those from the traditional method of moments 

• The empirical equation of Deng et al. (2001) significantly over predicted the 
dispersion coefficients in the Murray Burn. 
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