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ABSTRACT: The optimal control problem for the Wupper Reservoir System case is presented. The aim of 
control is to realize many different tasks concerning the water resources distribution. However, multiobjective 
aspects of the problem are not the main subject of this paper. Our aim is rather to present a general concept of 
solving the problems formulated over the infinite time horizon and with minimax-type objectives (the worst 
case approach). The algorithm, based on the reachable sets concept and using the periodicity of control 
process, is discussed. We focus our attention on its theoretical aspects. 

I FORMULATION OF MINIMAX PERIODICAL 
CONTROL PROBLEM 

A multireservoir system is considered, described over 
the infinite time horizon by the discrete state 
equation: 

Xt+1 = f, (x, , m. , 8 , ), t = 0, I, . (1.1 ) 

where x, EX = Rn represents the process state value 
at instant t, m, EM - the control value and 8 ,EE ­
disturbance value within the stage t (ie. between t 

and t+1 time instants). 
The precise description of both this model and its 
variables x" mt, 8, for the Wupper Reservoir System 
case is given in (Napi6rkowski et al. 1997). It is 
worthwhile to underline here that the state vector x, 
represents not only the physical system state 
(reservoir water contents). It represents also some 
artificial state variables, related to the calculation of 
some performance objectives values (see Sect. 1.1), 
as well as to the representation of system operator 
knowledge of disturbances (scenario-type model of 
inflows (Karbowski et al. 1984». 

The aim is to minimize N performance 
objectives evaluating particular aspects of system 
performance. N functions gi are given, depending on 
time t and current values of state, control and 
disturbance. The control goal is to minimize (in a 
multicriteria sense) the maximum (the worst) value of 
each function g ,j = I, ... , N. This maximum value 
is taken over all time instants t = 0,1, ... , over every 

possible disturbance realization 8, EE,(x,) t;;; E, t =
 

0,1, ... and over every initial state value Xo E Xo t;;; X.
 
The decision variables are the set Xo and the
 
controls; however, not values m" but the control
 

laws ~,E M X
, i.e. functions which connect the
 

control value m, and a state x,. The following
 
constraints are imposed on these control laws:
 

~. (x,) E V,(x,) t;;; M, t = 0, I, . (1.2)
 

where V, is a given mapping depending on t.
 

Thus, we search for the minimal (in Pareto sense)
 
value of the vector J composed of N performance
 
objectives:
 

min J = [ J 1, ... , IN] (1.3)
 
XoEXo; lit, t=O,l, where
 

Ji = max{ gi, (x., ~,(x.), 8,):
 

XoEXo, ~,(X.)EV,(X,), 8 ,EE,(x,), t=O,I, ... } (1.4)
 

Xo t;;; X, ~,E M X and x" 8 , satisfY the equation (I I)
 
with m, = IJt(X,), t = 0,1, .
 

To solve the above problem we apply a 
special approach based on the following premises and 
concepts: 
I) the reference point method for multiobjective 

optimization
 
2) the periodicity of control process
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3) a general concept based on the reachable sets 
idea. 

It will be shown that, using I) and 2), one can 
transform our problem to a form which fits directly 
the concept 3) discussed in detail in Section 2. 

I. I Application of the reference point method 
Periodicity of the control process. 

According to the reference point method (Wierzbicki 
1982), the problem (1. 3) is now presented as: 

min (15) 

subject to: Jj~s+ej, j=I, ... ,N 

where e = ( e I, ... , eN ), called reference point, is a 
given element of the objective space. 

Taking into account the definition (1.4) of J j, 
we obtain the following two-level problem: 

Find a set Xo~ X and a sequence of control laws
 
Il,: X ~ M, t = 0, I, .. , which minimize the value s:
 
min s, subject to the condition:
 

'lij=I, .. ,N 'lixoEXo 'lit=O, I, .. 'liE,EE,(x,):
 

[llt(X,)EV,(X,) A gI, 
. 

(X"Il,(X,),E,) ~ s+e 
j 1 (1.6)
 

where x" E , satisfy the equation (I .1) with
 
m, = Il,(x,), t = 0, I,..
 
Then, the lower level, (1.6), consists in solving a set
 
of parametric constraints (with parameter s).
 

The periodicity of the problem (13) - (1.4) (and
 
also, of the problem (1.6» with respect to time t,
 
plays a crucial role in its solution. It occurs in a water
 
system case, due to the natural, physical features of
 
such an object. Its natural period (cycle), denoted
 
here by T, is one year Notice, however, that the
 
assumed periodicity of inflows does not have a
 
direct, trivial character The considered model
 
respects the uncertainty of inflow realization in the
 
following year, even if the previous year realization is
 
known The periodicity occurs then in a generalized
 
state space, allowing us to make use of an a priori
 
knowledge of the possible scenarios set and only this
 
set is in fact a periodic one.
 
Formally, we assume the following periodicity
 
relations in the considered control process:
 

'lit : r. (x, y, z ) = f'+T ( X, y, Z ) 

'lit : V, (x) = V'+T (x) 
'lit : E, (x) = E'+T (x) 
'lij =1, ... , N 'lit: gI,(x, y, z) = glt+T(X, y, z) 
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The following three objective functions ri, used in 
the numerical implementation, are a good example of 
the latter periodicity: 

gt, = d I, g2, = d ,max , g3, = 't 
maxwhere d I, d I ,T, are artificial state variables aimed 

at evaluating 3 aspects of water supply/deficit 
process: average annual deficit, maximum deficit 
value and continuous annual deficit time. These state 

variables are defined (periodically) as follows (H(·) is 
Heaviside's function): 

d,= 0, d,'"ax=O, " = ° ift = k 'T; 
d, = d '-I + d " d ,max = max (d ,-I max, d ,), 

" = H(d,) '("-1 + I) otherwise
 

where d, = (z, - m,)+ , m" z, are current deficit,
 
current water supply and needs, respectively.
 

1.2 Presentation of the problem in a regular, concise 
form. 

A formal manipulation will now be applied to present 
the problem (1.6) in a regular form allowing us to 
exploit the periodicity of the control process. Its idea 
is to transfer the constraints (1.6) from the state 

space X to the space of state sets, 2x Let us 
introduce the following notation and definitions: 

M= {(Ilo, ... ,IlT-I) Ili E MX
, i = 0,1, ... , T-I} 

is the set ofall sequences ofT control laws. 

By {Ki}OT we denote the sequence ofT+1 mappings 

K i : 2x x M ~ 2x (determining the sets of states 
reached in subsequent stages), defined, with 
m = (Ilo, ... , IlT-I) as follows: 

KO(X, m) = X 

Ki+1(X,m) = {y: :3x EK i (X,m) :3EEEi(X) 

[y=f;(x, lli(X), E)]}, i=O,I, .. ,T-I (1.7) 

The last mapping (corresponding to T-th stage) is 

denoted by F: F = K T 

2XThe sequence ofT relations Pi ~ x M, i=O,l,.,T­
1, is defined, with m = (Ilo, ... , IlT-l), by: 

Pi(X,m) '" 'lij=I"N 'lixEKi(X,m) 'liE 

[lli(X)E Ui(X) A gi i (X,lli(X),E) ~ s+8 j 1 

Finally, we define the relation P as the conjunction of 

the relations from the sequence {Pi}OT-I: 



P(X,m) == x c:;;; X A mEM A [V i = 0,1, .. ,T-l: 

Pi (X,m) I (1.9) 

It is seen that relations Pi describe the 
constraints (1.6) for subsequent stages, while P 
describes the constraints for the whole period. With 
the aid of this notation and due to periodicity of 
control process, the constraints (1.6) can be written 
in a concise form as: 

P (Xu,mo) A P (X1,ml) A ••• A P (Xk,fflk) A ••• ,
 

where fflk is the sequence of control laws in the k-th
 

period, i.e. mk = (J!kT, ... , !J<k+I)T-I) and the state sets
 
Xkare defined recursively:
 

Xk+I=F(Xk,mk), k=O,I,.. (1.10)
 

Hence, the constraints (1.6) can be noted in the fonn:
 

Vk = 0,1,. : P (Xk,mk) (1.11)
 

where Xk, mk satisfY the equation (1.10).
 

2. A GENERAL METHOD OF SOLUTION 
BASED ON THE REACHABLE SETS CONCEPT 

A general scheme for solving the problems of the 
type (110) - (I I I), Sect. 1.2, will now be 
considered. This scheme is quite general in the sense 
that it doesn't make use of all specific properties of 
our original optimization problem (1.3) - (1.4) from 
Section 1. The idea of reachable sets (Bertsekas 
1972), earlier applied to the problem (1.3) - (1.4) in 
(Karbowski et aL 1984), is used in this approach. 
This concept is based on elementary facts of the set 
and relations theory. 

Only a very general characterization of the 
considered mathematical objects is assumed, inspired 
by specific properties of the problem from Section 1. 

The scheme itself is conceived as an abstraction of 
the original problem (1.6) structure, presented in the 
concise form (I .10) - (I. 11). 

2.1 The simplijiedformulation. 

Consider the following infinite problem: 

Find X· which satisfies the sentential function p(X) 
of the form: 

p(X)=rVk=O,I, .... :P(Xk)l (2.1) 

where Xk are recursively defined by the "state 
equation": 

k= 0, I,. (2.2) 
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P(X) is a sentential junction and F a mapping, i.e. a 
function F: X---+ X. 

We shall assume here that P and F satisfY the 
following conditions with respect to the relation c:;;; of 
set inclusion: 

, , 
P(X) A X c:;;; X ---+ P (X ) (a) 

, , 
X c:;;; X ---+ F (X ) c:;;; F (X) (b) 

The above relations are easily fulfilled in typical 
cases: (a) is satisfied if P is a safe-type description 
(Terlikowski 1990), ie. if P(X) == Vx EX: p(x), 
where p(x) is a sentential function; (b) is satisfied if 
X is a set of states of a dynamic system and F(X) is 
the image of X in its state transfonnation. 

Having introduced the following definition of 
the largest set from a given sets family {X ,}: 

X = maxc:;;; {X ,} == [X E{X ,} A VX' : X E{X ,} ---+ 
X'c:;;;X] (2.3) 

we denote by F -l(X) the largest inverse element to 
X in the mapping F. 

The third general assumption notes the existence of 
the largest inverse element: 

VX c:;;; F(X) 3z : Z = max c:;;;{ Y F(Y) =X} (c) 

Under these assumptions the following theorems 
hold, which are essential for the proposed method of 
solving the problem (2.1). The first one however 
doesn't need the assumptions (a), (b), (c). 

Lemma 1. 

If X is a solution of the problem (2 1), then F(X) is
 
also a solution of this problem.
 
Moreover, the following relation holds:
 

P(X) == P(X) A P (F(X» • 

The next lemma states some constructive properties 
of problem (2.1) solutions; the assumptions (a) and 
(b) are now important 

Lemma 2. 

a) If X satisfies the relation: 

F(X) c:;;; X (2.4) 

then Xk c:;;; X for every k = 0, 1, 
where Xkare defined by equation (2.2). 



b) Moreover, if X satisfies the formula P, that is if: 

P(X) 1\ F(X) c;;; X (2.5) 

then X is a solution of problem (2.1), that is, 

X satisfies the formula P(X). • 

The relation (2.4) is called the reachability
 
condition. Lemma 2 gives a "finite" construction
 
(2.5) for a solution of an "infinite" problem 
(2.1).Two questions arise now: first, how general is 
this construction, i.e. does such a solution (satisfYing 
(2.4)) always exist, if there exists any solution of 
(2 I); and, second, how can a solution of (2.5) be 
effectively constructed? 
In the following lemma, related to the latter question, 
assumptions (b) and (c) are important. 

Lemma 3. 

The reachability condition (2.4), that is "F(X) C;;; X", 
is satisfied if and only if: 

X=XnF-I(X) • (26) 

Now, turning back to the generality question, 
observe that the relation (2.4) is always satisfied by 

some solutions of problem (2.1); namely, by X· being 
the largest set from the family of all solutions of 
(21) - which is a simple consequence ofLemma 1. 

Lemma .j 

If X· is the largest, W.f. to relation C;;;, solution of 
problem (2.1), that is 

P(X') 1\ [ \;/X: P(X) ~ X C;;; X· ] 

then X· satisfies (2.4), and so we have: 

P(X") 1\ F(X") C;;; X" • (2.7) 

Whether this largest set X" exists is itself another 
C]uestion; we only notice here that it depends on 
some topological features of function F and the set 
defined by P. The following lemma is a simple 
conclusion of the previous results of Lemmas 2, 3 
and 4. 

If X" is the largest solution of problem (2. I), then X" 
is the largest set X which satisfies the conditioIl: 

P(X) 1\ ( X = X n F -leX) ] • (2.8) 

The above results constitute a sufficient background 
for finding a solution of problem (2.1) in an effective 
way The method which will be proposed is based on 
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the contraction mappings concept and consists in the
 
determination of some fixed points X of the
 
following mapping D:
 

D(X) = X n F -leX) (2.9)
 

namely, such that X = D(X)
 
and at the same time P(X) (cp. (2.8))
 

The algorithm is as follows 

- Let X o be any set satisfYing the formula P(X). 

Starting from this set, define the sequence {X;}: 

X 0 = Xo; X i+l = D( X i), i = 0, 1, . (2.10) 

Since D has an obvious "contraction property", in the 

sense that D(X) C;;; X, the sequence {X i} is a 

descending one: X i+l C;;; Xi, i = 0,1, .. ; and so
 

Xi C;;; Xo for all i = 0, I, ... Consider, now the set X
 
being the product of all sets Xi:
 

X=n{X i i=O,I, .. } (211 )
 

Due to Xi C;;; Xo, P(Xo) and assumption (a), we have
 

P( X) On the other hand, under some assumptions
 
which guarantee the continuity of D, the set
 

X satisfies the relation X = D(X) and the sequence
 

{X;} converges (in a respective sense) to X. From
 
the first premise we conclude then, by Lemma 2.b)
 

and 3, that X - which is the final result of our
 
algorithm - is a solution of problem (2.1).
 

The next lemma finds that X is also an upper bound
 
of the family of all sets satisfYing the condition:
 

[X = D(X)] 1\ [X C;;; Xo] (2.12) 

Lemma 6. 

Any X satisfYing (2.12) is included in the set 

X=n{Xii=O,I, ... } 

with X i defined by equations (2.10) and (2.11) • 

Hence, if we assume (as above) that X = D( X), 
then X is also the largest solution of(2.12). 

This result will be used to construct the 

largest solution X" of problem (2.1). It is easy to see 
that for Xo being the largest set which satisfies the 
formula P(X): 

Xo=Xo=maxc;;;{X:P(X)} (2.13) 

the relation (2.12) becomes, by assumption (a), 
equivalent to (2.8). 



Therefore, putting Xo = X0 in the algorithm 

(2.10), we obtain the sequence {X i} which 

converges to the set X= n{ X i}. This set is (by 
Lemma 6) the largest solution of (2.8) and hence, by 
Lemma 5, the largest solution of problem (2.1) (if 
this largest solution of (2.1) exists). 

2.2. The precise formulation with state and control 
variables. 

An analogous reasoning will now be proceeded for a
 
more complicated problem which apparently fits the
 
formulation (1.10) - (1.11) of the problem from
 
Section I:
 

Find X· and an infinite sequence {mk } satisfYing the
 

formulaP:
 

P(X, {md) = I'd k = 0, I, .. : P (mk, Xk)l (2.14)
 

where Xkare defined by the state equation:
 

Xa = X; Xk+! = F(mk, Xk), k = 0, 1,. (215)
 

P is a given formula with two free variables and F is
 
a mapping, F: X x M ---+ X.
 

The two groups of variables: Xk and mk have the
 
sense of state sets and of controls
 

For any given rna we denote by {In o} the stationary
 
sequence of controls, i.e. such a sequence {md that
 
mk = rna for all k = 0,1, .
 

Let us introduce the following two notations:
 

family of sets R(X):
 

R(X) = {Y 3m [P(Y,m) 1\ F(Y,m) <;;; X} (216)
 

mapping D
 

D(X) = X n max<;;; R(X) (2.17)
 

There is an analogy, not direct however, 
between max<;;;R(X), D(X)-(2.I7) and, respectively, 

F-1(X), D(X)-(2.9) from Sect. 2.1. 

We assume (similarly to (c) in Sect. 2.1) the 
existence of the largest ,F-inverse" element ofF: 

'dX <;;; F(X, M): R(X) 01= 0 ~ 

[3z : Z = max<;;;R(X)] (C) 

where F(X,M) is the image of the "control space" M 

in the mapping F(X, .). 

The following two additional assumptions 
(analogous to (a), (b) of Sect. 2.1) will also be used: 

, , 
P(X,m) 1\ X <;;; X ~ P (X ) (A) 

, , 
X <;;; X ~ F(X ,m) <;;; F(X,m) (B) 

Under these assumptions, which are true e.g. in the 
case of a dynamical process state equation (2.15) and 
a safe-type description P, (2.14), we can prove the 
following theorem: 

Theorem 1. 

a) Let the pair (X, {In o}) be such that the pair (X, 
rna) satisfies the relation: 

P(X, rna) 1\ F(X,rna) <;;; X (2.18) 

Then (X, {In o}) is a solution of problem (2.14). 

b) The following extended P-reachability condition: 

3 m: P(m,X) 1\ F(m,X) <;;; X (219) 

is equivalent to the equation: X = D(X) 

and is a sufficient condition for existence of a pair 
satisfYing (2.18) 

c) If X' is the largest solution of problem (2.14) 

(with some {md), then X· is the largest set satisfYing 
the equation 

X=D(X) • 
The algorithm resulting from this theorem follows 
the idea of algorithm (2.10) from Section 2.1: 
- we define the "starting" set 

X 0 = max<;;; {Y 3m P (Y, m)} (2.20) 

-putting X 0 = X 0 we determine the sequence {X i} : 

Xi+!=D(X i)= Xinmax<;;;R(X i) i=0,I, .. (221) 

This sequence - under some topological conditions 
(see Sect 2.1) - converges, for i ---+ co, to the set: 

X=n{X i i =0,1, .. }, (2.22) 

which is, by Th. 1. a), b) and respective continuity 
conditions, a solution of problem (2.14) Moreover, 

if there exists the largest solution X· of (2.14), X is 
just (by Th. I.c» this largest solution of(214). Then 
a stationary control sequence {m o} is determined, 
according to the relation (2.18). 
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3. THE ALGORITHM FOR THE MINIMAX 
PROBLEM OF THE RESERVOIR SYSTEM 

We shall apply now the above method of solving the
 
problem (2.14) to our original problem of Sect. I,
 
namely - to problem (16)
 
In the following two-level method, the algorithm
 
(2.21) is used to solve the problem (LlO)-(LlI). In 
this case the definitions of function F and relation P 
are given by (17) and 0.9). Then, we can apply 
(2.21), since all sufficient conditions for applicability 
of the approach as described in Sect. 2.2 are fulfilled. 
This is quite evident for assumptions (A) and (B). 

( I ) Lower level. 

For a given value s (see (16)) the contraction 
algorithm (2.21) is applied to determine the largest 

set X·(s), being a solution of(LlO) - (LlI). 
At each iteration k of this algorithm, T steps of the 
following finite "backward" iteration scheme are 
performed: for any set X ­

- we put X as the starting point: YT = X 

- for i = I, ... , T-I we calculate: 

Y; = {y: :3mEV;(y) V'EEE;(y) f;(y,m,E)EY,+] A 

V'j= I"N g;(y,m,E) :c; s+e j ]} (3.1) 

- fmally, the set Yo = D(X) is determined as: 

Yo=D(X)=Xn{y::3mE UO(Y)V'EEEo(Y)[ fo(y,m,!':)E Y I 

A V'j=I"N gi 0 (y,m,E) :c; s+e j J} (3.2) 

We use the above scheme (corresponding to one 
period of control process) as follows: 

- for k = 0 we put X = X (the whole space of states); 

the resulting set Yo, (3.2), equal to X 0 (see (2.20), is 

taken as X 0 (see (221)) 

- tor k = 1,2, ... we take X = X k-l and, after T steps 

(3 I)-(3.2) we obtain X k as equal to Yo. 

The whole algorithm is thus the algorithm (2.21) 
"multiplied" T times for every iteration. 

Its result is the set X·(s), as well as the sets Y";, 
i = 0, I, ... ,T, defined by (3.1), (3.2) with the initial 

condition Y·; = X·(s). 
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The sets Y·, serve to determine a sequence 
Illo = (Ilo, ... , ~T-l) of control laws which satisfY, 

with the set of initial states Xo = X'es), all constraints 
(16) for t = 0, I, ... , T-1. 

These control laws are defmed by the following 

formula - for each J.1; (.), i = 0, I, ... , T-I : 

V'XEY·i V'EEE,(x): f;(y,J.1;(X),E)E Y·'+l A [V'j=I, .. ,N 

g, (y,~, (X),!':) :c; s+e j I (3.3) 

As it is seen, our algorithm determines a stationary 

pair (X·(s),{m o}) as a solution of the problem (16) 
(see Th. La)). 

( II ) Upper level. 

The minimum value of parameter s is then searched
 
(with the aid of a simple non-gradient method), for
 
which there exists a solution of constraints (1.6). It is
 
so (under some standard assumptions of continuity of
 
mappings V" E, and g I)' if and only if the lower­

level algorithm, as described above, produces a non­


empty set X·(s).
 

A stationary pair (X· (Sm;n), {m o}), which corresponds
 
to the minimum value Smin is taken as a solution of
 
our multiobjective optimization problem (1.3) - 0.4).
 

The reference point e is selected by the so called
 
"Pareto race" method, (Karbowski et aL 1984),
 
(Korhonen et aL 1986), which makes it possible to
 
translate the users/operator preferences in a clear,
 
intuitive way. It is possible to modifY interactively the
 
value e, if it produces an only weakly effective
 
solution, (Wierzbicki 1982)
 

4. CONCLUSIONS 

The solution method of a vector min-max design and
 
control problem concerning multireservoir systems
 
has been considered. It pertains to the case where the
 
sets, to which the future inflows may belong are
 
given, e.g. as the set of scenarios of all possible
 
inflow trajectories.
 

The two main tasks of this paper are the following:
 
I) first, to develop the concept of reachable sets for
 

a specific, but general problem defined over the 
infinite horizon (Section 2), 



2) second, to show the relation of the above
 
statement with the minimax periodical control
 
problem for a water reservoir system (Section I).
 

The latter problem has been transferred to the form 
of the general abstract statement mentioned above in 
I), by the reference point method (Sect. J.l and 1.2) 
Due to the fact that all sufficient applicability 
conditions (A), (B), (C) from Sect. 2 are satisfied 
(under standard assumptions) in this optimal control 
problem, we obtain directly its complete solution 
fitting exactly the general approach of Section 2. 
Moreover, an effective algorithm presented in Sect. 2 
appears to be entirely applicable to our control 
problem. 

The whole algorithm described in Sect. 3 has 
two-level character The actual optimization is 
performed in a higher level through a scalar 
minimization procedure, while the lower level task 
consists in a recursive contraction of sets. 

Due to the fact that iterations are performed 
on the sets, this method reduces the "curse of 
dimensionality" of the traditional discrete dynamic 
programming Another advantage of the proposed 
approach is that the obtained control policies are 
more general than in the classical approach. Instead 
of a single control law, the algorithm delivers a 
collection of control laws. This may be especially 
useful in a DSS environment, giving the possibility to 
take into account some additional criteria (e.g. hardly 
formalizable), not considered in the performance 
vector. 

The presented approach has been applied and 
computationally verified in a few cases of real water 
systems, e.g Wupper Reservoir System. However, 
our attention has been focused here mostly on the 
theoretical aspects of the proposed solution. It is 
worthwhile to mention that the relation between 
these two formulations: the minimax periodical 
control problem (Sect. I) and the general, abstract 
form of Sect. 2, is not a secondary result, found as an 
application of a primarily developed general concept. 
On the contrary, the attempt to solve the original 
optimal control problem (Karbowski et aL 1994) has 
led us to these generalizations. 
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