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ABSTRACT 

Strupczewski, W.G., Napiorkowski, J.J. and Dooge, J.C.I., 1989. The distributed Muskingum model. 
J. Hydrol., 111: 235-257. 

This paper investigates the limiting form of the multiple Muskingum model when the number 
of reaches increases to infinity, while maintaining finite values for the first and second moments. 
Both the cumulants, and the amplitude and phase characteristics of this distributed Muskingum 
model (DMM) are derived. The model is compared to the solution of the linearised Saint-Venant 
equation for a semi·infinite uniform channel (LSV). The error of the DMM in predicting the third 
central moment of the LSV is shown to be independent of channel length in contrast to the classical 
Muskingum model in which the error increases rapidly with length of channel. 

1. INTRODUCTION 

The Muskingum method of flood routing has been widely used in applied 
hydrology since its first use in connection with a flood control project in the 
Muskingum County of Ohio some fifty years ago (McCarthy, 1939). It has long 
been recognised that the method runs into difficulties as the length of channel 
reach to which it is applied increases. This difficulty can be overcome 
by dividing the channel reach into a number of shorter reaches of equal length 
and treating each of these as a Muskingum reach (Laurenson, 1959). This 
multiple Muskingum model gives an improvement in fitting field data at the 
cost of introducing as a third parameter the number of reaches into which the 
original long channel is divided. 

The present paper investigates the properties of the distributed model 
obtained when the process of dividing the long channel into shorter reaches is 
carried to the limit of a very large number of very short reaches. In the limit 
the three-parameter multiple Muskingum model reduces to a two-parameter 
distributed model. The approximation of this two-parameter model to the 
linearised St. Venant solution for a uniform channel (which has four 
parameters) does not show any improvement over such traditional two
parameter conceptual models as the lag-and-route method or the cascade of 
equal linear reservoirs but does avoid the large errors of the classical 
Muskingum model. 
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2. MUSKINGUM TYPE MODELS 

The classical Muskingum model 

The original Muskingum model (McCarthy, 1939) combines the lumped 
continuity equation: 

(1) 

with the simple linear expression for storage: 

Set) = K[aQI (t) + (1 - a)Q2(t)] (2) 

where QI (t) is the upstream inflow, Q2(t) the downstream outflow, Set) the 
volume of storage in the channel reach; K is a parameter reflecting the lag in 
the reach and a is a parameter reflecting the degree of influence of the upstream 
inflow on the storage volume. 

In the method as originally proposed (McCarthy, 1939; Linsley et al., 1949), 
data were used from a historical flood, for which records of QI (t) and Q2 (t) were 
available, in order to determine the values of the parameters a and K by trial 
and error. Set) was plotted against the weighted value of Q(t) for various values 
of a to determine the value which minimized the divergence between the 
plotted positions for the rising hydrograph and the falling hydrograph; the 
value of K was then given as the slope of the best linear fit of the storage 
against the weighted flow for this value of a. The more objective approach 
based on the use of moments, introduced by Nash (1959) in the study of 
catchment response, was applied by Dooge and Harley (1967b) to parameter 
estimation in conceptual models of linear channel response. Their result for a 
wide rectangular channel with Chezy friction was later generalised by the 
present authors to the case of any shape of channel and any friction law (Dooge 
et al., 1982). 

By substituting from eqn. (2) into eqn. (1) and gathering the inflow and 
outflow terms, we obtain the equation: 

(3) 

Consequently the system function H] (s), i.e. the Laplace transform of the 
impulse response, for this model is given by: 

H () = Q2(S) = 1 - aKs (4)
IS QI(S) l+(l-a)Ks 

This can be inverted to the time domain to give the linear channel response h (t) 
as: 

h (t) t ] _ (_a)o(t) (5)
(1 a)K 1 - a 
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where (5 (t) is the Dirac delta function. The practical difficulty of negative 
ordinates in some cases of the use of the Muskingum model is reflected in the 
sign of the second term on the right-hand side of eqn. (5). 

The moments and the cumulants ofthe impulse response of any linear model 
can be found from the system response (Dooge and Harley, 1967a; Dooge, 1973). 
It can be shown that for the classical Muskingum model (CMM) the Rth 
cumulant is given by: 

(6a) 

It can be readily verified that in particular the first cumulant (which is the 
same as the first moment about the origin) is given by: 

(6b) 

and the second cumulant (which is the same as the second moment about the 
centre) as: 

h2 (CMM) = (1 - 2a)J(2 (6c) 

and so on. 
Matching of the first and second cumulants given by eqn. (6) to the corre

sponding cumulants of the linearised St. Venant equation (given later in 
section 4) leads to: 

h) = K = L (7) 
Ck 

k2= (1 - 2a)J(2 = ~ [1 - (m _ I?Fg] (~)(L)2 (8) 
m SoL Ck 

so that we have the relationship: 

1 1 [ 2 2 Yo 
a = "2 - 2m 1 - (m - 1) Fo] SoL (9) 

where L is the length and So the slope of the channel, m is the ratio of kinematic 
wave speed (ck ) to reference velocity, Yo and F o are values of depth and of 
Froude number at the reference conditions. Accordingly the optimum value of 
the parameter a will vary from minus infinity for a very short channel to 0.5 for 
a very long channel. 

The multiple Muskingum model 

The inability of the classical Muskingum model to model the flood routing 
behaviour of long channels can be deduced from the basic model assumption 
represented by eqn. (2). From that equation it can be clearly seen that after 
inflow QI (t) has ceased, the model reduces to a linear reservoir and the outflow 
Q2(t) will decline exponentially with a time constant of (1 - a)K. Consequent
ly the model is unable to reproduce the crest of the outflow hydrograph if the 
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channel length is such that the time taken to reach maximum outflow is greater 
than the duration of inflow. 

The linking of the length of the channel to the appearance of negative 
outflows from the Muskingum model can be seen from a comparison of eqns. 
(6a) and (9). As the total length of channel (L) increases, the value of a 
approaches closer and closer to 1/2 so that the values of a and (1 - a) approach 
closer and closer. Consequently the even-order cumulants defined by eqn. (6a) 
approach zero while the odd-order cumulants have the limit: 

l K RLim [kR(CMM)] = (R - 1)! (DR 
-- (10) 

a_! 
2 

which is always nonzero and positive. Such contrasting behaviour between the 
even-order and odd-order cumulants is not consistent with a response function 
whose ordinates are all nonnegative. 

By dividing the total channel length in a number of equal reaches the above 
undesirable features in the response function of the classical Muskingum 
model can be avoided (Laurenson, 1959). For the multiple Muskingum model 
the system function H" (s) is given by: 

1 - aKs J" (11)H,,(s) = [ 1 + (1 - a)Ks 

where n is the number of shorter channel reaches into which the total channel 
length (L) has been divided. The general expression for R th cumulant of this 
multiple Muskingum model (MMM) is given by (Dooge, 1973): 

kR(MMM) = nCR - 1)![(1 - a)R - (- al]KR (12) 

For any given value of n the remaining parameters K and a can be optimised 
(in the moments sense) by adapting eqns. (7) and (9) to the length of each 
individual reach, i.e.: 

L
K = (13a) 

and: 

a = -1 - - 1 [1 - (m - 1)2F 2] (n- yo) (13b)
2 2m 0 SoL 

As the value of n is increased the value of K decreases in accordance with eqn. 
(13a) and the value of a decreases in accordance with eqn. (13b) below the value 
given by eqn. (9) where the total channel length is treated as a single reach. The 
value of the reach length (L /n) for which the parameter a reduces to zero is the 
characteristic reach length as defined by Kalinin and Milyukov (1957) and used 
as the basis of a method of flood routing based on a cascade of linear reservoirs 
analogous to the Nash model (1958) for catchment response. 
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The distributed Muskingum model 

It was shown by Strupczewski and Napiorkowski (1986) that, if the two other 
second-order terms in the linear St. Venant equation are expressed through the 
kinematic wave solution in terms of the mixed second-derivative term, then the 
resulting linear channel response can be interpreted as a limiting form of the 
multiple Muskingum model. In the present paper, the multiple Muskingum 
model is taken as the starting point of the process and the nature and 
properties of the limiting form derived before comparing this distributed 
Muskingum model with the solution of the linearised St. Venant equation. The 
procedure followed is a more general and more difficult analysis than the 
special case of demonstrating that the limiting form of a cascade of n equal 
linear reservoirs each of delay time K is given by a pure translation with a lag 
equal to nK as shown by Nash (1960). The latter pure delay corresponds to the 
linear kinematic wave solution which is obtained by neglecting all second 
terms in the linearised St. Venant equation and is an exact solution for the case 
of limiting stability e.g. Fa = 2 for a wide rectangular channel with Chezy 
friction. 

If in the multiple Muskingum model the value of n is increased indefinitely, 
then the value of the delay time K for each of the very short reaches must 
decrease indefinitely in such a way that nK, which represents the delay time 
for the total channel length, remains finite. When this is done we have for the 
first cumulant (i.e. the first moment about the origin): 

(14) 

It is clear from eqn. (13b) that for any given total channel length L the value 
of a will approach minus infinity as the number of short reaches n approaches 
infinity. Since the variance of the linear channel response is positive and finite, 
then we have from the expression for the second cumulant (i.e. the second 
moment about the centre): 

k2 = n[l - 2a]~ (15) 

a second condition that (1 - 2a)K must remain finite as K approaches zero and 
a approaches minus infinity. 

The system function for the distributed Muskingum model can be obtained 
by letting n pass to infinity in eqn. (11) while maintaining the conditions of 
finite nK and finite (1 - 2a)K mentioned in the last paragraph. The main steps 
in this limiting process are described in Appendix A. The system function for 
the distributed Muskingum model is found to be: 

(16) 

in which h) and k2 are the cumulants of the linear response of the channel being 
simulated by the model. 
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Though the system function given by eqn. (16) is relatively simple, the 
inversion to the time domain is not straightforward. Since the model contains 
an infinite cascade of reaches, each represented in the time domain by eqn. (5) 
above, one would expect the infinite cascade to be represented by an infinite 
series. However, as shown in Appendix B we can write as the response function 
in the time domain: 

h(t) = exp(-2kilk2)b(t) + exp[-(t + kl)2kllk2]I1[4(tk~/kD)f2][2(kI!k~t)lf2J 

(17) 

where I) [ ] is a modified Bessel function of the first order. 

3. PROPERTIES OF DISTRIBUTED MUSKINGUM MODEL 

Moments and cumulants of DMM 

The use of moments for characterising the scale and shape of response 
functions was introduced in hydrology by Nash (1959). The application of 
cumulants to the characterisation of linear channel response was a further 
development of this approach (Dooge and Harley, 1967a; Dooge, 1973). The first 
cumulant is identical to the first moment about the origin; the second and third 
cumulants are identical to the second and third moments about the centre; the 
fourth cumulant equals the fourth moment about the centre minus three times 
the square of the second moment about the centre; higher cumulants can be 
expressed in terms of central moments up to and including the same order 
(Kendall and Stuart, 1958). For computational purposes, moments are 
determined and cumulants derived from them for orders above three. In 
analysis, howeve~, cumulants are more convenient because ofthe property that 
any cumulant of the output is equal to the sum·of the 'cumulants of the same 
order of the input and of the response function. 

When a response function is known, the cumulants can be determined 
analytically since the logarithm of the system function is a genera ting function 
for the cumulants (Dooge, 1973). Thus if H(s) is the Laplace transform of the 
system response h(t), the Rth cumulant of the response will be given by: 

dR 

kR(h) = (_l)R ds R [log H(s)]s~o (18) 

and can be obtained by successive differentiation. In the case of the distributed 
Muskingum model, the exponential form of the system function given in eqn. 
(16) makes this procedure particularly convenient. 

The generating function for the cumulants of the distri buted Muskingum 
model obtained by substituting the system function in eqn. (16) into the general 
expression in eqn. (18) is therefore given by: 

kls
O(s) = (19) 
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and the Rth cumulant of the DMM by: 

n 
R d [ kls ] (20)kR(DMM) = (-1) ds n - 1 + (k /2k )s S~O 

2 l 

The process of successive differentiation of the generating function G(s) and 
the derivation of the cumulants is described in Appendix C. It is shown there 
that the Rth cumulant of the distributed Muskingum model is given by: 

k2)R-I
kn(DMM) = R! 2k k l (21)( 

l 

for any value of R. It can be readily verified that the first and second cumulants 
which were preserved in the limiting process are correctly given by eqn. (21) 
above. 

In using the model to simulate a given channel, the first and second 
cumulants can be matched to the known first and second moments of the 
prototype. These two cumulants are the only parameters required for the 
generation of the DMM response function. It is a common experience in applied 
hydrology that the performance of a conceptual model is improved by the 
including of a pure delay into the model. This can be done for the DMM by 
matching the second and third cumulants of model and prototype and making 
up the discrepancy in the first cumulant by a pure delay. In this case we would 
have: 

kz(prototype) (22a) 

3 [kz(prototype)]Z
k[(DMM) (22b)

2 k3 (prototype) 

T (lag of DMM) = k i (prototype) - k l (DMM) (22c) 

as the values of the three model parameters. 

Shape factor diagrams 

The use of dimensionless moments to characterise the shape of response 
functions was used by Nash (1960) in relation to unit hydrographs. This 
approach was adapted by Dooge and Harley (1967a) to the use of dimensionless 
cumulants in relation to the comparison of shapes of linear channel responses. 
Nash pointed out that in the case of a two-parameter model, the third and 
higher moments would be fixed once the two parameters of the model had been 
fixed from the first and second moments. Competing two-parameter models 
could therefore be compared with one another and with field data by plotting 
a dimensionless third moment against a dimensionless second moment. 

Nash (1959) based his system of dimensionless second and higher moments 
on the first moment about the origin, i.e.: 

Un 
(23)

mR = (U;)n 
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where mR is the dimensionless moment of order R, UR is the Rth moment about 
the centre, and U; the first moment about the origin. In order to include orders 
above three without undue complication in analysis, it is more convenient to 
replace these dimensionless moments by dimensionless cumulants defined by: 

kR (24)Sn = (k1)R 

where SR is a shape factor of order R, k R the Rth cumulant, and k1 the first 
cumulant. 

The classical Muskingum model (n = 1), the multiple Muskingum model 
(n > 1) and the distributed Muskingum model (n = co) can be conveniently 
compared on a shape factor diagram in which Sa is plotted against S2' For a 
cascade of n Muskingum reaches two first cumulants are given by eqns. (14) 
and (15) while the third one can be derived from eqn. (12): 

ka(MMM) = 2n(1 - 3a + 3a2 )j(3 (25) 

Substituting these values in eqn. (24) gives: 

(l - 2a)
S2 = (26a) 

n 

(26b) 

Elimination of the parameter a between eqns. (26a) and (26b) gives the relation
ship: 

(27) 

For the particular case of n 1, this expression becomes: 

3 2 1 
sa(CMM) = "2 (S2) +"2 (28) 

while for n = co it becomes: 

S3(DMM) = "23 
(S2)

2 (29) 

The latter expression can readily be confirmed from eqn. (21) which gives in 
general the expression for the Rth shape factor as: 

k )R-l 
(30a)sR(DMM) = R! ( 2~i 

and its relationship with S2 as: 

R-l 
= RI ~ (30b)SR . (2) 
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for all values of R greater than 2. 
The relationship between S3 and S2 is shown on Fig. 1 for the classical 

Muskingum model (n = 1), the multiple Muskingum model with n = 2, and the 
distributed Muskingum model (n = (0). It should be noted that on this diagram 
small values of S2 correspond to long lengths of channel. For very long 
channels, S2 for the classical Muskingum model approaches zero while S3 

approaches 0.5 thus leading, as noted in section 2, to a breakdown in the 
simulation of the channel response. For the multiple Muskingum model this 
limiting value of S3 is 1/2n2 and thus the problem is rapidly eliminated as the 
value of n increases. 

Amplitude and phase characteristics 

In many other branches of geophysics, the properties of systems are 
discussed in relation to their response to a sinusoidal rather than an impulsive 
input (e.g. Pedlosky, 1979). The amplitude and phase spectra are used as the 
basis of comparison of various models and of the comparison of models with 
data. These spectra are also used to gain insight into the characteristics of the 
model or of the system being simulated. 

The amplitude and phase spectra can be derived from the Fourier transform. 
of the system response (Osiowski, 1972). This transform is readily obtained by 
taking only the imaginary part (iw) of the argument (s = c + iw) of the system 
function. Hence we can adapt eqn. (16) for the system function and write: 

. [Wk l i ] (31a)H(LW) = exp - 1 + (k /2k[)wi
2 

as the Fourier transform of the response function of the distributed 
Muskingum model. In order to separate the effects of attenuation with distance 
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2k

and phase shift along the channel it is necessary to split the term inside the 
square brackets into its real and imaginary parts. This is done by multiplying 
top and bottom by the complex conjugate ofthe denominator i.e. by (1 - iwk2/ 

j ). When this is done we obtain: 

. [{ (w
2
k2/2) wk j .}] (31b)H(£w) = exp - 1 + w2(k2/2k j )2 + 1 + w2(kj/2kj? £ 

which when written as: 

. [ _(W2~/~] [ (31c)H(£w) = exp 1 + w2(k /2k )2 exp 
z j 

then is in the standard form: 

H(iw) = A(w) exp(i¢) (31d) 

The first part of the right-hand side of eqn. (31c) represents the amplitude of the 
outflow from the channel reach and the second part represents the sinusoidal 
variation. 

The salient features can be conveniently illustrated by plotting the 
amplitude and phase spectra in terms of the dimensionless frequency given by 
the product of the frequency (w) and the lag (k j ). This gives for the amplitude: 

~(k2/ ki)(wk j )2 ] 
A(wk j) = exp[ - 1 + i(k /ki)2(wk j )2 (32)

z
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Fig. 2. Amplitude characteristic for DMM. 
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in which it is seen that the parameter controlling the amplitude attenuation is 
the shape factor S2 defined by eqn. (24). The variation of the amplitude 
reduction with dimensionless frequency is shown in Fig. 2. It will be noted that 
the attenuation is quite small for low frequencies, and becomes constant for 
high frequencies at a level appropriate for the parameter S2' 

The phase shift can similarly be written in terms of the dimensionless 
frequency as: 

-wh l (33)
</J(wkl) = 1 + W~2/h~?(wkl)2 

The phase shift is seen to be vanishing small for both very low and very high 
frequency. It can be deduced from eqn. (33) that the greatest negative phase 
shift occurs when: 

wk = 2k~ (34)
1 k 

2 

Though frequency analysis has not been widely used in hydrology, the above 
brief analysis shows that such an analysis can be quite informative. 

4. COMPARISON WITH ST. VENANT EQUATION 

The linearised St. Venant solution 

The linearised St. Venant equation for one-dimensional unsteady flow in 
uniform channel may be written as (Dooge et al., 1987a): 

2 2 2 Q1 )2 0 Ql 0 Ql 0 Ql (aSr aQl aSr a (35)
(1 - Fo )gyo ax2 - 2uo axat - 7 = gAo aQ -----at - aA ax 

where Ql is the perturbation of flow about an initial condition of unsteady 
uniform flow Qo, A ois the cross-sectional area corresponding to this flow, Sr is 
the friction slope, Yo is the hydraulic mean depth, U o is the mean velocity, So is 
the bottom slope, x is the distance from the upstream boundary, t is the elapsed 
time and derivatives of the friction slope Sr are evaluated at the reference 
conditions. 

The variation of friction slope with discharge at the reference condition for 
all frictional formula for rough turbulent flow may be expressed as: 

aSr = 2So 
(36)

aQ Qo 

We may for convenience define a parameter m as a ratio of the kinematic wave 
speed to the average velocity of flow: 

(37) 

where Ck is the kinematic wave speed as given by Lighthill and Whitham (1955): 
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(38) 

The parameter m is a function of the shape of channel and of the friction law 
used. When eqns. (36), (37) and (38) are substituted in eqn. (35) one gets: 

2 iY QI 2Fg iP Ql Fg iP Ql 2mSoaQl 2So aQI
(1 - ~ ) - - - - - - - = -- -- + - - (39) 

o ax2 Uo axat u~ at2 Yo ax Yo Uo at 

where Fo is the Froude number of the reference flow. 
The case of a downstream wave for a Froude number less than one was 

solved by Deymie (1935) and independently by Dooge and Harley (1967b) who 
investigated systematically the properties of the solution for the case of a wide 
rectangular channel with Chezy friction. This work has since been extended to 
cover the case of any shape of channel and any friction law (Dooge et aI., 1987). 
The first four cumulants of the solution are:

L
hl = (40a)

Ck 

1
hz - [1 _ (m _ 1)2 F5] (~) (L)2 

(40b)
m Sox ck 

3
h3 - [1 _ (m - 1)2F5][1 + (m _ 1iFg] (~)2 (LY (40c)2m Sox Ck
 

2
 
15 2 2 [ (m k4 m3 [1 - (m - 1) Fo]l -

10m + lOy Fg + (m - 1i F~J5 

(40d)
x (~oxY(~Y 

The shape factors as defined by eqn. (24) are given by: 

82 = ~[1 - (m - 1? F5] (~) (41a) 
m Sox 

~2 [1 - (m - 1i Fg][l + (m - l)F5] (~oxY (41b) 

so that the relationship between the two shape factors is: 

_ 3[1 + (m - l)F(~J( / (42)
83 - 1 - (m - 1)2 Fg 82 

which is applicable for Froude numbers between zero and one i.e. for tranquil 
flow. 

Simplified forms of St. Venant equation 

A number of models of simplified forms of the complete St. Venant equation 
given by eqn. (35) of the last section have been proposed in the hydrological 
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literature. If all three of the second-order terms on the left-hand side of that 
equation are neglected we obtain: 

(43a) 

which is equivalent to: 

aQI aQI 
- + Ck - = 0 (43b)at dx 

where Ck is kinematic wave speed defined by eqn. (38). The solution of this linear 
equation is: 

QJ(x,t) = t(t -~) = constant (44) 

which represents a pure translation. The system function of this solution is: 

H(s) = exp ( - ~s) (45a) 

which is also: 

H(s) = exp(-kjs) (45b) 

The first cumulant: 

(46) 

reproduces exactly the first cumulant of the complete solution as given by eqn. 
(40a) and all the higher cumulants are zero. Equation (43) therefore represents 
an adequate first-order approximation and can be used as the basis of a first
order analysis of flood waves (Lighthill and Whitham, 1955). 

A new-order approximation can be obtained by using eqn. (44) to approxi
mate two of the terms on the left-hand side of eqn. (35) in terms of the remaining 
third term. These approximations are: 

~t"(t - k x) (47a)
c2 I
 

It
 

(47b) 

(47c) 

If the second and third terms are expressed in terms of the first we have: 

(48a) 
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(48b) 

where m is the ratio of the kinematic wave Ck to the reference velocity Ua. 

Substitution from eqn. (48) into eqn. (35) gives: 

gy [1 - (m _ 1)2 F 2] (j2Ql = 2gSa OQl + 2mgS o",Qx 
1 

(49a) 
a a ox2 U ot a ua 

which when written in the form: 

_ (m _ 1)2 F2] ~ (j2Ql = OQl + OQl[1 (49b)o 2S T (jx2 ot muo OXo

is seen to be an advective diffusion equation with the advective parameter: 

a = muo (50a) 

and the diffusivity parameter D: 

D = [1 - (m - I? Fg] ~ (50b)
2SoTa 

where To is the surface width of the channel at reference conditions. The 
system function of this diffusion analogy approximation is given by: 

(51) 

and the cumulants of the solution by: 

2D)R-l (X)R
kR = {1,3,5 .. .(2R - 3)} (ax a (52) 

Comparison of eqns. (50) and (52) with eqn. (40) above reveals that the diffusion 
analogy model gives the correct value for the second cumulant for any value 
of Fo. Further comparison for higher cumulants reveals that the diffusion 
analogy model is identical to the complete solution for the special case of 
Fa = O. 

If the alternative approach is taken of expressing all the second-order terms 
as cross-derivatives, then we have the relationships: 

2) 02Ql = _ gyo (1 _ F 2) iPQl ( F (53a)gyo 1 - 0 DX2 Ck 0 oxot 

(53b) 

so that the second-order approximation becomes: 

gYa [1 - (m o (54a) 
muo 
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or: 

o (54b) 

which can be conveniently written as: 

D 02 Ql OQI OQI 
---+-+a- = 0 (54c) 
a oxot ot Ox 

where D and a have the same values as defined by eqn. (50). The solution of this 
equation has the system function: 

(55) 

which is identical in form to the system function for the distributed 
Muskingum model as given by eqn. (16). Comparison of eqns. (16) and (55) gives: 

x 
(56a) 

and: 

= 2D ~ = 2D (~)2 
2a a ax a 

2 
1 2 2 Yo x= - [1 - (m - 1) F o] - - (56b)

( ) ( )m Sox muo 

which are again the same as for the complete linear solution. From eqn. (21) we 
have: 

k2)2 (57a)k 3 = 6 ( 2k
l 

k l 

which in terms of a and Dis: 

k3 = 6 (~y ~ (57b) 

= ~ (~)2 (~y 

which is half the value for the diffusion analogy and hence for the complete 
linear solution with Fo = O. 

For higher orders of cumulant there is also a difference between the 
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cumulant given by eqn. (21) and that given by eqn. (52). The ratio reduces from 
0.5 for R = 3 to 0.2 for R = 4 and 0.07 for R = 5. 

Comparison of conceptual model with complete equation 

In the previous section it was pointed out that since the first and second 
moments are the same in all models, the efficiency of any conceptual model in 
representing the linearised St. Venant solution can be judged from the third 
cumulant. 

For the multiple Muskingum model we have from eqns. (14), (15) and (25) 
that: 

h - ~ h~ !!l (58)
3 - 2 hI + 2n2 

The classical Muskingum model, the multiple Muskingum model and the 
distributed Muskingum model are shown on an S2:S3 shape diagram on Fig. 1. 

If the first two cumulants are matched to those given for the complete St. 
Venant equation by eqns. (40a) and (40b) we have the predicted value of the 
third cumulant of the classical Muskingum model as: 

h
3 
(CMM) = ~ [1 _ (m _ 1)2 Fg]2 (~)2 (~)3 + ~ (~)3 (59)

2m Sox muo 2 muo 

whereas the true value of this third cumulant is given by eqn. (40c). Conse
quently the ratio of the two values is: 

2h3 (CMM) ~ [1 - (m - 1)2 F5] + m 
h3 (LSV) 2 1 + (m - 1)F5 6 

1 ] (SOX)2 (60) 
- (m - l?Fg][l + (m - l)Fg] ~ 

Equation (60) clearly shows that for small lengths of channel the classical 
Muskingum model will underestimate the true value of h3 but for longer 
lengths it will overestimate this value to a greater and greater extent as the 
length of the channel increases. For the particular dimensionless channel 
length given by: 

2
 
SoX 3 2 2 2 2
 
- = 2 [1 + (m - l)Fo][1 - (m - 1) Fo] (61)

( )Yo m 

the two values will be equal. For m = 3/2 and Fo oeqn. (60) becomes: 

h3(CMM) = ~ + ~ (SOX)2 (62)
h3 (LSV) 2 8 Yo 

so that the dimensionless length for zero error is 1.15 but the error reaches 
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10 

150% if the channel is double this length. For m 3/2 and Fa 1, eqn. (60) 
becomes: 

k3(CMM) = ~ + ~ (SOX)2 (63)
k 3 (LSV) 4 3 Yo 

so that dimensionless length for zero error is 1.50 and the error for double this 
length is 225%. 

For the distributed Muskingum model the predicted third cumulant is given 
by eqn. (57a). If the first and second cumulants are matched to the values for 
the St. Venant solution given by eqns. (40a) and (40b) the predicted third 
cumulant will be: 

~ 3 2 2 2 Yo 2( x )3
k3 (DMM) = 2m2 [1 - (m - 1) F o] (Sox) mu (64) 

o 

The ratio of this predicted value to the true value given by equation is: 

k3 (DMM) 1 [1 - (m - 1)2 F5J 
(65)

k3 (LSV) - "2 [1 + (m - l)Fg] 

It is clear that in this case the error is independent of the channel length and 
depends only on the values of m and Fo. For m = 3/2 the ratio in eqn. (65) 
becomes: 

k3 (DMM) 
(66)

k3(LSV) 

Classical 
Muskingum 

= I

~4 
tJ 

xoct simulation~ 
p 

~ 2 
u ~·O Fo=l 
o ~ - - - - - - - -Di~tributed... 
0.. 
0:: 

~~~=~~::i::::!:=::::;::=~Muskingum 
o 1 2 3 4 5 

DIME~ 510~LESS LE~GTH ~ 
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" - 2 

0 ~ 
k] 

= .1. +1 ( s. L ) 
2 8 IJ. 

0·5 

A 2 
~ = .!. +.!.( S.L) 0'25k] 4 3 Y. 

Fig. 3. Error in predicting third moment. 
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c 

which gives a constant error of 50% for Fo = 0 and a constant error of 75% for 
Fo = 1. The values of the ratio of predicted to actual third cumulants for 
Fo = 0.0 and Fo = 1.0 for a range of dimensionless length (Sox/Yo) from 0 to 5 
is shown on Fig. 3. 

Up to here the efficiency of the DMM in representing the LSV solution was 
assessed in terms of the impulse response. As an alternative it can be judged in 
terms of the frequency response for cosinusoidal input function. The amplitude 
and phase characteristics of the DMM are given by eqns. (32) and (33) in terms 
of cumulants. Using eqns. (8b) and (8c) in Appendix C one can get them in terms 
of the channel parameters: 

(67) 

aw 
rPDMM(X, w) = - 1 + /32 2 (68) 

w 

The properties of the transfer function for the Linear Channel Response 
(LCR), i.e. the solution ofthe linearised St. Venant equation for a semi-infinite 
uniform channel, and for Fo < 1 was analysed by Dooge et al. (1987b). The 
transfer function of the LCR is given by: 

HLCR(X,S) = exp(ds +.jC - Jas2 + bs + c) (69) 

where the coefficients are related to the parameters of the channel as follows: 

2 Fg 2 
a = (70a)m (1 _ Fg)2 a 

2[1 + (m - l)F5J[l - (m 1)2 Fg] a
b (70b)

(1 - Fg)2 /3 
2[1 - (m - 1)2 Fg]2 a

(70c)0.25 (1 _ Fg) /32 

d = m 
F?0 (70d) _ Fg a1 

The frequency characteristics of the LCR are (Dooge et al., 1987b): 

{[b2W2 + (_ aw2 + C)05]05 _ aw2 + C}0.5)
C05ALCR(X, w) = exp - -'-=------'----=---=------------""- (71)( J2 

{[b2w2 + (~ aw2 + C)2 ]05 + aw2 _ c} 05 

rPLCR(X, w) = dw - J2 (72) 

where the parameters a, b, c and d are defined by eqns. (70). 
Figure 4 shows the amplitude spectra of the DMM and the LSV for the case 

of a wide rectangular channel of unit dimensionless length (D = 1) with the 
Chezy friction (m = 1.5) and two Froude numbers (F = 0.2 and F = 0.8). They 
are shown as functions of dimensionless frequency w l 

= wyo/Souo. 
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Fig. 4. Amplitude reduction per Unit length. 

In the case of the attenuation (Fig. 4) the results will differ for various 
Froude numbers. It can be seen that the DMM gives a good approximation of 
the LCR for low Froude numbers only. It should be noted that the amplitudes 
for infinite frequency do not decay to zero thus indicating infinite power. Note, 
that for other lengths of the channel the logarithm of the amplitude reduction 
and the phase shift will be proportional to the dimensionless channel length. 

5 CONCLUSIONS 

The study described in this paper leads to the following conclusions: 
(1) The process of dividing a total channel length into shorter reaches each 

of which is modelled as a Muskingum reach can be carried to the limit of an 
infinite cascade of such infinitesimal reaches without producing any physical 
contradiction. 

(2) In order to preserve a finite first moment about the origin in the impulse 
response, the product of the two parameters nand K must remain finite as n 
goes to infinity and K goes to zero. In order to preserve a finite second moment 
about the centre, the weighting parameter a must approach minus infinity as 
K approaches zero in such a way that their product remains finite. 

(3) The system function (i.e. the Laplace transform of the impulse response) 
of the resulting distributed Muskingum model is given by: 

(16) 

where hi and h2 are the first and second cumulants respectively. 
(4) The general expression for any cumulant of the distributed Muskingum 

model is given by: 

(21) 
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where R is the order of cumulant involved. 
(5) The error of the distributed Muskingum model in predicting the third 

cumulant of the linear St. Venant solution is independent of the length of the 
channel, thus indicating that the problem of dealing with long channels by the 
classical Muskingum method is entirely overcome. 

(6) The errors of the distributed Muskingum model in predicting the third 
cumulant vary from 50% for Fa = 0 to 75% for Fa = 1. 

APPENDIX 

A. System function for distributed Muskingum model 

The system function for the multiple Muskingum model is given by eqn. (11) of the main text: 

1 - aKs j"H (s) = (AI) 
n [ 1 + (1 - a)Ks 

By combining eqns. (1.4) and (15) of the main text we can write: 

~ (A2)a = (1 -~~)
2 kJ K 

where k, and k, are the cumulants of the linear channel response being modelled. Substituting in 
eqn. (AI) the system response is now written as: 

1 - )sj"Ks/2 + (k,/2k1H,,(s) = (A3)
[ 1 + Ks /2 + (k2 /2k,)s 

By grouping together the finite and infinitesimal parts and using eqn. (14) of the main text again 
we can write: 

1 + (k,/2k , )s - k,s/2nj"
H,,(s) = -1---=--,------.:"---------'---'- (A4)

[ + (k2 /2k,)s + k,s/2n 

Dividing top and bottom by the common finite terms this becomes: 

H (s) = {I - [(k, s/2)/(1 + k2 s/2k,)] l/n}" (A5) 
n 1 + [(k,s/2)/(1 + k2s/2k,)] l/n 

From the standard mathematical theorem (see e.g. Hardy, 1908-1952 for proof): 

Lim [1 ± -=-J" = exp(±c) (A6) 
11-"/.,) n 

the limiting form of the numerator in eqn. (A5) as n goes to infinity is given by: 

N [ k,s/2 j (A7a)
= exp - 1 + k,s/2k, 

and the limiting form for the denominator by: 

D = exp [ + __k-'c'S_/_2.,....,---J (A7b)
1 + k,s/2k, 



255 

which readily combine to give: 

kls ]H - ex - (A7c) 
x - P [ 1 + k,s/2k

l 

Since the cumulants kl and k2 are both finite for real channels, the latter expression can be used 
with confidence. 

B. Inversion of system function to time domain 

The system function for the distributed Muskingum model given by eqn. (A7c) and by eqn. (16) 
of the main text can be readily inverted to the time domain. For convenience the system function 
is written as: 

1 :s fJH(s) = exp ( - ) (A8a) 
s

where: 

(A8b) 

and: 

13 = (A8c) 

The first step is to clear the numerator of the transform variable s by writing: 

a alfJ )H(s) = exp - - + -- (A9a)
( fi 1 + fis 

which is equivalent to: 

(A9b)H(s) = exp ( - ~) expC ::fi{Js) 

The second step is to expand the second exponential as an infinite series, i.e.: 

(AlOa)H(s) = exp(~~) [i: ~ (~)"J
13 "~O nil ·1 (3s 

The first term of the infinite series is unity and can be separated out to give: 

(AlOb)H(s) = exp( - ~)[ 1 + f ~ (~)"Jfi "_In. 1 + fJs 

The third step is to use the standard transform pair: 

(_1_)" +-> exp( - IlfJ)(llfJy>-l 
(All)

1 + {3s (3(n - 1)' 

to invert the series in eqn. (AIOb) term by term. When this is done the inverse of the system function 
H(s) in the time domain is found to be: 

h(l) C~ exp ( _ ~) [15(1) + exp (_~) f (alfJ/ + I (1IfJ)kJ (AI2a)
13 {3 k -0 (k + 1)lk!fJ 
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which can be expressed as: 

(A12b) 

where I, ( ) is the modified Bessel function of the first order defined by: 

(A12c) 

The insertion of the parameter values from eqns. (A8b) and (A8c) gives: 

(A13) 

as the required inversion to the time domain of eqn. (16) in the main text. 

C. Cumulants of distributed Muskingum model 

The Rth cumulant of the distributed Muskingum model is given by: 

d R 

kR(DMM) ~ (- lt ds R [G(s)Js_o (A14) 

where G(s) is the cumulant generating function obtained by substituting from eqn. (16) into eqn. 
(18) of the main text, thus obtaining: 

(A15) 

where k , is the first cumulant (i.e. the lag) and k2 the second cumulant (i.e. the variance) of the 
linear response of the channel. 

Differentiating the cumulant generating function once we obtain: 

dG [1 + (k2 /2k,)slk, - k,s (kz/2k,) 
(A16a)

ds [1 f- (kz/2k,)sf 

dG 
(A16b)

ds [1 + (k2 /2k , )sF 

Hence from eqn. (A14) with R 1 we have confirmation that: 

(AI?) 

Differentiating eqn. (A15) a second time we obtain: 

dZG 2(kz /2k j )k l (A18)""cis' = [1 + (k2 /2k l )sj3 

which on substitution into eqn. (A8) with R = 2 gives: 

(A19) 

as would be expected since the system function derivation was based on going to the limit in such 
a way as to preserve the finite second moment about the centre. 

Because of the simple form of eqn. (A15) the higher derivatives of the generating function can 
be written in the general form: 

(-l)RRI (k /2k,)R- I k,2 (A20)
[1 + (k z/2k l )SJR' I 
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which is valid for all values of R including R = 1 and R = 2. Substitution from eqn. (A20) into eqn. 
(A14) gives the expression: 

(A21) 

which is valid for any value of R. 
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