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SYNOPSIS

Aim of the Paper

Mathematical models describing water systems are formed in empirical way.
Because of a big choice of the models it seems that some theoretical works concerning the
transformation of random processes in hydrologic systems may be useful.

Scope of the Paper

Transformation of the stochastic processes (White noise, Markov noise) in linear
systems (serial and parallel two-river systems with common input) will be considered.
Successively Nash, Muskingum, Diskin models will be taken as system models. Auto
and crosscorrelation functions and power spectrum for the runoff process will be
determined theoretically. The stochastic nature of storage is also analyzed. The results

will be illustrated with plots.

1. Introduction

The development of researches on satisfactory
(optimal if possible) exploitation of water resources has
created the need of extension of mathematical analysis
of hydrologic data. In the last decade the field of
researches moved from the applications of theory of
random variables into the theory of random functions.
The knowledge of the space-time stochastic structure of
the hydrologic processes is necessary for modelling of
water-economical systems. The problem of adequate
choice of hypotheses and computing errors becomes
more significant comparing to the problems existing in
the case of the choice of the type of distribution and

We shall also deal with time averaged processes.
above discussion may be extended onto the other linear and non-linear systems.

The

estimation of its parameters, Statistics is not a magic
tool that enables obtaining satisfactory results from
uncertain data, small sample sizes and short time series.
Due to this fact the generalization and transfer of
experience worked out on different watersheds relating
to the structure of the outflow process, types of the
distribution or possibility of utilizing the longer time
series for the extrapolation and estimation of shorter
series parameters are important. These attempts,
however, are based on some new hypotheses that can be
rejected basing on short random samples. The problem
of proof of assumed hypotheses basing on our ideas of

physical properties of investigated hydrologic systems is
said to exist,
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When modelling the hydrologic systems, the first
common assumption is linearity. This assumption
““becomes sufficiently valid for the most of engineering
~and research works. Although the non-linear system
modelling is already extensively developed it seems that
due to the need of simplicity linear systems must be
used in the stochastic hydrology applications. The
choice of combination of inputs and outputs in
hydrologic systems is very big and it results from some
physical reasons. We shall draw our attention to the
investigation of the structure of the river outflow process
and of the water resources under the assumption of
conceptual watershed models. We shall determine the
relation between the structure and parameters of the
outflow process. These results would be difficult to
obtain experimentally because of the fact that these
models approximate real hydrologic system and on the
other hand hydrometeorological measurement instruments
add some error to the actual signal that contributes to
the noise produced by the system itself. The corrolaries
resulting from the integration of conceptual models and
the hydrologic processes can be helpful in acceptation
of the hypotheses about the structure of the outflow
process. When the watershed system operators are
known, the results of transformation of the process may
be applied to the prediction of the structure and para-
meters of the outflow process.

However, continuous processes are not commonly
used for hydrologic applications. The time series are
created from the average values for the same equal
periods (an hour, a day). In the paragraph 6 we shall
consider the relation between the averaging time and
the structure of the process.

The prolongation of the observation series by utiliz-
ing the longer observation series from another station
and the prediction of the volume levels based on water-
level relations is of great practical importance. Both
these actions are based on utilizing the correlative
relation between the corresponding (in the sense of
maximum correlation) observations in two space points.
In both cases the prccedure is the same as in the case
of incomplete random sample two-dimensional normal
variable. The similarity of inflow processes and
watershed operators is the most important factor
determining the power of this relation.

For the case of two river cross-section water levels
these factors are transformating properties of the river
sector and the ratio of an upstream inflow and lateral
inflow. We shall analyze the accuracy of such relations
basing on the conceptual linear models. To avoid
repeating tedious algebraic calculations we do not
present procedures leading to the final results. It was
done in Ref. (5).

2. Some General Remarks

According to many papers [e.g., Kisiel (2),
Yevjevich (3), Dooge (*),...] the action of hydrologic
system can be represented by

Y(t) = Ha[Xa ()]+ H;s [Xs(n)] L1 (20T)
Xd
—— Hd
L — e Y

9.1

——{— HS

FIGURE 1.
where,

Xa(r) = deterministic input signal
Xs () = random noise input signal

Hi = linear _model operator transforming the
deterministic component of the input signal

s = linear model operator transforming the
random component of the input signal

Y (t) = output signal.

When 'analy;in.g the deterministic component of the
Input signal, it is most commonly represented by means
of a sum of three components :

—-line_ar or quasi-linear trend representing slowly
varied tendency observed in the system due to the
human activity influence on the physical condi-
tions

—jump component representing short-lasting changes
of the input process mean

—7periodic component resulting from the periodicity
of the precipitation, outflow, etc.

The first two components usually have relatively
very small values what makes them very difficult to
identify. Gathered empirical material does not allow to
determine them quantitatively.

Let us assume the system to be linear, deterministic
and time invariant. Then the responses of the model to
each deterministic input component can be considered
separately according to the principle of superposition.
The operator transforms linear trend into output signal,
tending asymptotically to a linear function. The nature
of a periodic (harmonic) signal is not affected by the
transformation by the linear operator (change of the
signal amplitude and phase shift occurs).

The separation of the deterministic component of
the input signal from the stochastic component enables
the assumption of zero mean of the stochastic signal.
That is the necessary condition for the weak stationarity.
Moreover, we shall assume the stationarity of the
dispersion and covariance of the process Xs (#) through-
out our paper. As a subject of the analysis we shall
consider the structure of the random component trans-
formed by some selected linear watershed models (Nash,
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Diskin, Muskingum models). Throughout the paper
the inflow to the system is assumed to be the input
signal and the outflow is considered as the output
signal.

The most general hydrologic model investigated by
Kulandaiswamy, that covers all the models considered
in this paper, has the form

P

3

i=0

a; (X, Yn t) i‘—d]:_;(—t). L

Assuming the coefficients @ (X, Y, 1) and b (X, 1,1
constant and selecting adequate p and ¢, we obtain
linear models more suitable for analysis. In this paper
we deal with the models being special cases of Kulandai-
swamy’s general model.

3. Transformation of Stochastic Processes in the Nash’s
Model

The model that we analyze in this paragraph is the

the kernel function is given by:

] N-1
I(N) KV

wherbe/f' (N) denotes the gamma function.

Let us consider a single linear reservoir (Nash’s
model for N = 1). Its outflow is given by

e—tIK

h(t) = ..(3.9

+e0

y() = I x(o) h(t—a) du

—00

(3.5)

where,
x(t), y (#)=stochastic processes

h (t—a)=Kkernel function, A(f) = 1 /K. exp(—t/K)
for r >0

~ Let us apply White noise input to the model of a
single linear reservoir. The autocovariance of the input
process is given by

Rxx () = C . 3(7)
3 (t) = Dirac delta function

Stochastic properties of the output are described by
means of the following formulae

...(3.6)

Nash’s conceptual model consisting of n equal linear Crosscovariance
reservoirs. Cascade of n linear reservoirs having different 00
time constants (storage coefficients) will be called Ry () = I R: (1—a). h(a) d
generalized Nash’s model (Figure 2).
—o0
Its transfer function can be evaluated with the help c
of Laplace transformation techniques as =t e~ K  2>0 3T
1 ; ,
H@) =5 — --(3-1)  Autocovariance
=
where, s = complex variable. Ry (7) = I Ryx (v+a). h(x) de
After transformation to the time domain we obtain —o0
the kernel function (instantaneous unit hydrograph) : G =
p = e e~ ...(3.8)
0 K
ol —t/Ki 5 Y
ity = z ag -:(3-2)  Obtained results enable us to say, that E?Vhite noise
i=1 passed through the single linear reservoir model is
where, transformed into simple Markov noise(?).
! 1 (3.3) In stochastic hydrology it is often convenient to
& T g assume that inflows form simple Markov processes. Let
N (1+Kn/Ki) us apply now to the model of a single reservoir
2;1' stationary and normal Markov noise of the autocovari-
: . p functi i
For the Nash’s model of N+1 linear reservoirs with ance function given by
the same storage coefficients K=K =.... = K=K Rix(z) = D% e ¢ ) ...(3.9)
- E— H 4 el e e el T H2 P —————— [ Hn e e
X=X 7 X2 Yo Xn Yo=Y

FIGURE 2.
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.
Proceeding similarly as in the case of White noise
input we have obtained the following formulae

Crosscovariance
2¢K

_ Dz, —t/K__ ,—c¢r )
s e s £ )
0 10l 30y
Autocovariance
D2 I, (i
Ry (1) = _Cz_KTx_T_(C-K-B K _e CT)

(3.11)

It will be shown further that the above statement has
the form similar to the output autocovariance function
obtained for the generalized Nash’s model consisting of
two reservoirs when applying White noise input,
Dividing Equation (3.11) by R,, (0) we get autoco-
relation function

7 C'K (e“"”"—eﬁc" )
-1 i

We shall consider now the Nash’s model consisting
of n similar reservoirs having the same storage coeffi-
cients K. The kernel function for this case is given by
Equation (3.4).

For the White noise input we have obtained the
following relations

pwy (1) = 34(3.12)

Crosscovariance
o C U
B o w13}
Autocovariance
n—1
By @ —</K T"*J‘I.Kj_(n_H..“])!
Rl)= T o & ==l w2
=
.(3.14)

For n=1 the above formulae are consistent with these
worked out for a single reservoir

For n=2
C
AT e & k] (3.15)
and so on.

For the simpje, stationary and normal Markov
process on the input of the above model we have
obtained the formulae

Crosscovariance
1
Ryf(o)=D2%, )~ ., —ar
ya(T)=D {(l—mK)ne -+
n—1
e—':/Kz [ 1 F 1 Th
~ (l-{—GtK)n-h (l-—ch)"""' W
=
dla t >0 .--(3.16)

Autocovariance
I I'(n).e—*" 1 P
ala)— T(n) (l—ocK)"(1+ocK)”+ 2n
n—-1 h

z (A —aK)y=i—(1+aK)~H (n+j—1)! K" .,k_j}
(I—aKy'~F (1+ay=h T (i—j)! 2
L v (330

h=0j=0

L

The autocovariance functions described by Equations
(3.14—3.17) are plotted in Figures 3 & 4.

We shall analyze now the generalized Nash’s model
consisting of » linear reservoirs having different storage
coefficients. Its kernel function is described by Equations
(3.2-3.3).

1
iy (1)
= K=10
Lo
08 N=10
06
| N-5
04 +
N=3
02 -
2 ; . N=1
J 2 3 7

FIGURE 3 : Autocovariance function for Nash model with
White noise on the input.

hy (t)

Ox2-10, C-03, K-10

N=10
N=5
N-|

(&
T

0 ] L 1 ]
15 30 N5

FIGURE 4 : Autocovariance function for Nash model
with Markov process on the input.
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When applying White noise to the input the follow-
ing relations can be obtained

Crosscovariance
I
Ry (¢)=c.z wie—tKi Tl B4
i=1
Autocovariance
n N
30 —/Ki g B z —1
Ryy(T)—C-z e : ( ait.——+ UK+ 1K,
i=1 7=1
-(3.19)
Denoting
2 - '
Ki —1
Ai .._( wy - + C.E KK ) OO
el
we get
n
Ryy () =z R g A3an

i=1
where, 4; depends on «; and K, i=1,...,n

The above equation can be considered as the auto-
covariance function for n-th order autoregressive process.
It is easy to see that transformation of White noise in a
Nash’s model of n reservoirs is qualitatively equivalent
to transformation of (n—1)th order autoregression
scheme by a single storage reservoir. Both situations
yield n-th order autoregression scheme of the output
process. The above result means that the order of autore-
gression scheme of an input stochastic process increases
by 1 after transformation in a single linear reservoir.

4. Crosscorrelation of the Processes on the Outputs of
two Nash’s Models

We shall consider two linear systems described by
means of the kernel functions &, (2), &, (f) (see Figure 5).

X1 (t) h, (t) i (t) .
)(g(r) h2 {t) 22 {t)

FIGURE 5.

Each of the subsystems consists of the Nash’s model of
linear reservoirs having the same storage coefficients.
The crosscorrelation function onthe input of the system

is assumed to be known. The power spectrum of the
input signal is given by
4o
qug(m) = J‘ Rx1x2 (T)e_jmT d'r:ngxl* (w) (41)

— 0O

The crosscovariance function of the output processes
from the both subsystems is most interesting from the
practical point of view. This function can be obtained
by i;:ltegrating the cross power spectrum of the output
signa

-1- 00

1 ;
Ron(®) = 55 | S (@) 9o do

—00

(4.2)

If the frequency intervals where the transfer functions
have non-zero values do not overlap, the value of out-
put power spectrum Sy, (w)=0 for all frequencies,
what means that for all x, (t), x, (), are orthogonal.
The output cross power spectrum is generally expressed
in the form

Sy (0) = Siyxz(@) H](jw)Ha*(jw) --(4.3)

Let us assume that Sxr=A (White noise input)
After integrating we have obtained

n—1
¢ Sl LI (n+p—1)!
Rore (0= =1y © zp!(n—p— Tyt Z#te
p=0
(44
For zero time-lag the above expression has the form :
2n—2)! L)y
Ryyy, (0) = 4 ) (28 ...(4.5)

(=D KFLy

When assuming the linear dependence of the storage
coefficients of both cascades the following autocorrela-
tion function can be obtained

> (_.,_)_ =)l gt
wr\"g )T @n=2)! K
n—1
(n+-p—1! g LA T i eeR
Op!(nvp—l)! T (m+1ytr\ K
p=
for t>0  ...(4.6)
This function has its maximum value for zero time-lag
T ‘\/?7}1_ 2n—1
Tfi{? "ylw(T’(_) = ryys (0)=2%"1 (»————]+m )
4.7

The specific case of the above relations, obtained
for the common input x;=Xx, is of vast interest for
hydrologic applications. With the exception of high
frequencies in the power spectrum, not transferred by
the system, all the processes contributing to the inflow
are strongly spatially correlated. Thus usually it can
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be assumed that two adjacent watersheds have common
input processes. Then the structure and parameters of
the outflow process of one watershed can be determined
basing on the inflow process and on the knowledge of
both system operators. It is worth considering because
the realizations of outflow process can be obtained in
much easier way and more accurately than of an input
stochastic process.

Let us assume common inflow process and consider
two forms of these processes. When the inflow signal
has the form of White noise, the crosscovariance
function of the output signal is given by

A
Ryps(t)= KL I(m) & R,
n—1
(m+.]_1)‘ h= —1 (K+L =
=i 5 -(4.8)
i=0

where, K,n and [, m represent the storage coefficient
and the number of reservoirs respectively for both sub-
systems (see Figure 6).

The simple Markov noise applied to the common input
yields the formula:

R D2~ Cr Dy~
yure(7) = (1+CLy"(1—CK)* (1+CLy"(1—CK)"
n—1
d-Crp’ o, Dh etk
e (I—CLy"(1+CK)"
h=0
Hol
(1+CKy . < +D=x.e"’K
7l T Tk
h=0
n—1 h nij—1

[( ]== CL)m- h__( el CL)m—h]
(I+CLy""(1—CLy "

22

(nj—1)! ch=i+i_ (— 1y~
ey [KHEL ZEHET

Il — s T o=

L=t it ( KL )

-(4.9)

The above expression is illustrated in Figure 7.
The other model close to these previously analyzed
is Diskin linear model (Figure 8).
The crosscorrelation of the output processes of both
subsystems is given by
+ o0 +co
Ruin@= [ | Rexe—a+®) ) duds

—00 —00

...(4.10)

NAPIGRKOWSKI AND MITOSEK

Let us apply to the input the normal, stationary Markov

process. Then

Rx1x2(1)=E{aX(t)—BX(t—T)}:&BRx(T)=aBD2xe“‘C ||
---(4.11)

'@JL{a{f )

FIGURE 6.

‘ et Na g K=01, (=05
12 C=Q!l, Dx2=10
M-7

M4
M=

| I 1 1 [ |
=9 -6 =3 0 3 6 9 7
FIGURE 7.

Nash's
model
{k.n)

o« x({t

B 2t}
+

Nash's
] model
(Lm)

FIGURE 8.

[1-ot)x(t ¥, (t]

The autocovariance function of the process on the com-
bined output [z(f)] is the most interesting from the
practical point of view.

R(x) = E{[Y,(1)+ Yy(0)] [Yo(t—7) + Yyt —7)]

= Ryn(7)+ Ryya(t)+ Rygn(D+ Rypya(7)  ---(4:12)
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where,
+ oo
Repralx) = ] Rugss (+-1-B) g (B) dB (4.13)
+oo
Rnyz(ﬂ = J. Riyye (r—a) hy (x) do

The above relations are illustrated in Figures 9 &
10.

5. Transformation of Stochastic Processes in Muskingum
Model

Muskingum model is a special case of general

2T

02, K10, = =06

zz =2
SE ww

0 I 2 J

FIGURE 9 : Autocovariance function. White
noise on the input.

XX XX
.
Mg @l

rzz ()
10 K-02, =10, G03,«-06

08

06

04

02

| I I
0 15 30 45 60 egulS 9@= T

FIGURE 10 : Autocovariance function.
process on the input.

conceptual hydrologic model (2.2), described by :

x6) = yi)+ 20 (5.1)

where,
W(t) = Kx(t)+ Ly(t) —storage
x(t) —input to the system (inflow)
y(f) —output (discharge)
Transfer function for that model, using Laplace trans-
formation is expressed by
| 1—Ks
Ls+1
When returning to the time domain we get the expres-
sion for the kernel function of the model :

L+K
Wy ="

where, §(f) denotes Dirac delta function.

With White noise on the input (Equation 3.6) we
obtain the following autocovariance function

—1/L
Ry () = D [(L i A @'}—K){(zch (iL)

H(s) = 5.2

e—HL_ _}E 5(f) +:(5.3)

213

+I§ 5(1)] o (5.4)

For the simple Markov noise input crosscovariance
function can be expressed as
e—'rfL_e— a'r]

Rpxl) = ED%; L_(ﬁ’]ﬂ%j['o%%
(5.5

K —o
e "}1‘}0

Autocovariance function of the output has the form

DR, a(Ir=Kny
Ryy(7) = T [:H——-( T ) e—IL

+ (a2 K2--1) e_‘”:] ...(5.6)

6. Process of Storage

In the preceding paragraphs we have considered
outflow as the system output. Here we shall briefly
analyze some relations for storage in linear Teservoirs.
It should be noted that by terms “outflow” and
“storage” we mean the stochastic component of outflow
or storage.

The storage equation for each included in the Nash
model linear reservoir is given by

8 2o o qo i SoAD 0L Y (6.1)

The total system storage for the Nash model having
the same storage coefficients may be described as

n n
s-5a-r3

i=1 i=1

.(6.2)
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Lety : (1) be a stationary process in the wide sense, then
S(t) is also a stationary process in the wide sense with
the autocovariance function

n

Rss (v) = E[S(t++) S(1)] = k2 Ry vi{e) well6:3)
i,_,iz=1
and from the other side
. ds
e dt(‘) = x()—¥(1) .(6.4)
S(t+7) - S(f) = x(t+7) x(t)—x(t+7) y(2)
—y(t+7) XO+FIE+7) YO (65

It yields
Rss(7) = Rex (1) 4+ Ryy (v)— Roy (V) —Ryx (v)  ...(6.6)

Thus the autocovariance function can be calculated by
double integrating of the above formula.

If the input process has the form of White noise, we
obtain the following formula for the output process
autocovariance function

n—1
Rss (T) T K;—A]}(niein z ﬂ'p ,ru—p—l (67)
p=0
where,
_ (+d+@m—p)ap,]lk p# 0
dp = {-l—daK 7= 0 (6.76!)
el ~[Co—(~p)dpi]lk p#
dp = %__COK JEEpRRCED)

For n = 1 the White noise input yields the storage in
the form of simple Markov process. Hence for the case
of a single linear reservoir retention is proportional to
the outflow.

So its autoregression model has the same order as
that of the outflow from the reservoir. Following the
reasoning from the end of paragraph 3 it can be proved
that the input stochastic process of n-th order of autore-
gression scheme gives the storage stochastic process of
(n+1) th order for a single linear reservoir.

7. Analysis of Time averaged Processes

Continuous time processes are rarely used in hydro-
logic system analysis. Discrete time sequences are
usually formed by means of time averaging of continuous
real processes.

In this part of the paper properties of the stochastic
process transferred through the linear model of the part
of a watershed (Nash model consisting of n linear reser-
voirs with the same time constants k) and time averaged
will be analyzed.

The influence of averaging period length on the
properties of the processes will be also described.

Let us consider two stationary stochastic processes
¥1(2) and y,(t) having zero means.

We shall form the following integrals :

T
1
o ﬁfyl(r) dt (1.1)
T
and
T
P jlijz(r) p (D)
g

Assuming their existence in Riemann sense for each
process realization, s and v become random variables
with the following properties [see Ref. (3)] :

I’
1
E($) = o I E{p(t)y dt =0 2:£7.3)
—T
T T
1
Rul0) = g7 I f Ryy (1, 1,) dt, dt,
Sl
2T
1
= ﬁ?j (2T—=) Ry, (1) d= (7.4)
0

T, I
1
Rsv(o) = z-Tz [ j Rylyg(tl., tg) dtldtg
—7T —T
/5

1 Jlfl_*ﬁ J(zT— | = | ) Ryiye (v)d=...(71.5)
—T

In the hydrologic practice time sequences usually
describe the runoff phenomena on different watersheds.
The relations between them can be used to obtain
missing data.

That gives autocovariance and crosscovariance func-
tions expressed as follows :

Qa+)T T
1 :
Rss (a) = 372 ‘ I Ryy (f1, 12) dtl dtz
Qa—1)T —-T
2T
1
= | @1=1<DR
—2T
(2QaT+7ydr ...(7.6)
where, a €(0, o0)
2T
1
Ry (@) = 472 I T— | =|) Rur
—2T
(2aT+7) dv ...(1.7)
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We shall illustrate now the properties of stochastic PR 2
process transferred through the linear model of the part _i{ _bﬁ_H ) z(f'__|.1 ) £ f(b,n, p)
of a watershed and time averaged. 2T (\ ¢ . b
p:

Let us consider the input in the form of White noise, o] ‘
process being very simple for the analysis and of some ¢ —n b -p
importance for the hydrologic applications. The mean "i-(b—-l- 1) 2 =0 1) - fle, n, p)
value of the time averaged output process equals zero, - p—0
as it results from Equation (7.3). rsv (b, €) = i e

The variance of the averaged output process can be ,\/ [iz L. fib, n, p)]
evaluated from Equation (7.4), substituting Equation Tp i 2t

(3.14) as the autocovariance function of the continuous

output process. After some rearranging we get :

n—1

/
2 Gt1-pt N [%;“zir fiemp]

E{? = — e
n—1)! Kb* 120+p
. ) p=0 P «=:(1:9)
% i { where,
e-mtpfi-er 3 v gr] L @p=1)!
! = L
-~ Sl 65 P) =51~ p!
hien n—p—1
el —— ...(71.8) .
Ere=iy: {(x—n—l-p)l:l—e-x 2 =
where, b = 2T/K e g:
Crosscorrelation function of the random synchronic s 7.10
sequences under the same averaging period is the most = mg .-(7.10)

interesting from the practical point of view. Assuming,
that both systems consist of Nash’s model of the same and b, ¢ have the same
aumber of reservoirs and applying common input in the for the both systems.

meaning
Results o

as b in Equation (7.8),
btained for the case of

form of White noise the crosscorrelation function for one reservoir in each system are easy for the interpreta-

« = 0 is given by : tion.

br,, 10,9

08
06

04

02 |-

Tl i i el |

|

c=150

C:Z_n

c=05

c=01

| | | -l |
o]} 0708 06 05 0. L 20 30 40

FIGURE 11.

1
60

Ky B



10 STRUPCZEWSKI, KICZKO, KUNDZEWICZ, NAPISRKOWSK] AND MITOSEK

s (a,b)

1 S o ko S T

| | | |
o]} 02 03 05 07840

80 30 40 80 BID b

FIGURE 12.

The crosscorrelation function for = = 0 is given by :

|

b+c
V(b+e?—1)(c+e—~— 1)

be/be (b+eb—1 cte—ctq
_T-'_—E%_

ra0) ~ (7.11)

This is illustrated in Figure 11.

The properties of the integral sequences (7.6-7.7) are
illustrated by the autocorrelation function for one linear
reservoir with White noise on the input :

b(l—a)—e b4 e-b
b+eb—1]
ch b—1
b+et—1

ch@b) for 0ga<1
Fs (d, b) =
cedl foraz1 ...(7.12)

This leads to the conclusion that the time averaging of
the processes on the output of the linear, supplied with
White noise reservoir in equal unjoint intervals gives the
Markov sequence for @ = 1,2,3, ... It is easy to
notice from the formula Equation (7.12) for the case of
@ > 1. Figure 12 shows the relation between the
autocorrelation function, index of the integral sequence
a and the normalised period b = 27/K.

8. Concluding Remarks

The usage of information concernin g water resource
stochastic properties in water-economic projects needs
the developing of the methods enabling the utilization
of longer informational sequences in short series. In
hydrologic model systems there exists noise caused by

the lack of the information concerning all input signals.
Considering of random properties of watershed operator
complicates the analytic determination of transformed
stochastic process. Thus in this case and in the case
of non-linear watershed model it is better to simulate
the work of the system supplied with artificially generated
process. In the paper there were found the relations
between conceptual watershed models and stochastic
models. The transfer of stochastic processes (White
noise, Markov noise) through the conceptual models was
examined in view of second order statistical moments.
It was found that continuous processes when transferred
through the linear reservoir cascade model preserve the
autoregressive scheme character on the output. Each
reservoir increases the order of the autoregressive scheme
by one. There were also discussed some aspects of time
averaging of output processes.

Human activity changes the watershed. The
researches on the physical interpretation of watershed
system parameters are being developed. It would enable
the determination of changes in the watershed system
operator caused by the men activity in the landscape.
Although it is known that there is no need of many
year observations to identify the stationary watershed
system. It is supposed that the meteorological process,
responsible for supplying the watershed (in the paper
water supply was defined as the volume of water partici-
pation in mass transfer, here— the process responsible
for the supplying that is precipitation, temperature,
moisture) is not very sensitive on the human activity
changes. Hence the random process transformation in
the hydrologic systems will give the possibility of
obtaining the runoff process characteristics under the
new conditions.
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