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linear flood routing model for rapid flow 

WITOLD G. STRUPCZEWSKI & JAROSLAW 
J. NAPIÔRKOWSKI 
Water Resources Department, Institute of Geophysics, Polish Academy 
of Sciences, Ksieca Janusza 64, 01-452 Warsaw, Poland 

Abstract The linear flood routing model presented has been 
derived from the linearized St. Venant equation for the case of a 
uniform open channel with arbitrary cross-sectional shape and 
friction law. In order to filter out the downstream boundary 
condition the kinematic wave solution is used to approximate the 
diffusion term in the St. Venant equation. The hydrodynamic model 
obtained is called the rapid flow model (RFM). It provides the 
exact solution for a Froude number equal to one. Such charac
teristics of the RFM impulse response as cumulants, amplitude and 
phase spectra are analysed, and then compared with those of the 
complete linearized St. Venant equations for different reach 
lengths, values of Froude number and frequencies of flood waves. 
The RFM can be applied for mountainous rivers that have large 
Froude numbers and both quick and slow rising waves. 

Modèle linéaire de propagation des crues pour l'étude de 
l'écoulement rapide à surface libre 

Résumé Le modèle linéaire de propagation des crues présenté 
est déduit des équations de Saint Venant linéarisées dans le cas 
d'un canal prismatique de section transversale quelconque et pour 
des lois de frottement quelconques. La solution d'une onde 
cinématique pour l'approximation du terme de diffusion a permis 
d'éliminer la condition limite aval. Le modèle obtenu est nommé 
"le modèle d'écoulement rapide". Il donne des résultats exacts 
pour le nombre de Froude égal à un. Les cumulants, la réponse 
en amplitude et la réponse en fréquence ont été analysés pour la 
fonction de transfert de ce modèle. Ensuite ils ont été comparés 
avec les mêmes caractéristiques des équations de Saint Venant 
pour différentes valeurs des longueurs des canaux, des nombres 
de Froude et de fréquences des crues. Le modèle élaboré peut 
être appliqué aux rivières montagneuses, c'est-à-dire pour les 
grands nombres de Froude. 

INTRODUCTION 

The hydraulic formulation for unsteady flow in open channels requires two 
boundary conditions and in the case of tranquil flow (i.e. Froude number less 
than unity) one of these is at the downstream end of the channel. In 
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Witold G. Strupczewski & Jarosfaw J. Napiôrkowski 50 

practical flood routing the influence of a downstream control is nearly always 
neglected and the routing takes place only in the downstream direction. 

For tranquil flow at low Froude numbers, the small convective terms in 
the flow equations can be approximated on the basis of the linear kinematic 
wave approximation. This results in a reduction of the hyperbolic St. Venant 
equation to a convective diffusion equation (Dooge & Harley, 1967; Dooge & 
Napiôrkowski, 1987) or to a parabolic-like form involving the cross-derivative 
as the only second order term (Strupczewski & Napiôrkowski, 1986; 
Strupczewski et al, 1988). 

The case of rapid flows with high Froude numbers is discussed in this paper. 
In order to filter out the downstream boundary condition the second derivatives 
with respect to x are expressed by means of the other second order terms. The 
impulse response of the hydrodynamic model obtained has a clear conceptual 
interpretation being the total of the products of a Poisson distribution and the 
impulse responses of linear reservoirs in series shifted in time. 

COMPLETE LINEAR EQUATION (CLE) 

The linearized St. Venant equation for one-dimensional unsteady flow in 
uniform channel may be written as (Dooge et al, 1987a): 

, d2Q d2Q d2Q 
u »a u dxdt a<2 u dQ dt M etc 

(1) 

where Q is the perturbation of flow about an initial condition of steady 
uniform flow, QQ; AQ is the cross-sectional area corresponding to this flow; F 
is the Froude number; S , is the friction slope; yQ is the hydraulic mean 
depth; vQ is the mean velocity; SQ is the bottom slope; x is the distance from 
the upstream boundary; t is the elapsed time, and derivatives of the friction 
slope are evaluated at the reference conditions. 

The variation of the friction slope with discharge at the reference condition 
for all frictional formulae for rough turbulent flow may be expressed as: 

dSf 

££"- 2tyfio (2) 

For convenience a parameter, m, may be defined as the ratio of the kinematic 
wave speed to the average velocity of flow: 

m = ckl{QçjA^ (3) 

where ck is the kinematic wave speed as given by Lighthill & Whitham (1955): 

dQ 9 V 9 A 

* dA asyao v ' 
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51 Linear flood routing model for rapid flow 

The parameter, m, is a function of the shape of the channel and of a friction 
law parameter. Substituting equations (2) to (4) into equation (1) and 
denoting: 

So 
D = — x 

y0 

z = x/ck 

one obtains: 

ck 
(1 -F 2 ) — 

2m 
z 
D 

(dimensionless length) 

(passage time of a kinematic 
wave through the channel) 

d2Q r2z d2Q f2 m z d2Q 

dx2 D dxdt 2ck D dt2 
3<3 
— + 
dx 

(5) 

(6) 

1 8Q 

ck dt 

(7) 

DERIVATION OF THE RAPID FLOW MODEL (REM) FROM THE 
CLE 

The complete linear equation is a hyperbolic one, i.e. it has two real 
characteristics. The direction of these characteristics gives the celerity of both 
the primary and secondary waves. For Froude numbers less than unity, the 
celerity of the secondary wave is in the upstream direction. 

In order to filter out the downstream boundary condition for Froude 
numbers in the neighbourhood of F = 1 the small convective term (the first 
term in equation (7)) can be neglected entirely or represented on the basis of 
the linear kinematic wave approximation. For the kinematic wave approxi
mation we can write the solution as: 

Q(x, t) = fÇc - ckt) (8) 

This lower order solution can be used to approximate the "diffusion" terms 
on the left hand side of equation (7) as follows: 

(9) 

(10) 

for the second term: 

d2Q 

dx2 ' 

l 

ck 

for the third term: 

d2Q 
dx2 

l 

c2 

d2Q 

dxdt 

d2Q 

dt2 
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or by a linear combination of the second and third terms: 

d2Q 
dx2 c J_ ^ - + C — ^ 

1 c, dxdt z c\ dt2 (11) 

where Cx and C2 are coefficients to be determined. Substitution of equation 
(11) into equation (7) gives: 

d2Q 32Q QQ 1 dQ 
P 

dxdt df dx ck dt 
(12) 

where: 

1 -F* , 
C, + F2 

2m l 

z 

D 
(13) 

6 = 
2m 

mFL 

2 2 
£ JL 
D c , 

(14) 

Note that to solve equation (12) only an upstream boundary condition QJt) 
- 0(0, f) is required. The downstream boundary condition has been filtered 
out from the complete linear equation. 

The linear equation (12) can conveniently be solved by the use of a 
Laplace transform technique. The initial value of the dependent variable and 
its derivatives are all zero, so when equation (12) is transformed to the 
Laplace transform domain one gets: 

(1 + OB) — + {sic. + Bs2) Q = 0 
dx K (15) 

The solution of the ordinary differential equation (15) can be written as: 

Q(x, s) = H(x, s) Qu{s) (16) 

The transfer function, H(x, s), i.e. the Laplace transform of the impulse 
response, describes all the transfer properties of the RFM and is given by: 

HRFM (x, s) = exp - as - X + 
1 + OS . 

(17) 

where: 

A = xB/a (18) 
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53 Linear flood routing model for rapid flow 

X = (z - A)/a (19) 

The term exp(-As) is easily interpreted as a time shift, the term exp(-X) as a 
damping factor independent of time, and the term exp(X/(l + as)) is 
responsible for the modulatory performance of the model. 

To invert equation (17) from the Laplace transform domain to the 
original time domain, the term responsible for modulatory performance can be 
expanded into a convergent series and operated on term by term. Adopting 
standard transform pairs (Doetsch, 1961) and using the translation theorem 
one gets: 

h(x, t) = PQ(\) 5(f - A) + X ^ P/X) h.[(t - A)/a] (20) 

where: 

P,.(X) = — exp(-X) (21) 
' i l 

is a Poisson distribution, and 

n(t/a) = — i - — (,/«)« exp(-r/a) (22) 
' <x(i - 1)' 

is the impulse response of i linear reservoirs with a time constant a, and A, 
defined in equation (18), is a time delay. 

Note that the solution of the physically-based RFM can be represented 
in terms of basic conceptual elements used in hydrology, namely a cascade of 
linear reservoirs and a linear channel (Fig. 1). The upstream boundary 
condition is delayed by a linear channel with time lag,-A, divided according to 
a Poisson distribution with mean X, and then transformed by parallel cascades 
of equal linear reservoirs (with time constant a) of varying lengths. Note that 
X is the average number of reservoirs in a cascade. 

PROPERTIES OF THE RFM IMPULSE RESPONSE 

Cumulants and frequency characteristics have been widely used to study the 
properties of linear responses and to compare the various models proposed to 
represent the Linear Channel Response (LCR), i.e. the solution of the CLE 
for a semi-infinite uniform channel, and for FQ<1. 

The cumulants of the RFM 

The use of cumulants to study the properties of impulse responses was 
introduced by Dooge & Harley (1967). The cumulants are generated by the 
logarithm of the Laplace transform of the impulse response function: 
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<S(t) L i n e a r 

c h a n n e l 

6(t-A) Poisson 
distrib. 

P- (X) 

ONE RESERVOIR 

TWO RESERVOIRS 

THREE RESERVOIRS -Q 
h(x.t) 

FOUR RESERVOIRS 

N RESERVOIRS 

Fig. 1 Distribution of unit volume between paths of linear 
reservoirs for the RFM. 

*#(*. 0] = (- l) r — MH(x, s)]\ __ 0 (23) 

Cumulants of the RFM can be obtained from equation (17). Evaluating the 
rth derivative at s = 0 we get the following expression for the rth cumulant: 

kRFM = A + a \ = z 

kRFM = r ! a r x for r>\ 

(24a) 

(24b) 

Cumulants of the LCR were obtained by Dooge et al. (1987b) and are 
given in Appendix A. The first cumulant of the LCR is equal to the first 
cumulant of the RFM because it does not depend on the left hand side of 
equation (7). Matching the second and third cumulants of the LCR and of 
the RFM one can determine the parameters of the RFM and express them in 
terms of channel and flow characteristics: 

« = - [1 + (m - 1)F2] -
m D 

(25a) 

_tn 1 - (m - 1)2F2 

~ 2 [1 + (m - l)F2f ° 
(25b) 

A = 0.5 ~— z 
1 + (m - \)F2 

(25c) 
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55 Linear flood routing model for rapid flow 

Since the LCR cumulants are derived for F < 1, equations (25) are therefore 
valid also for F < 1. 

From equation (25a) one can see that a, the time constant of the 
reservoirs, does not vary with the length of the river reach. In contrast, 
equations (25b) and (25c) show that A, the parameter of pure time delay, and 
X, the parameter of inflow distribution, are both proportional to that length. 

As shown in Appendix B, to get equivalence of the second moments of 
the RFM and CLE the coefficients Cx and C2 should fulfil the relation Cx + 
C2 = 1, while for the additional equivalence of the third moments Cx = 2. 

Therefore the final equation which preserves all three moments is: 

1 » , « *t * &Q 1 [1+ 
2mck 

dx H 

(m2 

1 
i- — 

ck 

-\)F*\ 

dt 

z 

D 
- [1 + (m - 1)F1 
m D axat 

dO 1 dû 
(26) 

It is shown in Appendix A that the LCR transfer function (derived for 
F < 1) converges to the RFM transfer function for the limiting case of F = 1. 

Amplitude and phase spectra of the RFM 

In previous sections the RFM was discussed in terms of the impulse response. 
As an alternative, the RFM can be described in terms of the frequency 
response (e.g. Osiowski, 1972). In the present section the frequency approach 
is used and the expressions derived for the amplitude spectrum and frequency 
spectrum of the RFM. 

The transfer function of equation (17) describes all transfer properties of 
the model for any input function and zero initial conditions. Sometimes it is 
convenient to employ only a part of the function HRFM (x, s) on the imagi
nary axis s = m, i.e. to replace the Laplace transform by the Fourier 
transform. The function H*®™ (x, iw) is called an amplitude-phase charac
teristic of the system or a frequency transfer function. The quantities: 

ARFM(x, w) = l / f ^ j c , /u)| (27a) 

«f i^x, u) = arg [H^x, &))] (27b) 

are called the amplitude and phase characteristic respectively. From equations 
(27a) and (27b) one can see that: 

HRFM(f, iw) = ARFM(f, u) exppt^^x , u)] (28) 
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Thus the amplitude and phase characteristics determine changes in amplitude 
and phase caused by the model for a cosinusoidal input function with 
frequency u. 

The RFM amplitude and phase characteristics are: 

ARFM(xy w) = exp 
cAu2 

1 + cA)2 (29) 

I / I ^ J C , u) = - A + 
cc\ 

1 + a V u (30) 

Figures 2 and 3 show the amplitude and phase spectra of the RFM for 
a wide rectangular channel of unit dimensionless length (D = 1) with Manning 
friction (m = 5/3). Both Figures are drawn as a function of dimensionless 
frequency, u ' = uy QIS$Q. Note that for other lengths of channel the logarithm 
of the amplitude reduction and the phase shift will be proportional to the 
dimensionless channel length. 

COMPARISON OF THE RFM IMPULSE RESPONSE AND THE LCR 

The next step is to examine the accuracy of the approximation of the LCR by 
the RFM based on a comparison of cumulants, pure delays and frequency 
characteristics. 

Comparison of cumulants and pure delays 

Since the first three cumulants of the RFM and the LCR are equal, all the 
models discussed give the same response to a polynomial function of the third 
degree. Hence the differences between the fourth cumulants of the impulse 
responses can be used as a criterion for comparison. 

Consider now the case in which the input signal is a polynomial function 
of the fourth degree: 

y(t) = aQ + a J + a2f- + a^l3 + a4â (3D 

The difference between the LCR and the RFM response does not depend on 
time (Strupczewski & Kundzewicz, 1980) and is given by: 

aAkfM-^CR) (32) 

Hence to compare the accuracy of the approximation by the RFM one can 
use the relative error in the fourth cumulants: 
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Fig. 2 Amplitude spectrum for the RFM for unit length. 

*fM-h LCR 

r 4 = uLCR 
K4 

(33) 

The second criterion which can be used for comparison of the LCR and 
the RFM impulse responses is the relative error of pure lags defined as: 

KLCR 

rA = 
KLCR 

(34) 

The pure delay of the RFM, A, is given by equation (25c). The pure delay of 
the LCR, which reflects the time of propagation of a perturbation along the 
positive characteristic, can be expressed by: 

vLCR_ 
mz F + 1 

(35) 

The relative errors defined by equations (33) and (34) are plotted in Fig. 4 as 
a function of the Froude number for m = 5/3. Note that the errors discussed 
are opposite in sign. 
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Fig. 3 Phase spectrum for the RFM for unit length. 

100.0 

Comparison by means of frequency characteristics 

It is instructive to examine the form of the amplitude and phase spectra for 
the limiting values of the frequency, u. For very low frequencies, ie. very 
long waves, the amplitude given by equation (29) and the phase given by 
equation (30) can be approximated by: 

ARm(f, w) a exp(-O) = 1 

t f l ^ X , 0)) S - (A + oX) U = - 2W 

(36) 

(37) 

An upstream input function in the form of a harmonic oscillation f(r) 
fg cos(wf) results in a harmonic oscillation at the point x given by: 

f(x, t) = l^cos(ur - zw) (38) 

so there is no attenuation for very long waves and the phase velocity 
corresponds to the kinematic wave speed. 

The response of the LCR to a harmonic oscillation for very low 
frequencies is also given by equation (38) (Dooge et al., 1987b). 

At the other extreme of very high frequencies, i.e. very short waves, the 
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> 

« 

- 1 5 . 
1.0 .6 .7 .8 

Froude number 
Fig. 4 The relative errors of fourth cumulant and pure lag for the 
RFM. 

amplitude and the phase approach values given by: 

ARFMtyt u) s exp(- X) (39) 

^>RFM{x, u) s - Au (40) 

so the resulting harmonic oscillation at the point x takes the form: 

f ^ x , t) ss fo exp(-X) cos(ur - Au) (41) 

which corresponds to the head of the wave travelling with a celerity x/A and 
attenuation exp(-X). 

The LCR response to the harmonic oscillation for very high frequencies 
takes a different form (Dooge et al., 1987b): 

fLa\x, t) = fQ exp(-7) cos(uf - ux/Cj) (42) 

which corresponds to the wave travelling with phase velocity cx = vQ + ( g y ^ 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
8
 
1
6
 
A
u
g
u
s
t
 
2
0
1
0



Witold G. Strupczewski&JarosluwJ. Napiôrkowski 

and attenuation exp(-y) where: 

1 - (m - 1) F 

60 

7 = D 
(1 + F)F 

The relative error in amplitude: 

ARPM(f, u) - ALCR{x, u) 

(43) 

'4* w) 

and in phase: 

r0(*W) 

v4LC%, u) 

^ I , a ^ c , u) 

(44) 

(45) 

for the same conditions as for Figs 2 and 3 are plotted in Figs 5 and 6 
respectively. It can be seen that the RFM gives a good approximation of the 
LCR only for higher Froude numbers. 
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Fig. 5 The relative error in amplitude for the RFM. 
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I i i i i i i i i i i i i i i i i i 

1. 10. 100. 

d i m e n s i o n l e s s f r e q u e n c y 

Fig. 6 The relative error in phase for the RFM. 

CONCLUSIONS AND RECOMMENDATIONS 

The Rapid Flow Model is a model which can be considered as both a 
conceptual and physical one. On the one hand it is a conceptual model with 
physically derived parameters; on the other it is a simplification of the 
linearized St. Venant equations. This simplification results in reducing the 
number of model parameters and filtering out the downstream boundary 
condition. Moreover, the RFM, due to its simple structure, can be easily 
extended to cover lateral inflow. 

The accuracy of the LCR approximation by the RFM is assessed by 
comparing the frequency characteristics and the cumulants of impulse 
responses. The RFM can be applied for any length of channel reach. 
However, the quality of the CLE approximation by the RFM depends on the 
type of motion. It fits the LCR for large Froude numbers and both quick 
and slow rising waves. 
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APPENDIX A. THE LINEAR CHANNEL RESPONSE OF A 
GENERALIZED UNIFORM CHANNEL 

The linearized solution for the downstream movement of a flood wave in a 
semi-infinite channel and for any friction law was derived by Dooge et ai, 
(1987a). 

For the case of a semi-infinite uniform channel with an impulse input at 
the upstream end the Laplace transform of the linear channel response for 
Froude number less than unity is given by: 

HLC\x, s) = exp [es + / - (as2 + bs + c)H] (Al) 

where the coefficients are related to the parameters of the channel as follows: 

F2 

a = ^ (1 - F2)2 ^ ( A 2 ) 

1 + (m - \)F2 

b = 2m a-F2)2 zD (A3) 

(i - n 
•2\2 D2 (A4) 

e = m Y^F2 z (A5) 

m 
f = — D (A6) 

(1 - F2) 
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63 Linear flood routing model for rapid flow 

Equations (3), (5) and (6) define, respectively, the velocity ratio m, the 
dimensionless length of the channel D, and the time of passage of a kinematic 
wave through the channel z. F is the Froude number for the reference flow 
condition. 

The first four cumulants of the LCR can be expressed as: 

JfcfC R = z (A7) 

léCR = - [1 - (m - if^lD (A8) 
z m 

kLCR a 1 [i + (A, _ l)F2]k^CRz/D (A9) 
5 m 

kLCR = 3(1 F)_ ^LCR^/D * - {k^Rflk^R (A10) 

For any given shape of channel and friction law the cumulants of the LCR 
are functions of z, D, m and F. 

The transfer function of equation (Al) describes all transfer properties 
of the model for any input function and zero initial conditions. 

The frequency characteristics of the LCR are (Dooge et al, 1987b): 

ALa\x, u) = exp(cH - { [ ô V + (- aw2 + c)*f - aw2 + c)"/j2) (All) 

<l>LCR(x, w) = eu - {pA)2 + (- aw2 + c)2p + aw2 - c)*/j2) (A12) 

where the parameters a, b, c, e and / are defined by equations (A2) to (A6). 

The limiting case of Froude number equal to unity 

Substituting equations (A2) to (A6) into equation (Al) gives: 

HLCR(x, s) = (A13) 

exp 
mzF2s + mD - ^rn^F2^ + 2 mzD[l + (m - l)F2]s + m2D2] 

\-F2 

From the l'Hôpital theorem one gets the transfer function of the LCR for 
the limiting case of F = 1: 
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H^rQc, s) = exp lF=l 

0.5(2 - m)D 
- OSmzs - 0.5(2 - m)D + —- — 

1 + zsiD 

(A14) 

It can be seen that the transfer function of the RFM described by equation 
(17) with the parameters a, X and A defined by equations (25) for a Froude 
number equal to unity is given by equation (A14) as well, i.e: 

Hjff = / f f f (A15) 

Hence the expressions for the cumulants of the LCR derived for F < 1 are valid 
forFi 1. 

APPENDIX B: DERIVATION OF THE RFM PARAMETERS BY 
CUMULANT MATCHING 

The coefficients Cj and C2 of equation (12) can be estimated using the 
condition of equivalence of the RFM cumulants and those of the LCR Since 
the first order terms in equations (7) and (12) are identical, the first 
cumulants of both models are equivalent for any C1 and C2-

From equations (24b), (18) and (19) one has: 

kRFM = 2 ( a 2 _ ftc) (B1) 

By comparing equation (Bl) with equation (A8) and taking into account 
equations (13) and (14) one gets: 

(1 - F2) (Cl + C2) + 2mF2 - m2F2 = 1 - (m - 1)2F2 (B2) 

which gives Cx + C7 = 1 as the criterion of the equivalence of second 
cumulants. 

From equation (24b) we have: 
fcfM = 6a3 X (B4a) 

or 
kRFM = 3a kRFM ( B 4 b ) 

By comparing this with equation (A9) one gets equation (25a) which on the 
basis of equation (13) gives Cx - 2 as the criterion for the additional 
equivalence of the third cumulants. 
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