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SUMMARY: The solution of the linearized St.Venant equation for 
Froude number equal to one has simple form and clear conceptual 
interpretation. It could serve as a good approximation of the 
complete solution for mountain rivers. 
 

The linearised St.Venant equation for one-dimensional unsteady 
flow in uniform channel may be written as (Dooge et al., 1986): 
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where Q is the perturbation of flow, 0y  is the hydraulic mean 
depth, m =ck/v0 is a ratio of the kinematic wave speed to the 
average velocity of flow, S0 is the bottom slop, x is the 
distance from the upstream boundary, t is the elapsed time, Fo is 
a Froude number. 

The St. Venant equation (1) is a hyperbolical one, i.e. has 
two real characteristics. The direction of these characteristics 
controls the celerity of both primary and secondary waves. 
However, for F0 = 1 the first term in eq.(1) is equal to zero 
(i.e. the celerity of secondary wave is equal to zero) and only 
upstream boundary condition Qu(t) is required. This case is 
discussed in the paper. 

Instead of solving the differential eq.(1) for Fo=1 with 
initial and boundary conditions directly, we detour into the 
image space: using the L  - transformation the partial 
differential equation becomes an ordinary differential equation 
(Doetsch, 1961). When the ordinary differential equation is 
solved one gets the transfer function: 
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where  
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Solution of the original problem can be obtained the inverting 
the L  - transformation: 
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The impulse response given by eq.(4) has two distinct parts. One 
of them contains the Dirac delta function and the other 
represents the attenuation of the model. It is worth noting that 
eq.(4) can be considered as a sum of products of Poisson 
distribution function (5) and impulse response of linear cascade 
(6) shifted in time. The Poisson distribution defines the part of 
unit total volume transformed  through i-linear reservoirs (with 
a time constant α ), and /β α  is the average number of 
reservoirs in a cascade. 

To study the properties of linear responses and to compare the 
various models proposed to represent the linear channel response 
h(x,t) the use of cumulants was introduced. The cumulants are 
generated by the logarithm of the Laplace transform of the 
impulse response function (Nash, 1959). The cumulants of the 
transfer function (2) can be expressed in terms of α  and β  as: 
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Note, that if the first N cumulants of two different models are 
equal, these two models give the same response to a polynomial 
function of the N-th degree. 
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