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LBSTRACT

The St. vénant equations for unsteady flow in
open channels are simplified in order to filter out
the downstrean boundary condition, It is achieved
by approximating some terms by means of kinematic
wave solution, It is shown that the resul ting model
is equivalent to the mul tiple Muskingum model.

INTRODUCTION

The set of St. vépnant equations of gradually
varied river flow gave rise to a number of models
that are developed and widely used in practice.
lowever, if flow routing in channels must be re-
pgated many times for different scenarios, the St.
Vénant based models are likely to be too costly and
time consuming. fdence, simpler models of flood wave
movement have becn developed., Recently, interest in
the Muskingum type models (multiple, nonlinear,
with variable parameters) has significantly in-
creased,

The Muskingum flood routing method which had
seemed to bhe purely empirical was shown to be linked
with models based on convective diffusion equations,
By comparison of both models relationships bhetween
their parameters have becn found, Cunge (1969)
compared the difference schemes and Dooge (1973)
compared the impulse responses using moment matching
technique, Koussis s method (1978) leads from the
Muskingum equation to the linear convective dif-
fusion equation. He trans formed the lumped Muskingus
model into a distributed model by expressing outflow
as a function of inflow and its length derivatives
and using the relation valid for kinematic wave only.
There exists a more direct possibility of deriving
the Muskingum equations from St, Venant equations.
One approach initiated by Strupczewski and Kundze-
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wicz (1980) and developed by Napidrkowski et al.
(1981) is the lumping of nonlinear convective dif-
fusion model under assumption of linear changes of
water level along the river reach and then lin-
enrising it around the steady state, Dooge et al.
(1982) using the method of inverse order obtained
results applicable to any shape of cross-section
and to any type of friction law. The present paper
zives the answer to the question what physically
based model is best approximated by the multiple
Muskingum method,

COMPLETE LINEAR BEQUATION .AND ITS SIMPLIFICATION

The linearised St. Vénant equation for one-
dimensional unsteady flow in a broad rectangular
channel with Chezy friction may be written as .09
Dooge and Harley, 1967a)

2 2 2
_vi).?—g_gv 2_.9__9_2_3g50§%+_2_%i.0,§_%

( B
o 2x° ° Jxt Pt

0
(1)

where v, is reference veldeity, Yo is reference
depth, Sg is bottom slope, t is elapsed time,
x ig distance along the channel, Q is the perturba-
tion from the refercnce [low.

BEq.(1) is a hyperbolic one, i.e, it has two
real characteristics. The direction of these chara-
cteristics in the (x,t) plane is given by

dx +

=V

i = Vo gy, (2)

which gives the celerity of both the primary and
secondary waves, In the case of tranquil flow, i.e.
Froude number

F = 2 (3)

less than 1, the celerity of secondary wave will be
negative, that is the wave will travel in an up-
stream direction, In practical flood routing the
influence of downstream controls is nearly always
neglected and the routing takes part only in a
downstream direction, Accordingly, the hyperbolic
£q.(1) is modified in order to filter out these
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upstream waves, In order to accomplish this it js
necessary to reduce the hyperbolic equation to a
parabolic-like form,

In the case of many river channels, the terms
on the left hand side of Eq.(1) are or an order of
magnitude smaller than the terms on the right hand
side (Henderson, 1966), Instead of neglecting small
"hyperbolic" terms entirely, they can be represented
on the basis of the linear kinematic wave approxi-
mation (Dooge and Harley, 1967b),

For the kinematic wave approximation we can
write the solution for the perturbation as

Q= £(x - e t) (4)

where

e = 1.5 . (5)
is a kinematic wave speed, This loyer order solu-
tion can be used to apnroximate the "hyperbolich
terms on the left hand side or k. (1)

2 :
~—% = ci " (x - cp t) = - ) EEQ- (8)
gL Dxd
2 ~2
gn% = P (% ~ ept) = = %— 0 (7)
ox k xdt
Substitution of these approximations in Eq, (1) gives
2
D g _ 9. 739
- ¢, oxot T %k ox t 5% (8)
where
vy 5
0 2
D = —2=2 (1 ~ 0,25 F2) (9)

(o]

is a constant diffusion coefficient,

Bq.(8) is typical of the equations representing
the diffusion of kinematic waves (Lighthill and
Whitham, 1955), Note, that to solve Eq.(8) only
upstream boundary condition Qu(t) is required, The
downstreag boundary condition was filtered out from
the St, Venant Eq, (1),

The linear Eq, (8) can conveniently be solved
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by the use of the Laplace transform technigue,
Since Eq.(8) represents perturbation from an initial
steady condition, the initial value of the dependent
variable sz t) and its derivatives will all be zero.
Hence, Eq, 85 when transformed to the Laplace

transformed domain becomes

(e) + %E s) Rros=o (10)

The above equation is a first—oder homogeneous
ordinary differential equation for the Laplace

transform Q(x,s) as a function of x, The solution
of Eq.(10) can be written in the general form

Q(X,S) = H(X’S) Qu(s) (11)
where
H(x,s) = exp( ) (12)
1+ EE 8
®k

is the transfer function, i.e. the Laplace transform
of the impulse response, The impulse response (12)
describes all transfer properties of the simplified
St. Venant Eq.(8) for any input function,

It will be shown in the next section, that the
transfer function for multiple Muskingum model is
given by Eq,(12) as well,

THE MULTIPLE MUSKINGUM smODEL

One of the most popular approaches to the
mathematical description of open channel flow is
the muskingum method, which was first proposed by
McCarthy (1939). Similarly to other lumped concep-
tual models, the Muskingum method is a set of
continuity and dynamic equations

It

S(6) = Qu(t) = Qy(t) (13)

s(t) = K[aq, (t) + (1-a)Q,(t}))  (14)

where Q4 is the inflow to the river reach, 02 is

the outflow from the reach, S is the storage in the
reach and a, K are model parameters,
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The transfer function of the Muskingum model reads

1 - aK-s
1 + (1=a)K-s (15)

H(s) =

As with all types of models, it is necessary
to find the optimal values of the parameters of the
model given by Eqs,.(13,14), The parameters K and a
can be determined by equating the first and second
cummulants of the complete St, Venant Eq, (1) and
the first and second cummulants of the Muskingum
model (Dooge, 1973), This resultsin the physically
based values

X
K = E; (16)

Yy
0 2
g;i— (1 - 0,25F7) (17)

ol

where x is the length of the river reach,

The Muskingum method completely fails for long
lengths of a channel, A straighforward generaliza-
tion of the model described by Egs.(13,14) is a
multiple Muskingum model obtained by dividing the
total reach into n equal subreaches (Laureson, 1959;
Kundzewicz and Strupczewski, 1982), Iu such a case
the values of K and a are dependent on the subreach
length and are given by

= (18)

2
% (1 - @28 F) - (19)

Thus, the transfer function of a cascade of Muskin-
gum models reads

4 ' n
1 - aKkK s ] (20)

Hy (x,s) ;[1 + (1-a JK's

Substitution of Egs.(18,19) into Eq.(20) gives
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and » i3
sec?nd Let us consider the 1limiting case of the above
S : transfer function when n tends to infinity, It
?g“T] & means modelling a river reach of a finite length x
cally i by an infinite number of physically based Muskingum
5 models, Using the de 1 Hopital theorem one gets
(186) %
: P S
°k
. lim H (x,s) = exp( = ) (22)
(17) - i RS L
A c
; k
88 15 3 Note, that the transfer function (22) is exactly
aliznn‘ . the same as the transfer function (12), Hence, the
e main conclusion from the above consideration is:
é the 3 The diffusion-like partial differential

1959: ¢ equation (8) is best approximated by the multiplo

i Muskingsum method,

a ¢case

ubroach SOLUTION IN THi& TIME DOMAIN

_ q 1t remains to invert Eq,(22) from the Laplace
(18) b1 transform domain to the original time domain,
i Eq.(22) can be rewritten

(19} & cp Cy 1
; Ho(x,s) = exp(- 7-x) exp( px

) (23)
s . - 1+ Q; s
Musk - a8 =&
= i ®k

We can expand the second term of Eq,(23) into a
convergent series and operate on it term by term

(20)
es oQ
c c i 1
Ho(X,8) = exp(- 5ox) § (Gt —5— (24
10 '(1 + _ES)
Ck
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The explicit formulation of the transfer function
in the time domain is obtained by adopting the
standard transform pairs given by Doetsch (1961).

h,(x,t) = exp(-ckx/D)[ &(t) +

o 1 t1-—1
(e, x/D)1 exp(- Ozt/D) (25)
g;; k IT(i=1)1 (0/e3)1 k ]

The solution is found to have two distinct parts,
One of them contains the Dirac &-function, This
term provides direct transformation of the damped
input signal, The other is responsible for the
modulatory system performance,

The second part of the System response is
shown in Fig,1 for dimensionless variables

x = x/(y/s,) _ (26)
£ t/(yo/Sovo) (27)

and for various values of the dimensionless length
tactory ¥,
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Figure 1. Shape of impulse response for F=.3
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For short lengths, the impulse response declines
monotonically; for intermediate lengths, the impulse
response is a unimodal curve with an appreciable
initial ordinate, For long channels the unimodal
shape of rcsponse rises from an initial ordinate
which is practically zero and declines again to
zero, Similar three shapes were obtuained for Linear
downstream response of the the complete St, Veénant
equations by Dooge (1973; pP.249),

CONCLUSIONS

The present paper gives the answer to the
question what physically baseaq distributed model
is best approximated by the mulitiple Muskingum
method, Using the transfer function approach it is
proved that multiple Muskingum model for limiting
case when the river reach of a finite length is

Muskingum reaches is equivalent to the diffusion-
like equation (8), lience, Eq,(8) can be called the
distributed Muskingum model,
It has been shown that the impulse response
in time domain of the distributed Muskingum model
is similar in shape to transfer function of the

2 . = £ .
linearized St, Venant equations,
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