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Abstract Accurate application of the longitudinal dispersion model requires that 
specially designed experimental studies are performed in the river reach under 
consideration. Such studies are usually very expensive, so in order to quantify the 
longitudinal dispersion coefficient, as an alternative approach, various researchers 
have proposed numerous empirical formulae based on hydraulic and morphometric 
characteristics. The results are presented of the application of artificial neural 
networks as a parameter estimation technique. Five different cases were considered 
with the network trained for different arrangements of input nodes, such as channel 
depth, channel width, cross-sectionally averaged water velocity, shear velocity and 
sinuosity index. In the case where the sinuosity index is included as an input node, the 
results turned out to be better than those presented by other authors.  
Key words artificial neural networks; longitudinal dispersion; pollutant transport; rivers 

Les techniques de réseaux de neurones artificiels sont-elles 
pertinentes pour estimer le coefficient de dispersion longitudinale en 
rivières? 
Résumé L’application précise du modèle de dispersion longitudinale nécessite la mise 
en œuvre d’études expérimentales spécifiques dans le cours d’eau considéré. De telles 
études sont en général très coûteuses, si bien que, dans le but de quantifier de manière 
alternative le coefficient de dispersion longitudinale, plusieurs chercheurs ont proposé 
de nombreuses formules empiriques basées sur des caractéristiques hydrauliques et 
morphométriques. Nous présentons les résultats de l’application de réseaux de 
neurones artificiels comme technique d’estimation des paramètres. Cinq cas différents 
ont été considérés, avec, pour l’apprentissage, des combinaisons variées de nœuds 
d’entrée, dont la profondeur du chenal, la largeur du chenal, la vitesse moyenne de 
l’eau à travers la section, la vitesse de cisaillement et l’indice de sinuosité. Lorsque 
l’indice de sinuosité est pris en compte comme nœud d’entrée, les résultats sont 
améliorés par rapport à ceux d’autres auteurs. 
Mots clefs réseaux de neurones artificiels; dispersion longitudinale; transport de polluant; 
rivières 

 
 
INTRODUCTION 
 
Despite extensive studies, quantitative description of longitudinal dispersion in rivers 
still constitutes a key question lying at the heart of considerations in environmental 
fluid mechanics. The simplest, but still most often used, model in engineering practice 
is that based on the advection–dispersion equation. Questions about its applicability 
can be raised and alternative approaches proposed (e.g. Czernuszenko & Rowiński, 
1997; Lees et al., 2000; Wörman, 2000; Rowiński, 2002). However, a large amount of 
existing data is based on the implicit assumption of the correctness of such a 
formulation. To treat the Fickian model as a predictive tool, one needs to know how to 
relate the usually unknown longitudinal dispersion coefficient to basic hydraulic and 
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morphometric characteristics of the natural stream under consideration. Numerous 
empirical and semi-empirical formulae have been found and various researchers 
dispute which expression is the most useful. The advantage of one expression over 
another is often just a matter of the selection of data and the manner of their 
presentation. Moreover, regardless of the expression applied, one may easily find an 
outlier in the data which definitely does not support the applicability of a particular 
formula. An expectation that, in spite of the complexity of the river reach, the 
dispersion coefficient may be represented by one of the empirical formulae seems to be 
exaggerated; nevertheless, it is quite a common practice in hydraulic engineering. 
However, there is a tendency to differentiate the approaches depending on the 
complexity of the case. Therefore Deng et al. (2001, 2002) and Guymer (1998) 
devoted separate studies to straight and meandering streams. Holley & Jirka (1986) 
claimed that all of the methods in the literature were based on subsets of the available 
data, and that independent verification or evaluation of the methods had rarely been 
done by disinterested persons. This statement seems to remain valid. It turns out that 
when a longitudinal dispersion model is planned to be used, identification of the 
dispersion parameter should be based on specially designed experimental studies 
performed in the reach under consideration. On the other hand, managers and decision 
makers, who have just a modelling tool at their disposal and the basic information 
about the stream, are supposed to derive some conclusions about the admixture pattern 
in the stream after its release at some location. To what extent may they rely on the 
simulations when the dispersion coefficient is taken from a completely different 
location or from an empirical formula obtained for a different set of data? In other 
words, one may ask whether the spread of pollution can be evaluated based on the 
easily available bulk channel parameters.  
 The picture is not very optimistic in this respect and one may pose a question 
about what lesson one can derive from previous experience. An inspiration for this 
study was a paper by Kashefipour et al. (2002) in which, to predict the longitudinal 
dispersion coefficient, an artificial neural network (ANN) was trained for different 
arrangements of channel depth, channel width, cross-sectionally averaged water 
velocity and shear velocity. The authors followed a similar track to answer the 
questions posed above and obtained essential improvement in predicting the dispersion 
coefficient when an additional parameter reflecting the meandering of the river, 
namely the sinuosity index (S), was used for training the network.  Generally speaking, 
this study is concerned with a trial to extract some knowledge from a relatively large 
database that results from a series of independent experiments carried out all over the 
world. Can such knowledge be put into practical use through relatively good 
physically-based mathematical models of pollution transport? The present study is 
aimed at stimulating a discussion on this vital topic. 
 
 
LONGITUDINAL DISPERSION 
 
In the situation where the concentration distribution in a lateral direction more or less 
equalizes, the main interest is paid to concentrations of constituents averaged over the 
cross-section. This usually occurs at long distances from the release point, particularly 
in rivers of relatively simple geometry. It is assumed that any quantity ϕ may be 
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decomposed into the area-averaged value aϕ  and a deviation from the area-averaged 
quantity ϕa. Further it is assumed that the created dispersive flux is proportional to the 
gradient of the area-averaged concentration (Fick’s law): 

x
CEq

a

L
a
L ∂

∂−=  (1) 

where x is the longitudinal axis, a
Lq  is the dispersion flux, aC  is the admixture 

concentration averaged over the cross-section A, and EL is the longitudinal dispersion 
coefficient. Integration of the advection-diffusion in three dimensional form and some 
algebraic manipulations lead to the following one-dimensional (1-D) mass conserva-
tion equation:  

1
a a a

a

L
C C CU AE
t x A x x
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� �+ =
� �∂ ∂ ∂ ∂� �

 (2) 

where aU  is cross-sectional averaged velocity. The longitudinal dispersion coefficient 
is hence a key parameter for the description of the longitudinal transport of a con-
stituent in a river. As boundary conditions are considered, concentrations should be 
given for inflows, while the zero gradient condition is used otherwise, since no mass 
transport takes place along river banks. For channels in which an assumption about 
constant cross-sectional area and a constant mean longitudinal velocity is a reasonable 
approximation, equation (2) may be simplified to: 
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 (3) 

 Equation (3) has a relatively simple form and some boundary value problems 
associated with this equation for semi-infinite channels have analytical solutions. 
Assume that at time t = 0 an instantaneous release of mass M occurs at the origin x and 
the concentration tends to zero at infinite time, i.e.: 

0),( =±∞ tC a  )()0,( xMxC a δ=  (4) 

where δ(x) is a Dirac delta function. Then the solution of equation (3) reads: 

( )
�
�

�

�

�
�

�

� −−
π

=
tE
tUx

tE
MtxC

L

a

L

a

4
exp

4
),(

2

 t > 0 (5) 

 To simplify the notation further, in this paper the overbar representing the 
averaging procedure will be omitted. It can be shown that the variance of the solute 
fulfilling equation (3) increases linearly with time and the longitudinal dispersion 
coefficient satisfies the following relationship allowing for its experimental 
determination: 

t
E x

L d
d

2
1 2σ

=  (6) 

where 2
xσ  is the spatial variance in the longitudinal direction. 
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 The literature contains many different forms and methods of the evaluation of 
dispersion coefficients dependent on various hydraulic conditions (e.g. Fischer, 1967; 
Holley & Jirka, 1986; Sukhodolov et al., 1997; Guymer, 1998; Deng et al., 2001, 
2002).  
 A long tradition exists in the application of the longitudinal dispersion model. 
Such a model is very useful for designing outfalls or water intakes and, above all, for 
evaluating risks from, for example, accidental releases of hazardous contaminants. 
one-dimensional models are the easiest in application and less demanding as to the 
details of the hydraulic characteristics of the considered reach compared to 2-D and  
3-D approaches. However, one should be aware of the restrictions that burden 1-D 
models. A 1-D model in the form given above applies only in relatively simple river 
reaches (in terms of the geometry) and only after some initial mixing period (the solute 
concentration should be well distributed over the channel width). No universal 
criterion for the validity of the equation exists. For example, Jirka (2004) shows that 
complete lateral mixing in cases of large rivers (e.g. the River Rhine) may require a 
distance of 160 km. The advection–dispersion equation has been applied successfully 
to many real cases; nevertheless, questions about its applicability frequently arise. The 
tail of a solute tracer pulse is often more pronounced than can be accounted for by the 
traditional advection–dispersion model. A common method for simulating such long 
tails has been to allow for storage zones along the stream channel. These storage zones 
are assumed to be stagnant relative to the longitudinal flow of the stream and to obey a 
first-order mass transfer type of exchange relationship. Very often a quicker decrease 
of the concentration maximum is observed than follows from equation (5). Also, a 
nonlinear growth of the concentration distribution variance and dependence of the 
dispersion coefficient on time have often been manifested in experimental studies. The 
discrepancy between the Fickian solution and the experimental data, especially in the 
lower range of concentration distributions (C < 0.5Cmax) may even be shown for 
relatively simple geometries (Sukhodolov et al., 1997).  
 All the above features mean that the longitudinal dispersion coefficient cannot be 
uniquely identified when the Fickian model is applied to a natural stream, and each 
applied method can lead to slightly different results. The necessary conditions that 
have to be fulfilled are usually not fully satisfied and, therefore, what is labelled as a 
measured coefficient is loaded with a significant error in itself. One has to look at any 
error analysis with caution.  
 The objective of this brief discussion is to emphasize the uncertainty in the 
estimates of the dispersion coefficient. 
 
 
PROBLEM STATEMENT 
 
Estimation of the longitudinal dispersion coefficient constitutes a basic difficulty in the 
application of the so-called Fick model. Several estimation methods have been 
elaborated in the literature, such as physically-based empirical methods, fitting of the 
theoretical slope of the Laplace transformed solution for the concentration of the flow 
zone to the observed slope, moments matching procedures, or even visual determina-
tion of the set of parameters yielding the best fit to the concentration data. An obvious 
element is the relation of the computed solute concentrations to some experimentally 
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obtained curves. Recently, a relevant optimization problem was solved by means of the 
global random search procedure applied to a longitudinal dispersion model that takes 
into account dead zones (Rowiński et al., 2004). The classical Fickian model may be 
treated as a simpler case of the dead-zone model (Czernuszenko et al., 1997). All these 
methods work when one knows the breakthrough curves for a particular river reach, 
but the question remains whether one is able to predict the value of the dispersion 
coefficient based on previous experience. As mentioned in the preceding section, there 
are numerous, more or less empirical forms allowing for the evaluation of the 
dispersion coefficient—all of them are, however, of disputable value. Assuming a 
good quality of the historical data in this respect, one may try to use the technique 
based on artificial neural networks which is the basis for all further considerations 
herein. 
 
 
ARTIFICIAL NEURAL NETWORKS AS PARAMETER ESTIMATION 
TECHNIQUE 
 
Artificial neural networks have been developed by looking for analogies to the 
behaviour and functioning of the brain and nervous system of living organisms. The 
most important feature imitating the brain is the ability to learn from examples and to 
utilize the gained knowledge to solve new problems. It is a kind of ability for 
generalization which the authors hoped could be useful for identification of the disper-
sion coefficient in water quality models.  
 The multi-layer perceptron network, i.e. one of supervised feed-forward networks, 
was selected for this study from a large variety of neural networks (e.g. Korbicz et al., 
1994; Haykin, 1994). Such networks are able to approximate the values of output 
variable y dependent on the set of input variables x1, x2, ..., xN and, hence, 
y = f(x1, x2, ..., xN). Artificial neural networks comprise of several simple units—nodes 
or neurons—arranged in a parallel and cascade fashion, i.e. in input, hidden and output 
layers. The topology of the neural network used in this study is presented in Fig. 1. 
The number of input nodes is the same as the number of input variables (three or four 
in this study), the number of hidden neurons should be found “as optimal” for the  
 
 

input layer   
x1   w  ij hidden layer
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Fig. 1 Scheme of multi-layer perceptron neural network scheme. 
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solution of a given problem, and the number of output nodes is equal to the number of 
output variables (one output variable, namely longitudinal dispersion coefficient was 
considered in this study). The applied network consists of only one hidden layer, due 
to the general observation that neural networks with only one hidden layer and a finite 
number of nodes are able to approximate every continuous, bounded, everywhere 
differentiable function (e.g. Haykin, 1994; Hsu et al., 1995). Simple computational 
elements (the nodes) are linked via weighted connections. The values of these 
connections are adaptively modified during the process of training the network. Each 
node performs a weighted sum of its inputs and filters it through a given, so-called 
activation function. Following a number of other authors, a sigmoidal function was 
used for this purpose, i.e.: 

zzf −+
=

e1
1)(  (7) 

where z is the weighted sum  

�
�

�
�
�

�= �
=

N

i
ijij xwfz

1

 (8) 

Afterwards the weighted signals zj (multiplied by proper weights vj), are transferred to 
the neuron of the third layer, where the new weighted sum is computed: 

1 1

K N

j ji i
j i

y v f w x
= =
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� �

� �  (9) 

The learning process is accomplished by means of a training algorithm that lets the 
network modify its weights according to the training examples. The weights are 
modified by applying some algorithm that minimizes the mean square error between 
the network’s output and the desired target. The objective function J is defined as: 

2

, 1
( , ) min ( ( , ) )

m

i iw v i
J w v y w v d

=
= −�  (10) 

where N is the number of inputs; K is the number of hidden neurons; w and v are 
vectors of weights of the neural network; m is the number of training vectors; yi( ) is 
the output value calculated from the neural network for the ith training vector; and di is 
the measured value for the ith training vector. 
 In the present study, a supervised learning method was adopted, so each teaching 
example was composed of an input to the network as well as the corresponding output. 
Training an ANN may require a lot of time and work and, therefore, sufficiently fast 
optimization techniques are sought. Due to the fact that the network of interest is 
relatively small with a single output unit, a Lavenberg-Marquardt nonlinear optimiza-
tion algorithm could be used (Press et al., 1990). 
 The ANN has learned from different sets of the available data. The reasoning and 
the method of selection of those data will be presented further in the paper. The data 
sets were divided randomly into training and verification parts. The verification set of 
independent data (not used in the training of the network) was used to evaluate the true 
performance of the network.  
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COMPUTATIONAL RESULTS 
 
Following a strong tendency in the application of ANNs to work on combinations of 
the channel measurements, all networks (see Table 1) were trained for specific 
arrangements of channel depth, H (m), channel width, B (m), cross-sectionally aver-
aged water velocity, U (m s-1) and shear velocity, U* (m s-1), namely for nodes 
described as x1 = B/H, x2 = U/U*, x3 = 3UB. Moreover, the ratio of the length of the 
main river bed to the length of the valley, i.e. the sinuosity index, S, was considered as 
an additional input node (x4 = S) in Cases 1 and 3. Note that the sought output variable 
y is the dispersion coefficient, EL. 
 The UB product is preceded by a proportionality factor of 3, which does not 
influence the results, but enables some consistency with the results of Deng et al. 
(2002) to be achieved. This proportionality factor comes from the observation of those 
authors that the longitudinal dispersion coefficient may be approximated to some 
extent by EL ≈ 3UB. This value 3 should by no means be treated as universal; in other 
studies different values were obtained, for example Rochusaar & Paal (1970) obtained 
a value of 1.5 for small Estonian rivers, while Sukhodolov et al. (1997) obtained a 
value of 0.83 for the experimental results for Moldovian rivers. Sukhodolov et al. 
(1997) showed that this proportionality factor should be a function of the degree of 
heterogeneity of the velocity distribution and the Lagrangian spatial scales, such as 
alternate bars in rivers where those bars can be treated as major channel forms. Those 
factors undoubtedly depend on planform channel geometry and therefore it is expected  
 
 
Table 1 Basic parameters of computational cases. 

 Case 1 Case 2 Case 3 Case 4 Case 5 
Number of data 70 70 81 81 99 
Number of training data 60 60 50 50 79 
Number of verification data 10 10 31 31 20 
Sources of data (1) (1), (2) (2), (3), 

(4), (5) 
Input variables B/H 

U/U* 
3UB 
S 

B/H 
U/U* 
3UB 

B/H 
U/U* 
3UB 
S 

B/H 
U/U* 
3UB 

B/H 
U/U* 
3UB 

Input nodes 4 3 4 3 3 
Hidden nodes 3 4 3 3 4 
Output nodes  1 1 1 1 1 
Number of all computed Elp beyond  
–0.3 < DR < 0.3  

4/70 14/70 7/81 31/81 19/99 

Number of computed Elp from verification 
data beyond –0.3 < DR < 0.3 

1/10 5/10 3/31 18/31 5/20 

Percentage of training data mean error 7.02% 9.89% 7.12% 13.97% 12.52% 
Percentage of verification data mean error 7.33% 25.95% 10.27% 28.02% 17.79% 
Performance (Pf) of training set 0.248 0.350 0.212 0.367 0.317 
Performance (Pf) of verification set 0.356 0.735 0.207 0.509 0.300 
B: channel width; H: channel depth; U: mean velocity; U*: bed shear velocity; S: sinuosity index;  
DR: discrepancy ratio. 
Sources of data:  
(1) Deng et al. (2002); (2) Sukhodolov et al. (1997); (3) Kashefipour et al. (2002); (4) Rowiński et al. 
(2003); (5) Deng et al. (2001). 
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that some universal parameter representing the channel geometry should also be 
incorporated in the considerations; hence, the sinuosity index was treated as an 
additional parameter in Cases 1 and 3. When a channel meanders, it influences the 
dynamics of water flow. The onset of turbulent flow deflects some of the water 
towards the channels sides. As it reaches the side of the channel, it is reflected back 
toward the opposite side of the channel. As the water changes sides, it obviously also 
flows downstream, resulting in a zigzag flow line pattern. Meanders are an essential 
large-scale feature of river topography and, as such, must influence the mixing process. 
On the other hand, the treatment of sinuous natural channels by means of the 
longitudinal advection–dispersion model may incorporate large errors. Especially in 
strongly curved channels, transverse mixing becomes extremely important (Boxall et 
al., 2003).  
 Three different sets of data described in Table 1 were mostly taken from the 
literature. The works from which the data were adapted are cited so that the original 
sources can be identified. The first data set (Cases 1 and 2) was taken from Deng et al. 
(2002) and includes 70 subsets of field data measured on 30 streams in the United 
States. Owing to scarcity of data, only 10 measurements were put aside as a 
verification set. The second data set (Cases 3 and 4) was formed by the first data set 
extended over 11 river reaches from the territory of Poland and Moldova (Sukhodolov 
et al., 1997), which also broadened the geographical area for the considerations. The 
streams added are rather small with relatively small values of observed longitudinal 
dispersion coefficients. In these cases, more data were omitted during training, but 
because of the large range of EL to be covered by the learning set data, the training set 
was again kept bigger than the verification one. The third set of data (Case 5), taken 
from Kashefipour et al. (2002), Rowiński (2002), Sukhodolov et al. (1997) and Deng 
et al. (2001), covers a wider range of dispersion coefficients (99 sets of field data). 
However, the information about sinuosity index described below was not available for 
this particular data set.  
 All networks described in this section were trained upon logarithms of the 
appropriate data. The results for particular cases were compared by means of: 
(a) the discrepancy ratio: 

 log lp

lm

E
DR

E
� �

= � �
� �

 (11) 

 where Elp is the predicted longitudinal dispersion coefficient, and Elm is the 
measured longitudinal dispersion coefficient; and  

(b) the percentage of mean error calculated according to the formula used by 
Kashefipour et al. (2002): 

 
�

�

=

==δ N

i
lmi

N

i
i

E
N

DR
N

1

1

log1

1

⋅100 (12) 

 where N is the number of computed river reaches (see Table 1).  
 As suggested above and as follows from a variety of studies (Guymer, 1998; Deng 
et al., 2002; Rowiński et al., 2003), some characterization of planform geometry  
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Fig. 2 Comparison of predicted and measured EL (m2 s-1)—logarithmic scale. 

 
 
should influence the results significantly. The two first cases (Cases 1 and 2) are based 
on Deng et al. (2002) data. Those authors developed a new analytical method for 
prediction of longitudinal dispersion coefficient and applied it to a set of field data 
from 70 river reaches. The results obtained achieved an accuracy in which 91.4% of 
the calculated values ranged from 0.5 to 2 times the observed values, which 
corresponds to discrepancy ratio of –0.3 to +0.3. This is the best among all other 
literature results, but its main drawback is its complexity coming from an application 
of approximation methods for triple numerical integration with a set of regression 
equations. This complexity creates large uncertainty in applications. An ANN working 
as a kind of a black-box tool proved to provide results not worse than those of Deng et 
al. (2002). In cases based solely on Deng et al. (2002) data, the outliers lying beyond 
the discrepancy ratio (–0.3 to +0.3) are fewer than in the study of Deng et al. (2002) 
when taking into account the verification set. The percentage of mean error computed 
by means of equation (12) for the training and verification sets dropped to 7.06% in 
Case 1. For Case 1 also, the frequency of occurrence of discrepancy ratios for 
predicted to measured longitudinal dispersion (Fig. 3) are not worse and are mostly in  
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Fig. 3 Frequency of logarithms of discrepancy ratios, predicted to measured EL (m2 s-1). 

 
 
the range –0.2 to 0.2. Note that for Case 2, where an additional parameter reflecting the 
meandering of the river is not taken into account, the results obtained are much worse 
(see Table 1, Figs 2 and 3). 
 Note that, as depicted in Fig. 3, the frequency of occurrence of discrepancy ratios 
of predicted to measured longitudinal dispersion (obtained for logarithms of the 
dispersion coefficients ratios (Deng et al., 2002)) is a good representation of the model 
results. 
 For Case 3, where the additional data were taken from small streams (Sukhodolov 
et al., 1997), the results deteriorated slightly but still were much better than in cases 
without sinuosity index (see Table 1, Figs 2 and 3). They were also at the level 
achieved by Deng et al. (2002), which may be considered as the best at the present 
time. This clearly shows that the given network works reasonably well and is not 
overtrained. It therefore seems that such a network can be used for predictions of 
longitudinal dispersion coefficient for independent data collected in different streams. 
A good performance of such a network is also shown in Fig. 4, where the comparisons 
between predicted and computed coefficients EL are shown in a linear coordinate  
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Fig. 4 Comparison of predicted and measured EL (m2 s-1)—linear scale. 

 
 
system for Cases 3 and 4 (with dispersion coefficients less than 200 taken into account, 
only because of the size of figure). In Case 5, where the data cover a wider range of 
dispersion coefficient (99 sets of field data), the network performs better than in Case 
4, but still worse than in cases with sinuosity index. 
 To summarize, all the cases varied in terms of the balance between the number of 
training and verification data. The usual practice is to accept quite a large training data 
set due to a scarcity of longitudinal dispersion coefficients of acceptable quality. But 
all of the results performed well for the verification data, particularly in cases when the 
sinuosity index (S) was taken into account. Analysing the results in Table 1 and Fig. 2,  
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Table 2 Comparison of importance of different input variables. 

Training sets: Verification sets: Omitted input 
variable in 
data set Mean rank of 10 

networks 
Range of percentage 
of mean error (%) 

Mean rank of 10 
networks 

Range of percentage 
of mean error (%) 

B/H   9.4 7.6–11.4   9.7 11.4–17.9 
U/U* 11.6 8.8–12.2 11.3 13.9–19.4 
S 25.5 13.4–17.2 28.7 28.0–33.9 
3UB 35.5 22.0–38.6 32.3 29.7–53.1 
 
 
it is clear that performance of ANN models for Cases 1 and 3 is much better than that 
for Cases 2 and 4. This shows that the sinuosity index plays an important role as the 
input variable and should be taken into account in predicting EL by means of empirical 
models. 
 Additional computations were performed to evaluate the significance of all input 
variables. The input data and the method of division into training and verification parts 
was made as in Case 3 (Table 1). Excluding consecutively one out of four input 
variables in each of 10 new tests, 40 networks were trained (Table 2). These 40 
networks were ranked from the best (rank 1) to the poorest one (rank 40) based on the 
percentage of mean error (equation (12)). This ranking was performed separately for 
training and verification sets. The mean rank of each 10 networks indicates the 
importance of the excluded input variable. The bigger the mean rank is, the poorer the 
model, so the omitted variable is more important. From Table 2 it is clear that 3UB and 
sinuosity index (S) are the most important input variables.  
 
 
CONCLUSIONS 
 
Although the results obtained with the use of artificial neural networks are not fully 
satisfying, they are more accurate and far less costly than physically-based models 
allowing for the prediction of longitudinal dispersion coefficient and, consequently, the 
pattern of pollution spread in rivers. The authors are by no means recommending 
eliminating the physically-based models, which allow one to gain more understanding 
of the behaviour of a system. However, the neural networks may be very useful in 
situations where the local data cannot be easily provided. The ANNs can be readily 
integrated with, for example, decision support systems and, as such, can constitute a 
very useful tool for decision makers. The performance of neural networks 
methodology was very much improved when the input data were extended by river 
sinuosity index and the results turned out to be better than those based on any other 
method. 
 The authors believe that the present study may bring new points to the discussion 
about the applicability of artificial neural networks in water-related problems and may 
add an argument in weakening the reluctance of the wider hydrological community to 
the apply this methodology. The similar aim, though from another perspective, has 
been a guiding principle of recent studies of, for example, Wilby et al. (2003). 
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