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Multi-Layer Perceptron, Fuzzy and Radial-Basis Function neural networks, Nearest 
Neighbour approach, linear regression, 2nd order curvilinear regression, and ‘classical’ 
empirical formulae have been applied for evaluation of longitudinal dispersion coefficient 
for a river reach. In general, results achieved by means of each type of neural networks 
outperforms these obtained by other techniques.  
 
INTRODUCTION 
 
Description of longitudinal dispersion in rivers is still at front of the research problems 
within environmental hydrologists. The simplest and most popular in practical approach 
is the model based on one-dimensional advection–dispersion equation. When assumption 
of almost uniform concentration distribution of admixture (C) in a river cross-section (A) 
is valid, what may be true in a far distance from the release point, and the channel 
geometry is relatively simple, this equation may be written in the form of 
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where U is cross-sectional averaged velocity, x is longitudinal axis and Ex is longitudinal 
dispersion coefficient. 

When one dimensional advection-dispersion equation is applied to a natural stream, 
the model assumptions are usually not fully satisfied and, therefore, what is claimed to be 
measured value of dispersion coefficient is loaded with a significant error  ([7] and [8]).  
 
APPLIED METHODS AND DATABASE DESCRIPTION 

 
To treat the Fickian model (1) as a predictive tool, one needs to know how to relate the 
usually unknown longitudinal dispersion coefficient to basic hydraulic and morphometric 
characteristics of the natural stream under consideration. Numerous empirical and semi-
empirical formulae have been elaborated [9], [11]. When channel depth, H (m), channel 
width, B (m), cross-sectional averaged water velocity, U (m s-1) and bulk shear velocity, 
U* (m s-1) are known, one may compute the longitudinal dispersion coefficient by means 
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Another example is the formula proposed in [2]:  
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Recently a Multi-Layer Perceptron neural network (MLP) has been proposed for 

dispersion assessment [5]. It was based on the following hydraulic input variables: B/H, 
U/U*, and 3UB. Database was composed only of data collected in the US rivers. One 
should be aware that results of the modelling based on short-data sets can be 
contaminated with significant errors. 

A bit different and more diverse data base, with 81 measurements was used in [7]. It 
was shown that when sinuosity index is considered as additional input, MLP network 
results improve significantly. The same data base is exploited in the present paper.  

In this paper the evaluation of longitudinal dispersion coefficient by means of 
Radial-Basis Function neural networks (RBF), Fuzzy neural networks (FNN), Nearest 
Neighbour approach (NN), linear regression (LR), 2nd order curvilinear multiple 
regression (CR) and formulae proposed in [9] and [2] will be presented and compared 
with results obtained in [7] by means of MLP network. Two versions, namely V1 and V2 
of each model will be verified. The input measurements in V1 included B/H, U/U*, 3UB, 
in V2 additionally sinuosity index was considered. Because dispersion coefficients range 
from 1486.40 m2/s to only 0.19 m2/s, in the present paper logarithms of all variables were 
applied as model inputs and output. 81 cases were divided randomly into training (50) 
and validation (31) sets.    

Stopping criteria of MLP and FNN training algorithms were link to the value of 
objective function (J) computed for validation data set 
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J depends on the vector of parameters (d) to be optimized, different for each model. In 
the above equation Ee

x represents the modelled value of longitudinal dispersion, n is 
number of data in the training or validation sets. Selection of the best of trained models of 
each type was also performed due to validation set results. 
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All applied models are able to approximate the values of output variable y based on 
the set of input variables x1, x2, ..., xN, hence y = f(x1, x2, ..., xN). In case of this paper N = 3 
in V1, N = 4 in V2, and y = Ee

x,. The most popular Multi-Layer Perceptron networks 
comprise of several nodes arranged in input, hidden and output layers, as presented in 
Fig. 1. The number of input and output nodes is always equal to the number of input and 
output variables, whereas the number of hidden nodes should be evaluated 
experimentally, and it was 2 and 3 in V1 and V2, respectively. It is important to stress that, 
especially in short-data case, the number of parameters – connected with number of 
nodes – should be as small as possible, to assure the robustness of optimisation problem. 
Nodes in consecutive layers are connected via weights (w, and v) with thresholds 
(indexed with 0). Discussion about selecting the best activation functions may be found 
for example in [10]. A sigmoidal function as activation function in the hidden layer has 
been chosen in the present study 
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Figure 1. Scheme of MLP, RBF and FNN models 
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For training the network, a Lavenberg-Marquardt nonlinear optimization algorithm 
[6]  with multistart procedure has been applied, which should help to avoid sticking to 
local optima being far worse than the global one. 

Radial-Basis Function neural networks differ from the MLP ones in the first two 
layers (Fig. 1), where a set of M radially symmetric, usually Gaussian functions with 
parameters c and , spanning N-dimensional space was applied (N being the number of 
inputs). M was experimentally set to 7 in both versions V1 and V2 . When adding the 
weight parameters w from output layer, this model may be described in the form of 
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where X is a vector of input variables. Spatial location of c was fixed by means of self-
organized k-means algorithm. Deviations  were evaluated separately for each of M 
parameters c by k-nearest neighbour rule. The number of nearest neighbours was 
experimentally set to 2 in V1 and to 8 in V2. The weights w in output layer require linear 
optimization when all other parameters are known – hence singular value decomposition 
algorithm was applied. Details of all these methods may be found in [4]. The advantage is 
that RBF network trained this way does not need to compute the value of objective 
function for the validation set as a stopping criteria. 

The Fuzzy neural network models utilize a fuzzy logic theory [12], and were 
designed as a tool capable to deal with non-precise real-world data. Various types of 
FNN may differ significantly among one another due to abundance of possible 
fuzzification, defuzzification and inference methods which can be applied. Also the rule 
base may be composed in many ways. Two most popular types of models are 
Mammandi-Zadeh and Takagi-Sugeno ones [3]. In the present study FNN was 
constructed in the way depicted in Fig. 1. 

Two fuzzy sets Ai  (  =1,2)  for each i-th input variable were considered in the 
fuzzification layer (L1), representing linguistic variables of “big” or “small”. 
Membership functions (µA) of all sets were chosen to be Gaussian, i.e. 
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Parameters (ci

, i ), of each fuzzy set membership function were to be optimized, along 
with outputs of each rule (yj) (see below) by back propagation algorithm with multistart 
procedure to allow avoiding local optima.). All possible fuzzy rules in the rule base layer 
(L2) are considered in the form of 
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Since k is the number of input variables (3 or 4 in version V1 and V2 respectively) the 
number of rules is k, i.e. 8 for V1 and 16 for V2. Operation AND and THEN in Eq. (8) are 
represented by Cartesian product. Assuming that ( )j j

B y one may write 
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Finally, through defuzzification and inference layers (L3 and L4), the value of Ee

x is 
evaluated as  
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The non-parametric Nearest Neighbour approach is exploited in pattern recognition, 

and in hydrology it was also applied to time series modelling [1]. This simple procedure 
may be also applied to evaluate longitudinal dispersion coefficient. Having k input 
variables, one may in k-dimensional space, for each input vector case Xj, find its M 
nearest neighbours from training data set. As output values Ex are known for training data 
and for M nearest neighbours, one may evaluate the output value of Xj by, if M > k, 
applying linear regression method (see also below). The value of M should be chosen 
experimentally. When input vector case Xj belongs to training set, the point representing 
itself is not regarded as one of M nearest neighbours.  

Linear regression model (LR) may be shortly described as 
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whereas 2nd order curvilinear multiple regression (CR) is 
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Both these approaches are also applied in this paper, along with empirical formulae of 
Eq. (2) and (3).  
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COMPUTATIONAL RESULTS 
 
To compare the final results three indices were considered. The first one, Percentage of 
Mean Error (PME), following [5], has been evaluated as 
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Percentage index (PI) is  
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where A is a determinative of range width. This way each case belonging to the range 
increases PI in the same degree, and may be treated as “hit” other as “missed”. Note that 
for different A, the results may differ significantly. One may also ask for the lowest A for 
which PI computed for particular model version (for training or validation set separately) 
is 100%. This value is called A-max. Third index, root mean square error (RMSE), is 
simply computed as root of (4) for proper data sets.  

The results are presented in Table 1, for training and validation data sets separately. 
Empirical formulae could not be applied in V2 case. 

Similarly to [7] the results obtained from all models for V2 are significantly better 
than for V1. Formulae (2) and (3) fit the data even poorer than linear regression. It 
confirms the necessity to search for more reliable methods. Among other techniques all 
types of neural networks outperform LR, CR and NN methods in validation set cases, 
especially for V2. It means that they are able to utilize additional information better than 
simpler approaches.  

MLP networks seem to have more good “hits” than RBF and FNN ones (comparing 
PI results for A lower than 2). Note that for example for A = 1.2 FNN applied for 
validation set of V1 data, “hits” only in 3% of cases (exactly – in one case over 31). On 
the other hand for A = 2 there is no difference between FNN and MLP, whereas for A = 3 
FNN performs slightly better than MLP. But if comparing A-max values, FNN 
outperforms significantly all other models for V1 validation set. Also for V2 validation set, 
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FNN – this time together with RBF model – has lower A-max values than MLP network. 
This may indicate that fuzzy logic allows to avoid the worst mistakes. It is important to 
note that – in validation set – the poorest “hits” are much better than poorest “hits” of 
MLP. But since FNN and RBF require much more parameters – in short-data modelling 
they are unable to compete in numbers of best “hits” for lower A. It is also seen when 
PME and RMSE are compared for validation data set of V1, when the worst “misses” are 
not as significant as in V2 and do not have as big influence on these statistics.   

 
Table 1. Results summary  

model set PME (%) PME (%) PI (%) PI (%) RMSE RMSE 

V2 V1 

  A   V2 V1 

1.2 1.5 2 3 max 1.2 1.5 2 3 max

V2 V1 

MLP 7.12 13.97 50 86 92 96 4.8 26 50 72 94 5.9 0.168 0.275 
RBF 9.60 16.30 38 68 84 98 4.5 8 36 68 92 3.6 0.204 0.286 
FNN 10.03 16.14 46 68 86 96 6.0 22 40 62 88 5.5 0.227 0.306 
NN 12.98 18.12 28 56 78 92 7.4 14 38 58 84 8.3 0.269 0.337 
LR 12.05 17.39 26 58 82 96 5.7 18 28 62 90 6.2 0.239 0.312 
CR 9.25 13.81 38 72 86 98 3.9 30 56 68 94 6.2 0.192 0.271 
Seo and Cheong  22.71      16 32 54 70 10.2  0.443 
Deng et al. 

tra
in

in
g 

 19.41      18 40 56 80 8.4  0.376 
MLP 10.27 28.02 45 77 90 94 4.0 23 35 45 65 22.8 0.196 0.485 
RBF 12.13 25.70 39 58 84 97 3.1 29 39 48 74 28.8 0.205 0.464 
FNN 13.43 27.60 23 68 77 97 3.4 3 26 48 68 7.8 0.218 0.415 
NN 13.56 28.86 39 65 81 94 5.8 10 29 42 71 33.5 0.245 0.484 
LR 17.34 31.53 16 55 68 94 5.4 13 23 39 61 33.8 0.279 0.524 
CR 17.39 28.84 32 55 84 87 14.4 16 42 48 74 27.1 0.330 0.506 
Seo and Cheong  39.37      16 23 42 55 44.3  0.659 
Deng et al. 

va
lid

at
io

n 

 35.75      10 26 42 58 21.9  0.588 

 
NN approach, although performs better than regression methods for validation sets, 

provides worse results than the ones obtained from neural networks.  
 
CONCLUSIONS 
 
Results obtained by means of each neural network type are found to be better than by 
empirical formulae (2) and (3), regression methods and Nearest Neighbours approach. 
These methods allow for the prediction of longitudinal dispersion coefficient and may 
ease the prediction of the pattern of pollution spread in rivers. The performance of all 
investigated methods improves significantly when sinuosity index is included. Although 
Multi-Layer Perceptron neural networks allow more precise evaluation of longitudinal 
dispersion coefficient than Radial-Basis Function or Fuzzy models, they are also more 
subjected to significant errors. Fuzzy models seem to evade the largest mistakes, which 
happened to other techniques, but, probably due to much more optimized parameters, 
they are unable to make comparatively many proper assessments as Multi-Layer 
Perceptron models. Radial-Basis Function neural networks also suffer 
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overparametrization, although perform correctly, whereas Nearest Neighbour non-
parametric methods rather yield to neural networks. 
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