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ABSTRACT: Performance of two different types of approaches were investigated with respect to the daily 
river flow predictions. The first approach is Multi-Layer Perceptron Artificial Neural Network, the second 
one, based on the deterministic chaos concept, is so called Phase-Space Reconstruction (PSR) model. Both 
models were applied to daily river flow data collected from several gauges, located in river reaches in western 
Canada. Each data set consists of more than 10000 consecutive daily measurements. The method based on the 
phase-space reconstruction theory has been applied despite the fact that the authors doubt in the existence of 
deterministic chaos in the river system. Classical phase-space method may be applied only to single time se-
ries data. In the present study an extension was proposed, in which time series from additional gauge stations 
added to the system. Comparison of models’ performance was made for this extended and classical ap-
proaches for both phase-space reconstruction and Artificial Neural Networks models. 

1 INTRODUCTION  

An accurate forecasting of river flow is a fundamen-
tal problem in hydrological sciences. In recent years 
application of black box type models to runoff pre-
diction has been gaining more popularity due to their 
easiness of employment and relatively low number 
of variables involved. Multi-Layer Perceptron Arti-
ficial Neural Networks (ANN) are probably most 
broadly used for forecasting (Hsu et al. 1995, Cam-
polo et al. 1999, Campolo et al. 2003, Dolling & Va-
ras 2002, Chibanga et al. 2003 and many others). 
They are the simplest among the non-linear neural 
network models, nevertheless they are capable of 
making very accurate forecast, when proper set of 
input variables is taken into account. On top of that 
they are easy to be trained, contrary to, for example, 
radial basis functions networks. ANN approach is 
sometimes called global approximation approach as 
it deals with all set of historical data values to opti-
mise network weights, which means that all known 
information about the system is used to make a rele-
vant forecast. 

A methodologically different approach, though 
still quite popular, pertains to phase-space recon-
struction (Jayawardena & Lai 1994, Porporato & 
Ridolfi 1997, Sivakumar at al. 2002). It is a local 
approximation approach and it has been developed 
in the framework of the deterministic chaos theory. 
The presence of low-dimensional chaotic behaviour 

in the rainfall-runoff process is a matter of an ongo-
ing debate (see e.g. Schertzer et al. 2002) and it will 
not be discussed in detail herein. Let us only note 
that the main idea of this approach corresponds to 
the possibility of the reconstruction of the phase-
space from a discrete set of values for a given ob-
servable scalar such as water stages at a given gauge 
station. The authors of the present study will benefit 
from the phase-space reconstruction method which 
in fact is a way of finding the most similar situations 
in historical data and applying only these selected 
parts of data set for forecasting. It seems that this 
method may stand alone as a reliable tool without 
linking it to the existence or nonexistence of a hypo-
thetical deterministic dynamical system leading to 
disordered solutions. According to Sivakumar et al. 
(2002), the phase-space reconstruction method is 
better than ANN approach when dealing with auto-
regressive forecast problem. Further in the paper it 
will be shown that such conclusion is premature and 
in case of the selected Canadian river reaches both 
ANN and phase-space reconstruction methods boast 
similar performance of forecasting daily runoffs. 
Additionally an extension, further called as quasi-
phase-space reconstruction method, will be proposed 
and this method will allow for the use of the data 
from more than one gauge station. As expected this 
method will improve the results considerably. 
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 The comparison of the results of two black box 
models will be presented according to the following 
scheme: 

Table 1. Description of data sets  
River Gauge sites Length 
Athabasca* 1. Hinton 

2. Jasper 
71.01.01- 
02.12.31 

Fraser* 
(upper part) 

1. Above Texas Creek 
2. Shelley 

55.01.01- 
02.12.31 

Fraser* 
(lower part) 

1. Mission 
2 Above Texas Creek 

65.05.01- 
92.12.31 

South 
Saskatchewan**

1. Medicine Hat 
2. Bow river  
3. Oldman river  

65.01.01- 
02.12.31 

North  
Saskatchewan**

1. Prince Albert 
2. near Deer Creek 

70.01.01- 
01.12.31 

− version A: as inputs only historical runoff data 
from the same gauge are applied for both ANN 
and phase-space reconstruction approaches; 

− version B: forecast is made for the same gauge as 
in version A, but input data set consists of data 
from 2 or 3 gauges. Additional gauge for version 
B is selected at the same river where the forecast-
ing gauge or its main tributary is placed. 
For each case 3 consecutive measurements from 

particular gauge were treated as input variables 
which means that we have 3 input variables in ver-
sion A, and 6 or 9 in version B. 

*mountainous terrain, **steppe 
 

3 MODELS APPLIED 
2 FLOW DATA 

In this section attention is focused on the imple-
mentation of some anticipatory nonlinear methods 
based on Deterministic Chaos and Artificial Neural 
Networks for prediction of the inflows. 

Long enough data sets collected in 5 western Cana-
dian rivers (Figure 1) are applied in the analyses 
(Environment Canada 2003). Table 1 presents the 
duration of daily data sets, location of the main 
gauge (used for the forecasts, denoted by number 
one) and the additional gauges (applied in version B 
only, denoted by number two or three). Each data set 
contains more than 10000 daily measurements, and 
5 river reaches are considered in the study. It seems 
to provide sufficient information to compare the per-
formance of all the considered models. In each case 
the daily river flow forecast was made for last 5000 
measurements. Those 5000 measurements were not 
taken into account during ANN training process, but 
they were only used to compare performance of both 
models at each river reach. The ANNs were trained 
with the use of the earlier records (larger than 5000 
elements in each case). 

3.1 Artificial Neural Network approach 
Multi-Layer Perceptron Artificial Neural Net-

works have become widespread in recent years and 
the researchers often claim that they provide a useful  
tool for the predictions of river flow. Three layer 
networks with sufficient number of hidden nodes are 
usually applied due to the continuity of the relevant 
function. Every network contains an appropriate 
number of input and output nodes which is equal to 
the number of input and output variables, and the as-
sumed number of hidden nodes. There is no effec-
tive rule for the estimate of the number of hidden 
nodes. In this study it usually turns out to be close to 
the number of input nodes, but in each case it is ex-
perimentally verified. 

 
 

The ANN nodes in neighbouring layers are linked 
via weighted connections. The values of those 
weights can be adaptively modified during the proc-
ess of training the network. In this study, due to the 
relatively simple architecture of all the networks, 
Levenberg–Marquardt non-linear optimisation algo-
rithm was adopted (Press et al. 1989).  

 

Figure 1. Location of gauge stations. 
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Shortly the Multi-Layer Perceptron network (see 
Figure 2) operates in the following way: signals si 
(i =1,..N) from the input nodes (e.g. values of input 
variables normalized to 0-1 interval) are multiplied 
by proper weights wji (j =1,…K), connecting the 
neuron from which signal has been dispatched and a 
suitable neuron in the second layer. 
In the second layer the weighted sum of all the in-
puts are computed and then transformed by logistic 
function 
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giving the output value of a neuron in the second 
layer:  

1
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The reconstruction of a vector space which is 
equivalent to the original state space of a system 
from a scalar time series is the basis of almost all 

easurements is a projec-
tion of unobserved internal variables of a system 
onto an interval on real axis. It is obvious that even 
with a precise knowledge of the measurements it 
may be impossible to reconstruct the state space of 
the original system from the data. Fortunately, we 
are rarely keen of obtaining a whole, precise descrip-
tion of the process. It is usually enough to determine 
its good approximation. Hence a reconstruction of 
the original space is not really necessary for the data 
analysis. It is sufficient to construct a new space 
such that the attractor in this space is “equivalent” to 
the original one (Kantz & Schreiber 1997).  

The reconstruction of a vector space which is 
equivalent to the original state space of a system 
from a scalar time series is the basis of almost all 
nonlinear methods. Scalar measurements is a projec-
tion of unobserved internal variables of a system 
onto an interval on real axis. It is obvious that even 
with a precise knowledge of the measurements it 
may be impossible to reconstruct the state space of 
the original system from the data. Fortunately, we 
are rarely keen of obtaining a whole, precise descrip-
tion of the process. It is usually enough to determine 
its good approximation. Hence a reconstruction of 
the original space is not really necessary for the data 
analysis. It is sufficient to construct a new space 
such that the attractor in this space is “equivalent” to 
the original one (Kantz & Schreiber 1997).  
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The classical situation, as treated in hydrological 
sciences, though being a matter of serious debate 
(e.g. Schertzer et al. 2002) is the following. A se-
quence {xi}, xi∈R1, i = 1, ..., N, of measured values 
is given. In order to find an approximation of the de-
terministic system one considers the function F de-
fined by the following relationship 

sciences, though being a matter of serious debate 
(e.g. Schertzer et al. 2002) is the following. A se-
quence {xi}, xi∈R1, i = 1, ..., N, of measured values 
is given. In order to find an approximation of the de-
terministic system one considers the function F de-
fined by the following relationship 

The classical situation, as treated in hydrological 

Figure 2. Multi-Layer Perceptron Artificial Neural Network 
scheme. 

 
Afterwards the weighted signals zj 

ji  

(multiplied by 
proper weights vj), are transferred to the neuron of 
the third layer. In the neuron of the third layer the 
new weighted sum is computed  

),...,,()( )1(1 −−−
∆+ == miii

i
m

i
m xxxFyFy ),...,,()( )1(1 −−−

∆+ == miii
i
m

i
m xxxFyFy  (4)  (4) 

1 1

K N

j i
j i

y v f s w
= =

 
=  

 
∑ ∑

 
∑ ∑ (3) (3) y

and after de-normalization of the output, the sought 
(forecasted) value may be determined. This is a 
feed-forward network, which means that there is 
only one direction of the flow of information, from 
the input to the output layer. 

and after de-normalization of the output, the sought 
(forecasted) value may be determined. This is a 
feed-forward network, which means that there is 
only one direction of the flow of information, from 
the input to the output layer. 

with a properly adjusted number m, 



called embed-
ding dimension and a given time delay 
with a properly adjusted number m called embed-
ding dimension and a given time delay ∆ . Hence, 
the so-called quasi phase-space composed of m-
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The function F in Equation (4) is a dynamical 
process in the space Rm, which according to the em-
bedding approach (Takens 1981) forms an attractor 
in Rm, if the original process is a deterministic chaos. 
To determine proper embedding dimension from a 
finite sample of points one determines, for example, 
correlation integral CN(m, r) for several embedding 
dimensions (Grassberger & Procaccia 1983). Then 
correlation dimension D is determined as the slope 
of function ln CN(m, r) with respect to ln(r), in a re-
spective range of sufficiently small r, such that the 
function behaves as a linear one (one expects C to 
scale like power law, C(r) ∝ rD). Now using Takens 
theorem, one can put m=2D+1 as the searched em-
bedding dimension. 

3.2 “Phase-space reconstruction” approach 3.2 “Phase-space reconstruction” approach 
Another method used in runoff forecasting studies is 
motivated and based on the theory of dynamical sys-
tems (Kantz & Schreiber 1997), i.e. the time evolu-
tion is defined in some phase-space. For a purely de-
terministic system, once its present state is fixed, the 
states at all future times are determined as well. So it 
is essential to establish a phase-space for the system 
such that specifying a point in this space specifies 
the state of the system and vice versa. Then one can 
study the dynamics of the system by studying the 
dynamics of the corresponding phase-space points.  

Another method used in runoff forecasting studies is 
motivated and based on the theory of dynamical sys-
tems (Kantz & Schreiber 1997), i.e. the time evolu-
tion is defined in some phase-space. For a purely de-
terministic system, once its present state is fixed, the 
states at all future times are determined as well. So it 
is essential to establish a phase-space for the system 
such that specifying a point in this space specifies 
the state of the system and vice versa. Then one can 
study the dynamics of the system by studying the 
dynamics of the corresponding phase-space points.  

One can proceed then to the stage of determining 
the prediction model for the relationship F in Equa-
tion 4. It is possible for deterministic chaos case: as 
the process is really deterministic and due to exis-
tence of an attractor. The considered prediction 
model has the form of a function such that it ap-
proximates the function F, or even less – a „compo-
nent” of F, being prediction of a future value of 
state.  

Characteristic for chaotic systems is that in many 
cases the corresponding attractors turn out to be 
strange attractors of the fractal structure with a non-
integer dimension (Kudrewicz 1993, Ott 1993).  

 
cases the corresponding attractors turn out to be 
strange attractors of the fractal structure with a non-
integer dimension (Kudrewicz 1993, Ott 1993).  

Characteristic for chaotic systems is that in many

Since it is natural to describe a deterministic dy-
namical system as an object in phase-space, it is also 
most natural to use a phase-space description for ap-
proximation of the dynamic of the system. Such ap-
proximate dynamics can be useful for prediction.  

Since it is natural to describe a deterministic dy-
namical system as an object in phase-space, it is also 
most natural to use a phase-space description for ap-
proximation of the dynamic of the system. Such ap-
proximate dynamics can be useful for prediction.  
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where T is a prediction horizon. Such a function 
depends on the time instant i of making prediction, 
and on the horizon T of this prediction. Thus, one 
can seek for a function 

),...,,()( )1(1 −−−= miii
ii

m
i xxxfyf TT  (7) 

that would determine a good approximation of the 
value xi+T of the given sequence {xi}. 

Our computations do not confirm the straightfor-
wardness of the application of the described ap-
proach and we become skeptical about its correct-
ness. Correlation integral for data described in 
section 2 revealed no obvious scaling region as the 
indicator of self-similar geometry. The saturation 
value of D (which is just the lower bound of box di-
mension) with increasing m was not clear at all. We 
are also aware of the occurrence of noise in the ap-
plied data, so the question arises whether those data 
can be analyzed within the deterministic system.  

As a consequence of the above we applied a part 
of the method derived within the deterministic chaos 
theory, but as mentioned in Introduction there is no 
need to decide whether the chaos exists in the sys-
tem under consideration. We keep the name of the 
method as the “phase-space reconstruction” ap-
proach (Jayawardena & Lai 1994, Sivakumar et al. 
2000) to show its origin but we do not claim we 
have applied the embedding theorem. A method of 
delays as a realization of the “phase-space recon-
struction” approach has been selected for the pur-
pose of the present study. In order to make a forecast 
one constructs m-dimensional data vectors from 
measurements spaced equidistant in time (temporal 
sequence of measured values at the selected gauge) 
which creates an analogy to the phase-space.  

Further the principle of the applied method lies in 
the search of K-points from the d-dimensional point 
set that are placed at the smallest distance (according 
to some assumed measure) from the points repre-
senting the current situation. In other words we are 
interested in finding K vectors of the length m from 
the past, most of all resembling the current situation. 
We do assume one day time delay which allows us 
to use the consecutive recordings from the gauge 
station. Thus we obtain an autoregressive forecast 
for each day (version A). In the present study it was 
assumed that m=3 which proved to produce reason-
able results. 

3.3 Quasi “phase-space reconstruction” approach 
We proceed similarly as in Section 3.2 but this time 
we test whether the similar forecast is possible using 
data collected from more than one gauge. Intuitively 
more information should lead to a better forecast. 
Being remote from the rigorous treatment of the de-
terministic chaos we may “extrapolate” the previous 
considerations from scalar observables (water 

stages) to vectors. This time we build 2m-
dimensional quasi “phase-space” where the first d-
vector is made of the consecutive measurements 
from the first gauge and the second d-vector is made 
of the consecutive measurements in the second 
gauge station (time delay is again assumed as one 
day). 

One  should note that the  measurements from 
different gauges may have different standard devia-
tions, so the scale related to the first three compo-
nents and the last three components  may be hetero-
geneous, that can impact the search  for N closest 
neighbours in this space. Fortunately in our case the 
performance of forecast made using data sets di-
vided by standard deviation is almost the same as for 
raw data and therefore no normalization was neces-
sary. The above describes the technique for daily 
runoff forecast in version B. 

4 COMPARISON OF APPLIED METHODS 

The comparison will be made for both versions A 
and B by means of correlation coefficient applied to 
measured and predicted daily or (in one case) 4-
daily runoff volume increments (see Table 2). Such 
approach shows the performance of the model much 
better than the correlation applied to just actual run-
off volumes where almost all results are close to 
unity independently of the quality of results. 

 
Table 2. Correlation coefficients of forecasted and measured 
(daily, except noted case) runoff changes.  
 Ver. A  Ver. B   
river ANN    PSR ANN Quasi 

PSR 
No.of  
gauges

Athabasca 0.674 0.667 0.904 0.899 2 
Fraser (upper part) 0.738 0.735 0.928 0.922 2 
Fraser (lower part) 0.478 0.512 0.660 0.507 2 
Sth Saskatchewan 0.518 0.507 0.979 0.796 3 
Nth Saskatchewan
(1 day forecast) 

0.601 0.603 0.736 0.760 2 

Nth Saskatchewan
(4 day forecast) 

0.364 0.317 0.856 0.847 2 

 
As it was expected inclusion of additional gauge sta-
tion (Version B) improves the results quite signifi-
cantly for both “phase-space reconstruction” as well 
as ANN (Figures 3-8). The only exception is the 
lower Fraser river. The addition of data from the 
gauge station at Texas Creek did not help the 
“phase-space reconstruction” technique. The exem-
plification of this fact is seen in Figure 4. Note that 
all the Figures (3-8) are prepared for a selected pe-
riod of about one month only, out of 13 years time 
series. For clarity the relevant period was chosen to 
reveal especially large changes in the daily river 
runoff. 
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This is worth mentioning that in version A all 
ANN and phase-space models show similar per-
formance. This result is different from the one of 
Sivakumar et al. 2002 who considered daily river 
flow data set from only one gauge station in Thai-
land. A very short time series was analysed in that 
study, and the authors removed half of the data set 
because large differences were observed in those 
two parts of time series. In that study the phase-
space model performance was much better than 
ANN.  

Note that in version B in case of South Sas-
katchewan river prediction made by ANN is very 
good indeed and better than that by quasi “phase-
space reconstruction” (see Figure 6). In case of quasi 
“phase-space reconstruction” the difficulty lies in 
the fact that it is quite hard to find enough vectors (3 
delayed data from three gauges) in 9-dimensional 
space similar to the current data allowing for the 
evaluation of relevant linear regression coefficients. 

 
An astonishing fact is that in version B in respect 

to North Saskatchewan River, 4-daily runoff forecast 
(Figure 8) proves to be better than the daily predic-
tions (Figure 7, Table 2). It is the result of the selec-

tion of additional gauge at the distance correspond-
ing to flow routing during the time period of 4 days.  

5 CONCLUSIONS 

The present study that was based on long enough 
time series from five river reaches shows that the 
method analogical to the phase-space reconstruction 
derived in the framework of deterministic chaos the-
ory is useful for runoff predictions even if we have 
no evidence about the existence or non-existence of 
chaos in the considered river systems. It has also 
been shown that contrary to what is suggested in 
some hydrological articles, Artificial Neural Net-
works may provide accurate enough forecasts, in 
many cases even better than those based on “phase-
space reconstruction”. On top of that it has been 
shown that the use of additional information from 
other gauges improves significantly the forecasts 
based on both ANNs and “phase-space reconstruc-
tion”. Such proposal has not been considered in re-
spect to “phase-space reconstruction” in literature so 
far. 
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 Athabasca (version B)
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Figure 3. Comparison of one lead day runoff forecast for Hinton gauge station, on 
Athabasca river, obtained from ANN and quasi “phase-space reconstruction” models 
in versions A and B 
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 Fraser (upper) (version B)
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Figure 4. Comparison of one lead day runoff forecast for gauge station near Texas 
Creek (BC), on upper part of Fraser river, obtained from ANN and quasi “phase-space 
reconstruction” models in versions A and B 
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 Fraser (lower) (version B)
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Figure 5. Comparison of one lead day runoff forecast for gauge station near Mission 
(BC), on lower part of Fraser river, obtained from ANN and quasi “phase-space recon-
struction” models in versions A and B 
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 South Saskatchewan (version A)
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 South Saskatchewan (version B)
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Figure 6. Comparison of one lead day runoff forecast for Medicine Hat gauge station, 
on South Saskatchewan river, obtained from ANN and quasi “phase-space reconstruc-
tion” models in versions A and B 
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 North Saskatchewan (version B)
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Figure 7. Comparison of one lead day runoff forecast for Prince Albert gauge station, on 
North Saskatchewan river, obtained from ANN and quasi “phase-space reconstruction” 
models in versions A and B 
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Figure 8: Comparison of four lead day runoff forecast for Prince Albert gauge station, 
on North Saskatchewan river, obtained from ANN and quasi “phase-space reconstruc-
tion” models in versions A and B 
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