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Abstract: A variant of the Differential Evolution method is 
presented. The classical Differential Evolution approach is very 
successful for simple problems, but does not perform well enough 
for troublesome multi-dimensional non-convex continuous functions. 
To overcome some of the drawbacks, the Grouped Multi-Strategy 
Differential Evolution algorithm is proposed here. The main idea 
behind the new approach is to exploit the knowledge about the lo­
cal minima already found in different parts of the search space in 
order to facilitate further search for the global one. In the pro­
posed method, the population is split into four groups: three of 
them rarely communicate with the others, but one is allowed to 
gain all available knowledge from the whole population throughout 
the search process. The individuals simultaneously use three differ­
ent crossover/mutation strategies, which makes the algorithm more 
flexible. The proposed approach was compared with two Differential 
Evolution based algorithms on a set of 10- to 100-dimensional test 
functions of varying difficulty. The proposed method achieved very 
encouraging results; its advantage was especially significant when 
more difficult 50- and lOO-dimensional problems were considered. 
When dividing population into separate groups, the total number 
of individuals becomes a crucial restriction. Hence, the impact of 
the number of individuals on the performance of the algorithms was 
studied. It was shown that increasing the number of individuals 
above the number initially proposed for classic Differential Evolu­
tion method is in most cases not advantageous and sometimes may 
even result in deterioration of results. 
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1. Introduction 

The global optimization problem in this paper may be described in the following 
form - for a continuous real valued function f (x), find the global optimum vector 
x", such that: 

f (x") = minf (x) (1) 

where x is an M -dimensional continuous variable vector with domain n c RM . 

Among a number of global optimization methods proposed during last twenty 
years, the Differential Evolution (DE) algorithm described in detail in Storn and 
Price (1995; 1997) is said to be one of the most promising (Clerc, 2006), although 
probably not the most popular one. DE is a purely heuristic population-based 
algorithm that has been successfully applied to a wide range of test functions 
and real-world problems (Ilonen, Kamarainen and Lampinen, 2003; Ali, Khom­
patraporn and Zabinsky, 2005; Price, Storn and Lampinen, 2005; Rowinski and 
Piotrowski, 2008). The successful idea of DE consists in evolving iteratively a 
population of individuals in the search space to the vicinity of the global op­
timal solution x", according to a predefined heuristic that is based on adding 
the weighted differences of two population vectors to a third vector. Although 
the basic DE is successful in many simple low-dimensional cases, rather large 
computational time is usually required for multimodal problems with higher di­
mensionality, and the average success rate significantly decreases for such cases. 
Hence, increasing the success rate in finding the global optimum x" and re­
ducing computational time were obvious motivations for the recently proposed 
improvements (e.g. Liu and Lampinen, 2005; Mishra, 2006; Wang and Zhang, 
2007; Ali, 2007; Brest et al., 2007, Das et al., 2009, Qin, Huang and Suganthan, 
2009). 

In this paper, we propose a new modification of the DE algorithm, namely 
Grouped Multi-Strategy Differential Evolution (GMS), and compare it with the 
basic DE and Multi-Strategy Differential Evolution algorithm (MS) suggested 
by Mishra (2006) for a set of selected test functions. 

In the present paper we understand strategy as a rule referring to crossover 
and mutation only, whereas algorithm is understood as the whole heuristic, 
defining the rules of optimization process. In the DE algorithm, only one strat­
egy is used, while in the MS algorithm, three different strategies related to 
crossover and mutation are applied with predefined probability. In the case 
of the proposed GMS algorithm, the population is divided into four different 
groups, three of them in principle work mutually independently using the same 
strategies as in the MS. The methods of inter-group exchange of information, 
that we propose, significantly improve the performance of the GMS approach 
in comparison with both basic DE and MS algorithms. 

For DE, MS and GMS algorithms, the effect of both dimensionality (M equal 
to 10, 30, 50 and 100) and the population size (varying from lO·M to 100·M) on 
the success rate of finding of x" and the calculation time is studied in details. 
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The optimization techniques are tested for a set of very popular and relatively 
simple functions, as well as for some rarely used and much more troublesome 
ones. 

2. Differential evolution algorithm (DE) - strategy 1 

TheDE algorithm proposed by Storn and Price (1995) is a stochastic population­
based method. To find the optimal solution x" in the M-dimensional space, the 
DE initializes a population P with K individuals (vectors). The assumed pa­
rameter bounds define the domain, from which individuals are chosen randomly 
by uniform distribution over search space. The algorithm maintains a popula­
tion with K individuals in each generation. Storn and Price (1995) suggested 
K = 10M as a default value. 

In each iteration, for every individual Xi (i = 1, ... , K), three other distinct 
vectors X a , Xb, and Xc are randomly chosen from the population P. Then, a new 
vector Ui is generated by adding the weighted difference between two random 
vectors to a third vector - this operation is called mutation. The mutated vector 
Ui and the target (initial) vector Xi form two parents. In order to form the trial 
vector (offspring) Yi' the crossover between Ui and Xi is performed. The pseudo­
code of the described mutation and crossover used in the DE algorithm, denoted 
as Strategy 1, is given in Fig. 1. 

do a= ceil(rand(&,l)*K); while (a==i);
 
do b= ceil(rand(&,l)*K); while (b==a I I b==i);
 
do c= ceil(rand(&,1)*K); while (c==a I I c==b I I c==i);
 
jrand= ceil(M*rand(&,l)) ;
 
Ui = Xa + F*(Xb - xc) II mutation
 
for (j=1; j = M; j++) II generate a trial vector yJ by crossover
 

{if (rand(&, 1):S; Cr or j = jrand) Y1 = u{; 
else y{ = x{ } 

Figure 1. Strategy 1 

If f (Yi) :s; f (Xi), then Yi replaces Xi - this operation is called selection. 
In Strategy 1, rand(O,I) is a random number from a uniform distribution over 
the interval (0,1); ceil(z) returns the smallest integer value that is not less than 
z; F is the scale factor (suggested by Storn and Price, 1997, to be 0.5, and 
by Kaelo and Ali, 2006, to vary between 0.4 and 1); jrand is a random integer 
from [I,M]. The value of the algorithm parameter Cr depends on the problem 
(Price, Storn and Lampinen, 2005), but Ali (2007) suggests that the value of Cr 
= 0.5 is usually a reasonable choice. The above evolution process is repeated 
until termination conditions are met. 
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The entire algorithm terminates when one of the stopping criteria defined 
by the user is met. The stopping criterion used in this paper is based on the im­
provement of the objective function during the predefined number of iterations 
PNI: 

FBESTpNI - FBEST < c (2) 

where FBEST denotes the best objective function value at present iteration, 
FBESTpNI is the best objective function value obtained PNI iterations earlier, 
and c defines the threshold value of the required minimum improvement. 

3. Multi-strategy differential evolution algorithm (MS) 

Since 1995 different methods of crossover and/or mutation have been proposed 
for Differential Evolution-based algorithms. A detailed discussion of superior 
variations of the basic methodology may be found in Price, Storn and Lampinen 
(2005). The new strategies differ in their ways of creating offspring and may be 
successfully used for minimizing different types of continuous functions. 

An interesting suggestion leading to an improvement of the basic DE can be 
found in Mishra (2006). In the proposed Multi-Strategy Differential Evolution 
algorithm, for any vector Xi from the population P, one out of three selected 
strategies is chosen according to predefined probability. The following strategies 
are recommended: Strategy 1 used in basic DE, the Exponential Crossover 
and the modified Either-Or method (Mishra, 2006). MS technique significantly 
improves the success rate of finding the global optimal solution. 

Other strategies discussed in Price, Storn and Lampinen (2005) are not in­
cluded in MS, because they use a perturbation of the best individual (strategy 
called Best) or the best individual in determination of the direction of pertur­
bation (called Target-To-Best). That may result in premature convergence to 
local optima, especially in multi-dimensional problems. 

3.1. Exponential crossover - strategy 2 

Mutation in the Exponential Crossover strategy is performed in the same way 
as in Strategy 1, by determining the vector Ui. To create an offspring, the 
crossover is modified in the following way. An index value jrand is randomly 
selected from [1, M], and the corresponding parameter ui is copied from mutant 
Ui to the parent Xi, so that the trial vector (offspring) Yi will be different from 
the parent vector Xi' Then, the source of subsequent elements of the trial vector 
are determined by comparing Cr to a uniformly distributed random number 
rand(O, l) that is generated anew for each index j. As long as rand(O, l) :S Cr, 
parameters continue to be taken from the mutant vector Ui, but since for the 
first time rand(O, l) > Cr, the current and all remaining parameters are taken 
from the target vector Xi _ The method with Cr = 0.5 tends to retain most of 
the elements from the parent vector Xi- Hence, when used alone, exponential 
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crossover rarely leads to successful finding of global optimum. However, when 
applied together with other strategies, it turns out to be an important part of 
the algorithm. It facilitates optimization of different functions, not only, but 
first of all, the separable ones, and can improve performance of the algorithm 
near the optimum for many problems. 

The pseudocode of the Exponential Crossover Strategy is provided in Fig. 2. 

do a= ceil(rand(&,l)*K); while (a==i); 
do b= ceil(rand(&,l)*K); while (b==a I I b==i); 
do c= ceil(rand(&,1)*K); while (c==a I I c==b I I c==i); 
Yi = Xi I I child inheri ts parent parameters 
Ui = Xa + F*(Xb - xc); II mutation 
jrand= ceil(M*rand(&,l)); 
j = jrand 
do { y{ = u{ II child inherits a mutant parameter 

j = (j + 1) % M II increment j, modulo n 
} 

while (rand(&, 1) :-:::: Cr && j! = j rand) 

Figure 2. Strategy 2 

3.2. Modified either-or strategy 

Contrary to the Exponential Crossover, the Modified Either-Or strategy does 
not prefer copying elements of the parent vector Xi to the offspring Yi' To 
create the offspring Yi' for any target vector, two additional vectors are created: 
the first one by mutation, Ui, and the second one by recombination, Wi, with 
the use of a random number from the normal distribution. Then, for each j­
th component, a random number rand(O,I) is generated and compared to Cr. 
If rand(O,I) :-:::: Cr, the offspring parameter is copied from the mutant vector 
Ui; otherwise, the parameter is copied from the recombined vector Wi' The 
pseudocode of the Modified Either-Or Strategy is provided in Fig. 3. Note that 
X a is not used to create Wi' In Fig. 3 normal_ distribution (0, 1) is a random 
value generated from the standardized normal distribution with the mean equal 
to 0 and the variance equal to 1. This method ensures that each component 
of the offspring Yi almost surely differs from the corresponding element of the 
target vector Xi' 

The details of the MS algorithm are presented in Fig. 4. 

J
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do a= ceil(rand(&,l)*K); while (a==i); 
do b= ceil(rand(&,l)*K); while (b==a I I b==i); 
do c= ceil(rand(&,1)*K); while (c==a I I c==b I I c ==i); 
II mutation 
Ui = Xa + F*(Xb - Xc ); 
II recombination 
Wi = Xi + (Xb + Xc - 2*Xi )*normal_distribution(&,1);
 
II generate a trial vector yj by crossover
 
for (j=1; j = M; j++)
 

{if (rand (&,1):::; Cr) y.{ = u{;
 
else y; = W;;}
 

Figure 3. Strategy 3 

Step &.	 Preset mutation parameter F, crossover parameter Cr, 
the number of individuals in population set K, 
parameters of stopping criterion PHI and ~ . 
Randomly generate population P of K individuals Xi 

from the solution space n ; 
Iter = & II iteration number; 

Step 1. while	 (the stopping criterion is not satisfied) { 
Iter = Iter +1 II add 1 to iteration number 
for (i=1; i = K; i++) { 
II select one	 out of three strategies 
S= ceil(3*rand(&,l)); 
Generate offspring Yi by means of Strategy S 
if (f(Yi) :::; f(Xi)) then Xi = Yi I I selection 
} I I poorer vectors in n are replaced by 

II better vectors
 
} I I end while
 

Figure 4. The MS Algorithm. 

4. Grouped multi-strategy differential evolution (GMS) 

The main goal of the Grouped Multi-Strategy Differential Evolution (GMS) 
proposed in the present paper is to make the optimization algorithm less vul­
nerable to being trapped in a local minimum. The basic idea is to exploit the 
information on location of local minima in the search space in order to find a 
still better minimum, hopefully the global one - x·. In order to find several 
different local optima, the population P is divided into four separate groups 
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(sets) G (k), k E {1, 2, 3, 4}, Le. 

4 

P=UG(k) (3) 
k=l 

For all k,l::; 4,k f-l G(k) nG(l) = 0. 

All groups have approximately the same number of elements, large enough to 
allow for a reasonable search by means of the DE technique, but four times 
smaller than P. Each individual in P belongs to the one group only. 

If the problem belongs to the class of the so-called "nasty" ones, four groups 
are expected to be trapped in different local optima. 

The GMS algorithm attempts to replace each individual in each group by 
means of the three strategies described above, like in MS. The first three groups, 
G (1), G (2) and G (3), work separately during most of iterations, while the 
fourth group, G (4), has access to all the available information stored by indi­
viduals in population P. If the predefined conditions are met, one of the first 
three groups may be allowed to gain information from other groups. Addition­
ally, in particular situations the best individual in the group may be "frozen" in 
the search-space. The stopping criteria are adopted in order to avoid premature 
cessation of the algorithm prior to exchanging all gained information among the 
groups. 

The strategy proposed in the paper has some similarities with the so-called 
Island Models or species based approaches (see, e.g., Holland, 2000; Liu, Yao and 
Higruchi, 2000; Gustafson and Burke, 2006). However, contrary to most island 
models, we do not allow individuals to migrate, and do not select privileged 
species to be located in separate group. 

4.1. Exchanging information between groups 

In the GMS algorithm, a logical variable LG (k) is assigned to each group. If 
LG (k) = 0, then for each parent Xi E G (k) the vectors Xa, Xb and Xc are 
randomly chosen from the group G (k) only. Hence, the groups with LG (k) = 

o are looking for the optimal solution independently, without exchanging the 
information with other groups. On the other hand, if LG (k)) is equal to 1, 
the vectors Xa, Xb and Xc for each parent Xi E G (k) may be chosen randomly 
from the whole population P. Hence, an individual from the group with the 
assigned variable LG (k) = 1 is able to gain information from any individuals 
in population P and has a chance to use the information about location of local 
minima found by all groups. By definition LG (4) = l. 

Initially LG(l), LG(2) and LG(3) are set to O. Then, after every PNI 
iterations, the factor of improvement (GF) is computed: 

GF = (t, (GFBEST (k)PNI - GFBEST (k))) /100 (4) 
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where GFBEST (k) and GFBEST (k)PNI are the best values of the objec­
tive function for the group G(k) at current iteration and PNI iterations ear­
lier, respectively. If the objective function for the best individual in a group 
(GFBEST (k), k = 1,2,3) fulfils the relation: 

GFBEST (k)PNI - GFBEST (k) < GF (5) 

it may be assumed that group G (k) is trapped in a local minimum. To allow it 
to escape, the value of LG (k) for this group G (k) is set to 1 for the next PNI 
iterations. After PNI iterations, the LG (k) is set back to 0 and the individuals 
from the group G (k) again create the mutated vectors without communication 
with the other groups. Only one logical value LG (k) that was assigned to first 
three groups may change its value to 1 at the same time. 

This method allows the individuals from the group that does not improve its 
performance to continue the search efficiently after some time of being trapped 
in local minimum. Please note that in the meantime, the individuals from G (4), 
i.e. the group with LG (k) = 1, may easily benefit from knowledge about the 
positions of such local minima. 

4.2. "Freezing" of individuals in the search space 

For some complex multidimensional problems the number of local minima found 
during the search may be substantial. The information about their location in 
the search space may be used during further search. Therefore, another logical 
variable Lx (i) is assigned to each target vector Xi in population. The individuals 
with Lx (i) = 0 create offspring Yi and can be replaced in population P by them. 
The individuals with Lx (i) = 1 are "frozen" - i.e. they cannot create offspring, 
but may be used in the operation of mutation as one of the vectors Xa, Xb or Xc 

by the parent vector from the same group, or from the group with the assigned 
value LG (k) = 1. Initially, for any Xi in the population, Lx(i) = O. When 
the logical variable LG (k) assigned to one of the first three groups is changed 
to 1, then the Lx (i) for the best individual GB(k) in the group G (k) - the one 
with the lowest GFBEST (k) - is set to 1. "Freezing" of individuals results in 
decreasing the number of active vectors that can create an offspring. Therefore, 
it is assumed that no more than a predefined number of individuals NFl may 
be "frozen", e.g. NFl is approximately set to K /10. If the next individual is 
to be "frozen" once the number of "frozen" individuals equals K /10, then the 
individual already "frozen" for the highest number of iterations (for example the 
one with index if) is "released", and its corresponding variable Lx (if) is set 
to O. 

4.3. Termination criteria 

Usually, the minimum of objective function is not known in advance. In this 
case, optimization can be terminated after Imax generations. Finding a value 



535 Grouping differential evolution algorithm 

Imax that is large enough to secure enough time to find the optimum, but not 
too high, involves additional tests. Optimization can also be terminated when 
the difference between the population's worst and best values of the objective 
function falls below a predetermined limit. 

The stopping criterion used in the present paper is based on the improve­
ment of the objective function during a predefined number of iterations PNI 
(Inequality 2). For the GMS algorithm, the logical value called StopFiag is in­
troduced and initially set to O. It defines whether PNI iterations took place 
before inequality (2) was fulfilled or not. 

Let GFBESTw be the worst and FBEST the best objective function values 
among the best individuals of each group: 

FBEST = min GFBEST (k) 
k 

GFBESTw = max GFBEST (k). (6)
k 

If inequality (2) is fulfilled and the difference between the worst GFBESTw and 
best GFBEST objective function values is greater than the predetermined limit 

GFBESTw - FBEST > € (7) 

then one may suppose that the groups are still scattered in the search space and 
the global optimum is probably not yet found. So the StopFiag is changed to 1 
and the search is continued for the next PNI iterations, but with all logical vari­
ables LG (k) set to 1. If, after the next PNI iterations inequality (2) is fulfilled, 
it means that the algorithm was unable to improve the objective function using 
the information stored in all groups and it is terminated. On the other hand, if 
after PNI iterations inequality (2) is not fulfilled, it means that the algorithm 
escaped from the local minima and continues the search with LG (k) for the 
first three groups as well as StopFiag set back to O. Note that in the basic DE 
and in most of other population-based algorithms, fulfillment of condition (2) 
would terminate optimization. 

The GMS algorithm is presented in Figs. 4 and 5 . 

Some discussion on the number of groups may be expected. To allow for 
a reasonable search, the number of individuals in each group cannot be too 
small, and so the number of groups must be very limited - we suggest dividing 
populations into four groups for greatest efficiency. Storn and Price (1995) 
suggested the use of 10M individuals in the DE algorithm. But an increase in 
the number of individuals, which is studied further in this paper, would further 
slow the search process and increase the number of function evaluations. In the 
preliminary study we have found that while for many simple testing problems the 
reduction of the number of individuals in P to 3M may only slightly deteriorate 
the results when the MS approach is applied, a further decrease in the number 
of individuals has significant negative impact on the results. When the number 
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Step ~.	 Preset mutation parameter F, crossover parameter Cr, 
the number of individuals in population set K, 
parameters of stopping criterion PHI and initial 
value of FBESTpNI (very high); 
Randomly generate population P of K individuals Xi 
from the solution space n ; 
Divide population P into groups G(l), G(2), G(3), G(4); 
LG(4) = 1 and LG(k) = ~ for k = 1, 2, 3; 
Lx(i) = ~ for any Xi E P 
Iter = ~ II iteration number; 
StopFlag = ~ 

Determine the value of the objective 
function f(xi ) for each Xi E P 

Step 1.	 if (the stopping criterion is satisfied) Stop algorithm 
Iter = Iter +1 II add 1 to iteration number 
Find BEST; FBEST; II the best vector in P with 

corresponding function value 
GB(k) , GFBEST(k) II	 the best vector in each 

group k with corresponding 
function value 

for each vector Xi (i=l, 2, ... , K) 
Determine the group number k for individual Xi 
if (Lx(i) == ~) { Ilif the individual is not frozen 

S= ceil(3*rand(&,1)); II	 Select one out of 
three strategies 

if (LG(k) == ~) 

Generate offspring Yi based on 
Xa , Xb, Xc E G(k) using Strategy S; 

else 
Generate offspring Yi based on 
Xa • Xb. Xc E P using Strategy S; 

end if 
if (f(y,) ~ f(Xi) Xi = Yi I I selection 

end if 
end for 

Figure 5. The GMS Algorithm - steps 0 and 1 
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Step 2.	 After every PNI iterations, i.e. when Iter (mod) PNI & 

LG(k) = & for k=l, 2, 3 
Compute the group factor of improvement (GF) (Eq.4) 
for each group G(k), k = 1, 2, 3 

if (condition described by Eq.(5) is fulfilled) 
LG(k) = 1 II will be valid for next PNI iterations 
Lx(i) = 1 II freezing one Xi - the GB(k) 

in group G(k) 
if (number of frozen individuals 

exceeds the predetermined value) 
release the individual Xi! with Lx(if)=l frozen 
for the highest number of iterations 
by setting Lx(if) = & 
GOTO Step 3 I I only one LG(k) , 

(k=l,2,3) may change to 1
 
end if
 

end if
 
end for
 

Step 3.	 After every PNI iterations, i.e. when Iter (mod) PNI &, 
check the stopping criteria: 
if (FBESTP N 1 - FBEST) > f 

StopFlag = &
 
FBESTpNI = FBEST
 
Turn to Step 1
 

else
 
if (StopFlag = =1)
 

Stop algorithm
 
else 

StopFlag = 1 
FBESTpNI = FBEST 
Find GFBESTw = max GFBESTCk) I I the worst from the best 

objective function 
values of all groups 

if (GFBESTw - FBEST) > f 

LG(k) = 1 for k=l,2,3 II valid for next PNI iteration 
Turn to Step 1 

else
 
Stop algorithm
 

end if
 
end if
 

end if
 
Turn to Step 1
 

Figure 6. The GMS Algorithm - steps 2 and 3 
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of individuals in P is 10M, the number of individuals in one group would be 
2.5M, i.e. on the lower level of acceptance for the relatively simple problems. 
We suggest that at least three independently working groups are needed. As 
a result, we partitioned the population into four groups, three of which search 
independently. The idea of dividing the population into non-uniform groups or 
using more groups for P > lON[ was not verified and may be the subject of 
future research. 

5. Numerical results 

In the present section, the performance of the proposed GMS method is com­
pared with the one of the MS and DE algorithms for a set of multi-dimensional 
test functions. This set includes traditional numerical benchmark functions that 
can be defined for any dimensionality M (see Appendix). The last six test prob­
lems may be considered to be more difficult and therefore particularly interest­
ing. For example, problems in successful optimizing of even two-dimensional 
Normalized Rana function were reported in Tao and Wang (2007). Unfor­
tunately, they are rarely used for comparison of the optimization algorithms 
(Whitley et aI., 2004). 

In the present paper we adopted the following parameter values: PNI = 500, 
F = 0.5, CR = 0.5, E: = 10-4 . The maximum number of function calls was set 
to a very high number (at least 3.107), as the algorithms were designed to stop 
according to the termination criteria described in Section 4.3, that were almost 
always fulfilled much quicker. Each strategy (1, 2 or 3) may be selected with 
the same probability (1/3). 

Because the partition of the population into four groups decreases the num­
ber of individuals that may communicate with each other during optimization, 
the impact of the number of individuals K in population P was studied in detail. 

The 10-, 30-, 50- and 100-dimensional versions of each function were consid­
ered. The number of individuals used by each algorithm was 100, 300, 500 and 
1000 for lO-dimensional, then 300, 500 and 1000 for 30-dimensional, 500 and 
1000 for 50-dimensional, and 1000 for 100-dimensional problems. The individu­
als in the parameter space were randomly initiated from the appropriate range, 
depending on the test function (see Appendix). 

Optimization of each function by three algorithms (DE, MS and GMS) was 
repeated 100 times. Tables 1-3 contain the number of unsuccessful runs (integer 
values) or, when global optimum was never found, both the 100-run average and 
the best solutions found during 100 runs (real values in italic). Table 4 presents 
the average number of function calls for 10- and 100-dimensional problems (100­
dimensional in italic). The number of function calls is averaged over 100 trials, 
both successful and unsuccessful. 

In the case of lO-dimensional problems, the performance of the tested algo­
rithms differs only for the most troublesome problems, namely Salomon (SA), 
Whitley (WH), Rana (RN), Eggholder (EG) and Dixon-Price (DP) functions. 
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All other functions are solved almost perfectly; the basic DE had difficulty find­
ing the single optimum with the suggested number of individuals in population, 
10M, for the Rosenbrock (RO) problem. 

In the case of the Salomon (SA) function, all algorithms failed, as expected. 
As a result, additional tests for lower-dimensional SA were performed in order 
to find the highest integer value of M, for which the global optimum can be 
found by the particular algorithm (when K = 10M). It was verified that during 
100 runs the global minimum of Salomon function was found at least once by 
GMS - for 5-dimensional, by MS - for 4-dimensional and by DE - only for 
3-dimensional cases. 

Also, none of algorithms was able to determine the global optimum for the 
Rana function. Similarly to Salomon's problem, the tests for various lower­
dimensional versions were performed. The results obtained are the following: 
the best GMS algorithm was able to the find global optimum of the Rana 
function for 6-dimensional, DE for 5-dimensional and MS only for 4-dimensional 
versions. 

The basic DE clearly performs the worst for the lO-dimensional versions of 
WH, RN, EG and DP functions. It was the only method unable to find the 
global optimum for WH and DP functions. It is interesting that DE is also the 
only algorithm whose performance decreases with the increase of K for the EG 
function. 

The tests with different K showed that, in general, for lO-dimensional prob­
lems, increase of K only increases the computational time, without improving 
the performance of the particular algorithm (see Tables 1 and 4). 

The difference between the performance of the three algorithms under con­
sideration is more evident for 30- and 50-dimensional versions (see Tables 2 
and 3). The DE was outperformed both by MS and GMS more frequently than 
in the lO-dimensional case (see Rastrigin, RS, Neumaier 3, NU, as well as SA 
and EG problems). The difference between MS and GMS also becomes signifi­
cant, especially for RO, WH, RN and EG functions. For the 50-dimensional SA 
problem, the GMS is able to find the "sphere" closer to the global optimum than 
MS. For K equal 10M, some problems with determining the optimum of the 
Rosenbrock function by all the methods occur, but GMS performs much better 
than the other algorithms. For 30- and 50- dimensional problems, the increase of 
K gives no clear improvement for any algorithm. Although GMS with 1000 in­
dividuals outperforms the version with 500 individuals for 50-dimensional Rana 
function, the use of too many individuals leads to the decrease in performance 
for EG and WH problems. 

For 100-dimensional problems GMS performs much better than the other al­
gorithms. The difference becomes noticeable even for some simple test functions 
like Griewank (GR) and Levy-Montalvo 2 (LM2). For more intricate ones, like 
SA, WH, RN, EG and RO, the difference in the performance of the discussed 
algorithms becomes very significant. 
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Table 1. Results obtained for lO-dimensional functions after 100 runs for each algorithm. The integer values denote the 
number of cases not matching the global optimum in the case when algorithm was successful at least once. The real italic 
values denote the best (upper) and the average (lower) solution found during 100 runs when algorithm was not successful. 
In the first row the number of individuals is shown. For the test functions not included in the table algorithms were 
always successful. 

Pet f(x;) GMS MS DE GMS MS DE GMS MS DE GMS MS DE 
100 100 100 300 300 300 500 500 500 1000 1000 1000 

RO 0 0 0 50 0 0 0 0 0 0 0 0 0 
SA 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

WH 0 3 12 100 1 1 100 0 0 100 0 0 100 
RN -512.7 -496.8 -496.9 -439.6 -502·4 -498·4 -444·4 -499·4 -495.8 -454·1 -502.7 -498.3 -452.1 

-479.8 -465.7 -401.7 -484·1 -470.7 -409.2 -494 -471.8 -411.8 -488.2 -476.1 -419·4 
EG 

(-8291.2) 
33 45 76 7 42 85 7 33 93 10 39 96 

DP 0 72 97 100 88 95 100 86 89 100 78 82 100 



Table 2. Best results obtained for 3D-dimensional functions in 100 runs for each algorithm. The integer values denote 
the number of cases not matching the global optimum in the case when algorithm was successful at least once. The real 
italic values denote the best (upper) and the average (lower) solution found during 100 runs when algorithm was not 
successful. In the first row the number of individuals is shown. For the test functions not included in the table algorithms 
were always successful. 

Fct f(xi) GMS MS DE GMS MS DE GMS MS DE 
300 300 300 500 500 500 1000 1000 1000 

RS 0 0 0 100 0 0 100 0 0 100 
RO 0 1 3 0 0 1 0 0 0 0 
NU -4930 0 0 100 0 0 100 0 0 100 
SA 0 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 

0.13 0.1 0.2 0.1 0.12 0.2 0.1 0.15 0.2 

WH 0 6 56 100 6 48 100 12 54 100 
RN -512.7 -477.2 -456.7 -262.2 -472.3 -460.7 -263.1 -479.5 -466.1 -269·4 

-442.3 -432 -228.9 -447.9 -426.5 -231.5 -445.8 -424·8 -238.8 

EG - -26568.1 -26549.6 -12176.9 -26575.6 -26477 -12235.7 -26567.2 -26514 -13022.5 
-25736 -24275 -10691 -25776 -24451 -10821 -26061 -24692 -11227 

DP 0 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 
0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 
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Table 3. Best results obtained for 50- and lOa-dimensional functions in 100 runs of each algorithm. The integer values 
denote the number of cases not matching the global optimum in the case when algorithm was successful at least once. 
The real italic values denote the best (upper) and the average (lower) solution found during 100 runs when algorithm 
was not successful. In the first row the number of individuals is shown. For the test functions not included in the table 
algorithms were always successful. In case of NU function - optima for 50- and lOa-dimensional functions differ, both are 
presented in column f(xi). 

50-dimensional functions 10D-dimensional functions 

Fct f(xi) GMS 
500 

MS 
500 

DE 
500 

GMS 
1000 

MS 
1000 

DE 
1000 

GMS 
1000 

MS 
1000 

DE 
1000 

GR 0 0 1 0 0 0 0 0 3 0 

AC 0 0 0 0 0 0 0 0 0 0 

RS 0 0 0 100 0 0 100 0 0 100 

RO 0 1 32 3 0 24 13 3 31 100 

LM1 0 0 0 0 0 0 0 0 0 7 
LM2 0 0 0 0 0 0 0 1 4 84 

NU -22050/ 
-171600 

0 0 100 0 0 100 0 0 100 

SA 0 0.1 
0.2 

0.2 
0.22 

0.3 
0.31 

0.1 
0.19 

0.2 
0.2 

0.3 
0.31 

0.2 
0.3 

0.3 
0.34 

0.6 
0.81 

WH 0 1 45 100 8 56 100 0 54 100 

RN -512.7 -460·4 
-426.8 

-438 
-409.5 

-192.9 
-176.1 

-480.1 
-431.2 

-442.9 
-413.6 

-206.6 
-180.5 

-438.8 
-409.7 

-418.8 
-384·9 

-142.2 
-125·4 

EG - -44843 
-42241 

-44415 
-38494 

-15703 
-13497 

-44761 
-42517 

-44478 
-38997 

-15715 
-13699 

-89938 
-78038 

-78142 
-71214 

-22020 
-18896 

DP 0 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 

SW -418.9 0 0 0 0 0 0 0 0 100 



Table 4. Average number of function calls during 100 runs for 10- and 100-dimensional functions (in thousands). Numbers 
for 100-dimensional functions are in italic (for 1000 individuals only). . 

Fct GMS MS DE GMS MS DE GMS MS DE GMS MS DE 
100 100 100 300 300 300 500 500 500 1000 1000 1000 

GR 62 73 82 197 217 247 335 364 413 686 
1284 

724 
1228 

840 
7500 

AC 31 31 29 91 92 88 153 153 147 301 
1686 

303 
1838 

293 
9000 

RS 56 60 85 174 179 263 293 299 438 589 
6371 

595 
6168 

879 
6840 

RO 135 136 1317 365 396 1772 618 665 2466 1232 
16007 

1309 
15025 

4881 
113715 

LM1 13 13 13 40 40 40 66 66 66 130 
644 

130 
633 

131 
6390 

LM2 13 13 13 40 40 39 66 66 64 129 
893 

129 
910 

127 
4997 

NU 102 100 152 300 300 450 500 500 750 1000 
65216 

1000 
18045 

1500 
2915 

SA 100 100 103 300 300 300 500 500 500 1000 
4644 

1000 
3855 

1000 
12175 

WH 105 180 585 465 485 1977 618 797 3232 1560 1587 6430 
4677 16147 19885 

RN 587 374 214 1810 1090 634 2948 1772 1025 6443 
20896 

505 
12575 

2060 
1540 

EG 626 619 669 2176 1914 1855 3732 3510 2892 7570 
31960 

6810 
18480 

5185 
1555 

DP 85 98 100 283 293 300 491 930 500 453 
2454 

927 
2000 

1045 
11250 

SW 103 100 100 300 300 300 500 500 500 1000 
4000 

1000 
4000 

1000 
3025 
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The GMS algorithm does not clearly speed up the optimization process in 
comparison with the basic DE method (see Table 4). However, it searches the 
space of admissible solutions much better and, at the slight cost of computational 
time, achieves much better success rate. When both MS and GMS are able to 
find global optima, they usually need similar computational time. 

It is interesting to trace the exchange of information between four groups, Le. 
the different ways of finding the best solution by the proposed GMS algorithm. 
Because it depends on a particular objective function, our discussion is limited 
to probably the most interesting case of the 100-dimensional Rana function. 
In Figs. 7-9 the best objective function values found by each group G(k) after 
every 5000 iterations are presented for three selected runs of GMS algorithm, 
which correspond to heavy, medium and low exchange of information. The 
objective function values of each group are denoted by different patterns: the 
triangles refer to G(l), squares to G(2), crosslets to G(3) and diamonds to 
G(4). The change of logical value LG(k) for the first three groups from zero to 
one, signifying that group k gains information from other groups, is marked by 
vertical lines. The striped line corresponds to G(l), the solid line to G(2), while 
the dotted line represents G(3). The striped, solid and dotted vertical lines mean 
that stopping criterion was reached, but since StopFlag was 0 and inequality (6) 
was fulfilled, the LG(k) of all groups were set to I and the algorithm proceeded 
for the next PNI iterations. 

In the case depicted in Fig. 7, no improvement was observed by using the 
proposed GMS algorithm. Although the groups (G(I)-G(3)) did not share the 
results, the group G(2) (not the expected G(4)) reached the best solution. The 
final solution found (-382.8) is very poor in comparison with the best one found 
in 100 runs (-438.8). It looks like the MS algorithm with K = 2.5M would 
provide the same results much faster. 

In Fig. 8, much better performance of the GMS algorithm is shown - each 
group from time to time makes the total use of information about the local min­
ima found by the other groups. In this case, the alternate periods of exchanging 
and not exchanging information between groups led to improvement of the per­
formance of the recommended technique. Finally, Fig. 9 depicts an even more 
complicated and interesting example, in which the individual belonging to the 
privileged group G(4) found the best optimum. In this case, the solution found 
was the best among all 100 runs of GMS algorithm. It should be emphasized 
that many local minima found during the search process successfully provided 
additional information for G(4). 
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Figure 7. The objective function values found by each group. One example 
of 100 runs solving the 100-dimensional Rana function. A poor case. G(l)­
triangles; G(2) - squares, G(3) - crosslets; G(4) - diamonds. The change of 
logical value LG(k) for the first three groups from zero to one is marked by 
vertical lines: LG(l) - the vertical line with strips; LG(2) - the vertical solid 
line; LG(3) - the vertical line with dots; all LG(k) - vertical line with strips and 
dots. 
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Figure 8. The objective function values found by each group. One example of 
100 runs solving the 100-dimensional Rana function. An average case. Notations 
as in Fig. 6. 
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Figure 9. The objective function values found by each group. The best of 100 
runs solving the lOO-dimensional RANA function. Notation as for Fig. 6. 

6. Conclusions 

In the present paper the Grouped Multi-Strategy Differential Evolution algo­
rithm was proposed for multi-dimensional optimization of continuous real func­
tions. The method was compared with the original Differential Evolution algo­
rithm as well as an approach proposed by Mishra (2006), based on a set of 10- to 
lOO-dimensional test functions of different complexity. The numerical results re­
vealed that the Grouped Multi-Strategy Differential Evolution algorithm clearly 
provides the best results in terms of minimizing the objective functions, while 
its superiority to competitors increases with the dimensionality of the problem. 
For simpler problems the method is much less fallible, whereas for very difficult 
multi-dimensional test functions, it is almost always able to provide significantly 
better results than the two other tested approaches. 

The impact of the number of individuals in population greater than the 
heuristic choice recommended by Storn and Price (1995), namely 10-times the 
dimensionality of the problem, on the performance of the algorithms, was stud­
ied. As it can be seen in Table 4, the increase in the number of individuals leads 
to slowing down the search process and to increase of the number of function 
evaluations. In most cases this is not advantageous and sometimes may even 
result in the deterioration of the results. 
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Appendix 

1. Griewank function (GR), Price, Storn and Lampinen (2005) 

f (x) = 4;00 t, x; - ncos ( ~) + 1 

f (x") =	 0, xj=O; in this paper -1000 :=; Xj :=; 1000. 

2.	 Ackley function (AC), Price, Storn and Lampinen (2005) 

f(x) ~ -20exp (-0.2 ;. t,x; -exp ( ;. t,COS(2~Xj))+20+, 

f(x") =	 0, xj=O; in this paper -32:=; Xj:=; 32. 

3.	 Rastrigin function (RS), Price, Storn and Lampinen (2005) 

f (x) = L
M 

(x; - lOcos (2?Txj) + 10)
 
j=1
 

f(x") = 0, x;=O; in this paper -1000:=; Xj :=; 1000. 

4.	 Generalized Rosenbrock function (RO), Price, Storn and Lampinen (2005) 

M-l 
f (x) =	 L (100 (x j+1 - x;) 2 + (X j - 1)2 

)
 

j=1
 

f(x") =	 0, x;=I; in this paper -1000:=; Xj :=; 1000. 

5.	 Levy and Montalvo 1st function (LMl), Ali, Khompatraporn and Zabin­
sky (2005) 

M-l 
f(x) = (~) (lOsin2 (?TY1) + L (Yj_l)2 (1 + lOsin2 (?TYj+l») + (YM-l)2) 

j=1
 

Yj = 1 + 0.25(xj + 1),
 

f (x") = 0, x; = -1; -10:=; Xj :=; 10.
 

6.	 Levy and Montalvo 2nd function (LM2), Ali, Khompatraporn and Zabin­
sky (2005) 

M-l 
f(x) = 0.1 (sin2 (3?Txd + L (xj-l)2(I+sin2(3?Txj+d) 

j=1 

+(XM _1)2 (1 + sin2(2?TXM») ) 

f (x") = 0, x; = 1; -5:=; Xj :=; 5. 
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7.	 Neumaier 3 function (NU), Ali, Khompatraporn and Zabinsky (2005) 

M M 

f (x) = I>Xj - 1)2 - L XjXj_1 
j=1 j=2 

f (x'") = -M(M + 4)(M - 1)/6, x; = j(M + 1 - j); _M2 
:::; Xj :::; M 2

• 

8.	 Salomon function (SA), Ali, Khompatraporn and Zabinsky (2005) 

f (x) = 1- cos (2U~ tx;) + O.l~ tx;
J=1 J=1
 

f (x'") = 0, x; = 0, -100:::; Xj :::; 100.
 

9.	 Whitley function (WH), Whitley et al. (1996), Price, Storn and Lampinen 
(2005) 

M M ((100(Xj-Xn2+(I-Xd2)2) ( 2 

f (x) = L L 4000 - cos 100 (x j - xn 
j=11=1 

+(I- Xl)2)+1 

f (x'") = 0, x; = 1; -100:::; Xj :::; 100. 

10.	 Normalized Rana function (RN), Whitley et al. (1996), Price, Storn and 
Lampinen (2005), www.it.lut.fi/ip/evo/functions 

M 

f (x) = {;Xjsin ( Vlxl + 1 - Xjl) cos ( Vlxl + 1 + Xjl) + 

(Xl + 1) cos ( Vixi + 1 - Xjl) sin ( Vixi + 1 + Xjl) 

l = (j + I)Mod(M) f (x'") = -512.7531624, x; = -514.04168, 

-520:::; Xj :::; 520. 

11.	 Eggholder function (EG), Whitley et al. (1996), Adorio (2005) 

M-l 

f (x) = L - (Xj+! + 47) sinVlxj+! + xjO.5 + 471 
j=1 

f (x'") and x; depend on M, -512:::; Xj :::; 512 
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12. Dixon-Price function (DP), Heddar and Fukushima (2006) 

M 

f (x) = (Xl - 1)2 + Lj (2x; ­ Xj_I)2 

j=2 

2j -2)
f (x·) = 0, xj = 2- ( ---v- , -10:::; Xj :::; 10. 

13. Schwefel function (SW), Price, Storn and Lampinen (2005) 

f(x)	 = - ~ ~XjSin (~) 
f (x·) = -418.983, xj = 420.9687, -500 :::; Xj :::; 500. 
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