
Control and Cybernetics

vol. 39 (2010) No.2

The grouping differential evolution algorithm for
multi-dimensional optimization problems*

by

Adam P. Piotrowski and Jaroslaw J. Napi6rkowski

Institute of Geophysics, Polish Academy of Sciences,
Ksi~cia Janusza 64, 01-452, Warsaw, Poland

Abstract: A variant of the Differential Evolution method is
presented. The classical Differential Evolution approach is very
successful for simple problems, but does not perform well enough
for troublesome multi-dimensional non-convex continuous functions.
To overcome some of the drawbacks, the Grouped Multi-Strategy
Differential Evolution algorithm is proposed here. The main idea
behind the new approach is to exploit the knowledge about the lo­
cal minima already found in different parts of the search space in
order to facilitate further search for the global one. In the pro­
posed method, the population is split into four groups: three of
them rarely communicate with the others, but one is allowed to
gain all available knowledge from the whole population throughout
the search process. The individuals simultaneously use three differ­
ent crossover/mutation strategies, which makes the algorithm more
flexible. The proposed approach was compared with two Differential
Evolution based algorithms on a set of 10- to 100-dimensional test
functions of varying difficulty. The proposed method achieved very
encouraging results; its advantage was especially significant when
more difficult 50- and lOO-dimensional problems were considered.
When dividing population into separate groups, the total number
of individuals becomes a crucial restriction. Hence, the impact of
the number of individuals on the performance of the algorithms was
studied. It was shown that increasing the number of individuals
above the number initially proposed for classic Differential Evolu­
tion method is in most cases not advantageous and sometimes may
even result in deterioration of results.

Keywords: differential evolution, multidimensional problems,

multimodal problems, metaheuristics.

•Submitted: July 2009; Accepted: December 2009

528 A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI

1. Introduction

The global optimization problem in this paper may be described in the following
form - for a continuous real valued function f (x), find the global optimum vector
x", such that:

f (x") = minf (x) (1)

where x is an M -dimensional continuous variable vector with domain n c RM .

Among a number of global optimization methods proposed during last twenty
years, the Differential Evolution (DE) algorithm described in detail in Storn and
Price (1995; 1997) is said to be one of the most promising (Clerc, 2006), although
probably not the most popular one. DE is a purely heuristic population-based
algorithm that has been successfully applied to a wide range of test functions
and real-world problems (Ilonen, Kamarainen and Lampinen, 2003; Ali, Khom­
patraporn and Zabinsky, 2005; Price, Storn and Lampinen, 2005; Rowinski and
Piotrowski, 2008). The successful idea of DE consists in evolving iteratively a
population of individuals in the search space to the vicinity of the global op­
timal solution x", according to a predefined heuristic that is based on adding
the weighted differences of two population vectors to a third vector. Although
the basic DE is successful in many simple low-dimensional cases, rather large
computational time is usually required for multimodal problems with higher di­
mensionality, and the average success rate significantly decreases for such cases.
Hence, increasing the success rate in finding the global optimum x" and re­
ducing computational time were obvious motivations for the recently proposed
improvements (e.g. Liu and Lampinen, 2005; Mishra, 2006; Wang and Zhang,
2007; Ali, 2007; Brest et al., 2007, Das et al., 2009, Qin, Huang and Suganthan,
2009).

In this paper, we propose a new modification of the DE algorithm, namely
Grouped Multi-Strategy Differential Evolution (GMS), and compare it with the
basic DE and Multi-Strategy Differential Evolution algorithm (MS) suggested
by Mishra (2006) for a set of selected test functions.

In the present paper we understand strategy as a rule referring to crossover
and mutation only, whereas algorithm is understood as the whole heuristic,
defining the rules of optimization process. In the DE algorithm, only one strat­
egy is used, while in the MS algorithm, three different strategies related to
crossover and mutation are applied with predefined probability. In the case
of the proposed GMS algorithm, the population is divided into four different
groups, three of them in principle work mutually independently using the same
strategies as in the MS. The methods of inter-group exchange of information,
that we propose, significantly improve the performance of the GMS approach
in comparison with both basic DE and MS algorithms.

For DE, MS and GMS algorithms, the effect of both dimensionality (M equal
to 10, 30, 50 and 100) and the population size (varying from lO·M to 100·M) on
the success rate of finding of x" and the calculation time is studied in details.

529 Grouping differential evolution algorithm

The optimization techniques are tested for a set of very popular and relatively
simple functions, as well as for some rarely used and much more troublesome
ones.

2. Differential evolution algorithm (DE) - strategy 1

TheDE algorithm proposed by Storn and Price (1995) is a stochastic population­
based method. To find the optimal solution x" in the M-dimensional space, the
DE initializes a population P with K individuals (vectors). The assumed pa­
rameter bounds define the domain, from which individuals are chosen randomly
by uniform distribution over search space. The algorithm maintains a popula­
tion with K individuals in each generation. Storn and Price (1995) suggested
K = 10M as a default value.

In each iteration, for every individual Xi (i = 1, ... , K), three other distinct
vectors X a , Xb, and Xc are randomly chosen from the population P. Then, a new
vector Ui is generated by adding the weighted difference between two random
vectors to a third vector - this operation is called mutation. The mutated vector
Ui and the target (initial) vector Xi form two parents. In order to form the trial
vector (offspring) Yi' the crossover between Ui and Xi is performed. The pseudo­
code of the described mutation and crossover used in the DE algorithm, denoted
as Strategy 1, is given in Fig. 1.

do a= ceil(rand(&,l)*K); while (a==i);

do b= ceil(rand(&,l)*K); while (b==a I I b==i);

do c= ceil(rand(&,1)*K); while (c==a I I c==b I I c==i);

jrand= ceil(M*rand(&,l)) ;

Ui = Xa + F*(Xb - xc) II mutation

for (j=1; j = M; j++) II generate a trial vector yJ by crossover

{if (rand(&, 1):S; Cr or j = jrand) Y1 = u{;
else y{ = x{ }

Figure 1. Strategy 1

If f (Yi) :s; f (Xi), then Yi replaces Xi - this operation is called selection.
In Strategy 1, rand(O,I) is a random number from a uniform distribution over
the interval (0,1); ceil(z) returns the smallest integer value that is not less than
z; F is the scale factor (suggested by Storn and Price, 1997, to be 0.5, and
by Kaelo and Ali, 2006, to vary between 0.4 and 1); jrand is a random integer
from [I,M]. The value of the algorithm parameter Cr depends on the problem
(Price, Storn and Lampinen, 2005), but Ali (2007) suggests that the value of Cr
= 0.5 is usually a reasonable choice. The above evolution process is repeated
until termination conditions are met.

530 A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI

The entire algorithm terminates when one of the stopping criteria defined
by the user is met. The stopping criterion used in this paper is based on the im­
provement of the objective function during the predefined number of iterations
PNI:

FBESTpNI - FBEST < c (2)

where FBEST denotes the best objective function value at present iteration,
FBESTpNI is the best objective function value obtained PNI iterations earlier,
and c defines the threshold value of the required minimum improvement.

3. Multi-strategy differential evolution algorithm (MS)

Since 1995 different methods of crossover and/or mutation have been proposed
for Differential Evolution-based algorithms. A detailed discussion of superior
variations of the basic methodology may be found in Price, Storn and Lampinen
(2005). The new strategies differ in their ways of creating offspring and may be
successfully used for minimizing different types of continuous functions.

An interesting suggestion leading to an improvement of the basic DE can be
found in Mishra (2006). In the proposed Multi-Strategy Differential Evolution
algorithm, for any vector Xi from the population P, one out of three selected
strategies is chosen according to predefined probability. The following strategies
are recommended: Strategy 1 used in basic DE, the Exponential Crossover
and the modified Either-Or method (Mishra, 2006). MS technique significantly
improves the success rate of finding the global optimal solution.

Other strategies discussed in Price, Storn and Lampinen (2005) are not in­
cluded in MS, because they use a perturbation of the best individual (strategy
called Best) or the best individual in determination of the direction of pertur­
bation (called Target-To-Best). That may result in premature convergence to
local optima, especially in multi-dimensional problems.

3.1. Exponential crossover - strategy 2

Mutation in the Exponential Crossover strategy is performed in the same way
as in Strategy 1, by determining the vector Ui. To create an offspring, the
crossover is modified in the following way. An index value jrand is randomly
selected from [1, M], and the corresponding parameter ui is copied from mutant
Ui to the parent Xi, so that the trial vector (offspring) Yi will be different from
the parent vector Xi' Then, the source of subsequent elements of the trial vector
are determined by comparing Cr to a uniformly distributed random number
rand(O, l) that is generated anew for each index j. As long as rand(O, l) :S Cr,
parameters continue to be taken from the mutant vector Ui, but since for the
first time rand(O, l) > Cr, the current and all remaining parameters are taken
from the target vector Xi _ The method with Cr = 0.5 tends to retain most of
the elements from the parent vector Xi- Hence, when used alone, exponential

531 Grouping differential evolution algorithm

crossover rarely leads to successful finding of global optimum. However, when
applied together with other strategies, it turns out to be an important part of
the algorithm. It facilitates optimization of different functions, not only, but
first of all, the separable ones, and can improve performance of the algorithm
near the optimum for many problems.

The pseudocode of the Exponential Crossover Strategy is provided in Fig. 2.

do a= ceil(rand(&,l)*K); while (a==i);
do b= ceil(rand(&,l)*K); while (b==a I I b==i);
do c= ceil(rand(&,1)*K); while (c==a I I c==b I I c==i);
Yi = Xi I I child inheri ts parent parameters
Ui = Xa + F*(Xb - xc); II mutation
jrand= ceil(M*rand(&,l));
j = jrand
do { y{ = u{ II child inherits a mutant parameter

j = (j + 1) % M II increment j, modulo n
}

while (rand(&, 1) :-:::: Cr && j! = j rand)

Figure 2. Strategy 2

3.2. Modified either-or strategy

Contrary to the Exponential Crossover, the Modified Either-Or strategy does
not prefer copying elements of the parent vector Xi to the offspring Yi' To
create the offspring Yi' for any target vector, two additional vectors are created:
the first one by mutation, Ui, and the second one by recombination, Wi, with
the use of a random number from the normal distribution. Then, for each j­
th component, a random number rand(O,I) is generated and compared to Cr.
If rand(O,I) :-:::: Cr, the offspring parameter is copied from the mutant vector
Ui; otherwise, the parameter is copied from the recombined vector Wi' The
pseudocode of the Modified Either-Or Strategy is provided in Fig. 3. Note that
X a is not used to create Wi' In Fig. 3 normal_ distribution (0, 1) is a random
value generated from the standardized normal distribution with the mean equal
to 0 and the variance equal to 1. This method ensures that each component
of the offspring Yi almost surely differs from the corresponding element of the
target vector Xi'

The details of the MS algorithm are presented in Fig. 4.

J

A.P. PIOTROWSKI, J.J. NAPIORKOWSKI532

do a= ceil(rand(&,l)*K); while (a==i);
do b= ceil(rand(&,l)*K); while (b==a I I b==i);
do c= ceil(rand(&,1)*K); while (c==a I I c==b I I c ==i);
II mutation
Ui = Xa + F*(Xb - Xc);
II recombination
Wi = Xi + (Xb + Xc - 2*Xi)*normal_distribution(&,1);

II generate a trial vector yj by crossover

for (j=1; j = M; j++)

{if (rand (&,1):::; Cr) y.{ = u{;

else y; = W;;}

Figure 3. Strategy 3

Step &.	 Preset mutation parameter F, crossover parameter Cr,
the number of individuals in population set K,
parameters of stopping criterion PHI and ~ .
Randomly generate population P of K individuals Xi

from the solution space n ;
Iter = & II iteration number;

Step 1. while	 (the stopping criterion is not satisfied) {
Iter = Iter +1 II add 1 to iteration number
for (i=1; i = K; i++) {
II select one	 out of three strategies
S= ceil(3*rand(&,l));
Generate offspring Yi by means of Strategy S
if (f(Yi) :::; f(Xi)) then Xi = Yi I I selection
} I I poorer vectors in n are replaced by

II better vectors

} I I end while

Figure 4. The MS Algorithm.

4. Grouped multi-strategy differential evolution (GMS)

The main goal of the Grouped Multi-Strategy Differential Evolution (GMS)
proposed in the present paper is to make the optimization algorithm less vul­
nerable to being trapped in a local minimum. The basic idea is to exploit the
information on location of local minima in the search space in order to find a
still better minimum, hopefully the global one - x·. In order to find several
different local optima, the population P is divided into four separate groups

533 Grouping differential evolution algorithm

(sets) G (k), k E {1, 2, 3, 4}, Le.

4

P=UG(k) (3)
k=l

For all k,l::; 4,k f-l G(k) nG(l) = 0.

All groups have approximately the same number of elements, large enough to
allow for a reasonable search by means of the DE technique, but four times
smaller than P. Each individual in P belongs to the one group only.

If the problem belongs to the class of the so-called "nasty" ones, four groups
are expected to be trapped in different local optima.

The GMS algorithm attempts to replace each individual in each group by
means of the three strategies described above, like in MS. The first three groups,
G (1), G (2) and G (3), work separately during most of iterations, while the
fourth group, G (4), has access to all the available information stored by indi­
viduals in population P. If the predefined conditions are met, one of the first
three groups may be allowed to gain information from other groups. Addition­
ally, in particular situations the best individual in the group may be "frozen" in
the search-space. The stopping criteria are adopted in order to avoid premature
cessation of the algorithm prior to exchanging all gained information among the
groups.

The strategy proposed in the paper has some similarities with the so-called
Island Models or species based approaches (see, e.g., Holland, 2000; Liu, Yao and
Higruchi, 2000; Gustafson and Burke, 2006). However, contrary to most island
models, we do not allow individuals to migrate, and do not select privileged
species to be located in separate group.

4.1. Exchanging information between groups

In the GMS algorithm, a logical variable LG (k) is assigned to each group. If
LG (k) = 0, then for each parent Xi E G (k) the vectors Xa, Xb and Xc are
randomly chosen from the group G (k) only. Hence, the groups with LG (k) =

o are looking for the optimal solution independently, without exchanging the
information with other groups. On the other hand, if LG (k)) is equal to 1,
the vectors Xa, Xb and Xc for each parent Xi E G (k) may be chosen randomly
from the whole population P. Hence, an individual from the group with the
assigned variable LG (k) = 1 is able to gain information from any individuals
in population P and has a chance to use the information about location of local
minima found by all groups. By definition LG (4) = l.

Initially LG(l), LG(2) and LG(3) are set to O. Then, after every PNI
iterations, the factor of improvement (GF) is computed:

GF = (t, (GFBEST (k)PNI - GFBEST (k))) /100 (4)

534 A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI

where GFBEST (k) and GFBEST (k)PNI are the best values of the objec­
tive function for the group G(k) at current iteration and PNI iterations ear­
lier, respectively. If the objective function for the best individual in a group
(GFBEST (k), k = 1,2,3) fulfils the relation:

GFBEST (k)PNI - GFBEST (k) < GF (5)

it may be assumed that group G (k) is trapped in a local minimum. To allow it
to escape, the value of LG (k) for this group G (k) is set to 1 for the next PNI
iterations. After PNI iterations, the LG (k) is set back to 0 and the individuals
from the group G (k) again create the mutated vectors without communication
with the other groups. Only one logical value LG (k) that was assigned to first
three groups may change its value to 1 at the same time.

This method allows the individuals from the group that does not improve its
performance to continue the search efficiently after some time of being trapped
in local minimum. Please note that in the meantime, the individuals from G (4),
i.e. the group with LG (k) = 1, may easily benefit from knowledge about the
positions of such local minima.

4.2. "Freezing" of individuals in the search space

For some complex multidimensional problems the number of local minima found
during the search may be substantial. The information about their location in
the search space may be used during further search. Therefore, another logical
variable Lx (i) is assigned to each target vector Xi in population. The individuals
with Lx (i) = 0 create offspring Yi and can be replaced in population P by them.
The individuals with Lx (i) = 1 are "frozen" - i.e. they cannot create offspring,
but may be used in the operation of mutation as one of the vectors Xa, Xb or Xc

by the parent vector from the same group, or from the group with the assigned
value LG (k) = 1. Initially, for any Xi in the population, Lx(i) = O. When
the logical variable LG (k) assigned to one of the first three groups is changed
to 1, then the Lx (i) for the best individual GB(k) in the group G (k) - the one
with the lowest GFBEST (k) - is set to 1. "Freezing" of individuals results in
decreasing the number of active vectors that can create an offspring. Therefore,
it is assumed that no more than a predefined number of individuals NFl may
be "frozen", e.g. NFl is approximately set to K /10. If the next individual is
to be "frozen" once the number of "frozen" individuals equals K /10, then the
individual already "frozen" for the highest number of iterations (for example the
one with index if) is "released", and its corresponding variable Lx (if) is set
to O.

4.3. Termination criteria

Usually, the minimum of objective function is not known in advance. In this
case, optimization can be terminated after Imax generations. Finding a value

535 Grouping differential evolution algorithm

Imax that is large enough to secure enough time to find the optimum, but not
too high, involves additional tests. Optimization can also be terminated when
the difference between the population's worst and best values of the objective
function falls below a predetermined limit.

The stopping criterion used in the present paper is based on the improve­
ment of the objective function during a predefined number of iterations PNI
(Inequality 2). For the GMS algorithm, the logical value called StopFiag is in­
troduced and initially set to O. It defines whether PNI iterations took place
before inequality (2) was fulfilled or not.

Let GFBESTw be the worst and FBEST the best objective function values
among the best individuals of each group:

FBEST = min GFBEST (k)
k

GFBESTw = max GFBEST (k). (6)
k

If inequality (2) is fulfilled and the difference between the worst GFBESTw and
best GFBEST objective function values is greater than the predetermined limit

GFBESTw - FBEST > € (7)

then one may suppose that the groups are still scattered in the search space and
the global optimum is probably not yet found. So the StopFiag is changed to 1
and the search is continued for the next PNI iterations, but with all logical vari­
ables LG (k) set to 1. If, after the next PNI iterations inequality (2) is fulfilled,
it means that the algorithm was unable to improve the objective function using
the information stored in all groups and it is terminated. On the other hand, if
after PNI iterations inequality (2) is not fulfilled, it means that the algorithm
escaped from the local minima and continues the search with LG (k) for the
first three groups as well as StopFiag set back to O. Note that in the basic DE
and in most of other population-based algorithms, fulfillment of condition (2)
would terminate optimization.

The GMS algorithm is presented in Figs. 4 and 5 .

Some discussion on the number of groups may be expected. To allow for
a reasonable search, the number of individuals in each group cannot be too
small, and so the number of groups must be very limited - we suggest dividing
populations into four groups for greatest efficiency. Storn and Price (1995)
suggested the use of 10M individuals in the DE algorithm. But an increase in
the number of individuals, which is studied further in this paper, would further
slow the search process and increase the number of function evaluations. In the
preliminary study we have found that while for many simple testing problems the
reduction of the number of individuals in P to 3M may only slightly deteriorate
the results when the MS approach is applied, a further decrease in the number
of individuals has significant negative impact on the results. When the number

536 A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI

Step ~.	 Preset mutation parameter F, crossover parameter Cr,
the number of individuals in population set K,
parameters of stopping criterion PHI and initial
value of FBESTpNI (very high);
Randomly generate population P of K individuals Xi
from the solution space n ;
Divide population P into groups G(l), G(2), G(3), G(4);
LG(4) = 1 and LG(k) = ~ for k = 1, 2, 3;
Lx(i) = ~ for any Xi E P
Iter = ~ II iteration number;
StopFlag = ~

Determine the value of the objective
function f(xi) for each Xi E P

Step 1.	 if (the stopping criterion is satisfied) Stop algorithm
Iter = Iter +1 II add 1 to iteration number
Find BEST; FBEST; II the best vector in P with

corresponding function value
GB(k) , GFBEST(k) II	 the best vector in each

group k with corresponding
function value

for each vector Xi (i=l, 2, ... , K)
Determine the group number k for individual Xi
if (Lx(i) == ~) { Ilif the individual is not frozen

S= ceil(3*rand(&,1)); II	 Select one out of
three strategies

if (LG(k) == ~)

Generate offspring Yi based on
Xa , Xb, Xc E G(k) using Strategy S;

else
Generate offspring Yi based on
Xa • Xb. Xc E P using Strategy S;

end if
if (f(y,) ~ f(Xi) Xi = Yi I I selection

end if
end for

Figure 5. The GMS Algorithm - steps 0 and 1

537 Grouping differential evolution algorithm

Step 2.	 After every PNI iterations, i.e. when Iter (mod) PNI &

LG(k) = & for k=l, 2, 3
Compute the group factor of improvement (GF) (Eq.4)
for each group G(k), k = 1, 2, 3

if (condition described by Eq.(5) is fulfilled)
LG(k) = 1 II will be valid for next PNI iterations
Lx(i) = 1 II freezing one Xi - the GB(k)

in group G(k)
if (number of frozen individuals

exceeds the predetermined value)
release the individual Xi! with Lx(if)=l frozen
for the highest number of iterations
by setting Lx(if) = &
GOTO Step 3 I I only one LG(k) ,

(k=l,2,3) may change to 1

end if

end if

end for

Step 3.	 After every PNI iterations, i.e. when Iter (mod) PNI &,
check the stopping criteria:
if (FBESTP N 1 - FBEST) > f

StopFlag = &

FBESTpNI = FBEST

Turn to Step 1

else

if (StopFlag = =1)

Stop algorithm

else

StopFlag = 1
FBESTpNI = FBEST
Find GFBESTw = max GFBESTCk) I I the worst from the best

objective function
values of all groups

if (GFBESTw - FBEST) > f

LG(k) = 1 for k=l,2,3 II valid for next PNI iteration
Turn to Step 1

else

Stop algorithm

end if

end if

end if

Turn to Step 1

Figure 6. The GMS Algorithm - steps 2 and 3

A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI538

of individuals in P is 10M, the number of individuals in one group would be
2.5M, i.e. on the lower level of acceptance for the relatively simple problems.
We suggest that at least three independently working groups are needed. As
a result, we partitioned the population into four groups, three of which search
independently. The idea of dividing the population into non-uniform groups or
using more groups for P > lON[was not verified and may be the subject of
future research.

5. Numerical results

In the present section, the performance of the proposed GMS method is com­
pared with the one of the MS and DE algorithms for a set of multi-dimensional
test functions. This set includes traditional numerical benchmark functions that
can be defined for any dimensionality M (see Appendix). The last six test prob­
lems may be considered to be more difficult and therefore particularly interest­
ing. For example, problems in successful optimizing of even two-dimensional
Normalized Rana function were reported in Tao and Wang (2007). Unfor­
tunately, they are rarely used for comparison of the optimization algorithms
(Whitley et aI., 2004).

In the present paper we adopted the following parameter values: PNI = 500,
F = 0.5, CR = 0.5, E: = 10-4 . The maximum number of function calls was set
to a very high number (at least 3.107), as the algorithms were designed to stop
according to the termination criteria described in Section 4.3, that were almost
always fulfilled much quicker. Each strategy (1, 2 or 3) may be selected with
the same probability (1/3).

Because the partition of the population into four groups decreases the num­
ber of individuals that may communicate with each other during optimization,
the impact of the number of individuals K in population P was studied in detail.

The 10-, 30-, 50- and 100-dimensional versions of each function were consid­
ered. The number of individuals used by each algorithm was 100, 300, 500 and
1000 for lO-dimensional, then 300, 500 and 1000 for 30-dimensional, 500 and
1000 for 50-dimensional, and 1000 for 100-dimensional problems. The individu­
als in the parameter space were randomly initiated from the appropriate range,
depending on the test function (see Appendix).

Optimization of each function by three algorithms (DE, MS and GMS) was
repeated 100 times. Tables 1-3 contain the number of unsuccessful runs (integer
values) or, when global optimum was never found, both the 100-run average and
the best solutions found during 100 runs (real values in italic). Table 4 presents
the average number of function calls for 10- and 100-dimensional problems (100­
dimensional in italic). The number of function calls is averaged over 100 trials,
both successful and unsuccessful.

In the case of lO-dimensional problems, the performance of the tested algo­
rithms differs only for the most troublesome problems, namely Salomon (SA),
Whitley (WH), Rana (RN), Eggholder (EG) and Dixon-Price (DP) functions.

539 Grouping differential evolution algorithm

All other functions are solved almost perfectly; the basic DE had difficulty find­
ing the single optimum with the suggested number of individuals in population,
10M, for the Rosenbrock (RO) problem.

In the case of the Salomon (SA) function, all algorithms failed, as expected.
As a result, additional tests for lower-dimensional SA were performed in order
to find the highest integer value of M, for which the global optimum can be
found by the particular algorithm (when K = 10M). It was verified that during
100 runs the global minimum of Salomon function was found at least once by
GMS - for 5-dimensional, by MS - for 4-dimensional and by DE - only for
3-dimensional cases.

Also, none of algorithms was able to determine the global optimum for the
Rana function. Similarly to Salomon's problem, the tests for various lower­
dimensional versions were performed. The results obtained are the following:
the best GMS algorithm was able to the find global optimum of the Rana
function for 6-dimensional, DE for 5-dimensional and MS only for 4-dimensional
versions.

The basic DE clearly performs the worst for the lO-dimensional versions of
WH, RN, EG and DP functions. It was the only method unable to find the
global optimum for WH and DP functions. It is interesting that DE is also the
only algorithm whose performance decreases with the increase of K for the EG
function.

The tests with different K showed that, in general, for lO-dimensional prob­
lems, increase of K only increases the computational time, without improving
the performance of the particular algorithm (see Tables 1 and 4).

The difference between the performance of the three algorithms under con­
sideration is more evident for 30- and 50-dimensional versions (see Tables 2
and 3). The DE was outperformed both by MS and GMS more frequently than
in the lO-dimensional case (see Rastrigin, RS, Neumaier 3, NU, as well as SA
and EG problems). The difference between MS and GMS also becomes signifi­
cant, especially for RO, WH, RN and EG functions. For the 50-dimensional SA
problem, the GMS is able to find the "sphere" closer to the global optimum than
MS. For K equal 10M, some problems with determining the optimum of the
Rosenbrock function by all the methods occur, but GMS performs much better
than the other algorithms. For 30- and 50- dimensional problems, the increase of
K gives no clear improvement for any algorithm. Although GMS with 1000 in­
dividuals outperforms the version with 500 individuals for 50-dimensional Rana
function, the use of too many individuals leads to the decrease in performance
for EG and WH problems.

For 100-dimensional problems GMS performs much better than the other al­
gorithms. The difference becomes noticeable even for some simple test functions
like Griewank (GR) and Levy-Montalvo 2 (LM2). For more intricate ones, like
SA, WH, RN, EG and RO, the difference in the performance of the discussed
algorithms becomes very significant.

- ~\'~'''7'''';lII'f'''''I''''''';:'"?M''''''-'''''-'--''''

l!!''s.
E
o

:2
r:n

~
2
-0
Ii:
<z
':...,

:2
r:n

~

t-< o
Ii:
p.;
<

o
"'i'
on

___~_••_.__ • - 0_­

Table 1. Results obtained for lO-dimensional functions after 100 runs for each algorithm. The integer values denote the
number of cases not matching the global optimum in the case when algorithm was successful at least once. The real italic
values denote the best (upper) and the average (lower) solution found during 100 runs when algorithm was not successful.
In the first row the number of individuals is shown. For the test functions not included in the table algorithms were
always successful.

Pet f(x;) GMS MS DE GMS MS DE GMS MS DE GMS MS DE
100 100 100 300 300 300 500 500 500 1000 1000 1000

RO 0 0 0 50 0 0 0 0 0 0 0 0 0
SA 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

WH 0 3 12 100 1 1 100 0 0 100 0 0 100
RN -512.7 -496.8 -496.9 -439.6 -502·4 -498·4 -444·4 -499·4 -495.8 -454·1 -502.7 -498.3 -452.1

-479.8 -465.7 -401.7 -484·1 -470.7 -409.2 -494 -471.8 -411.8 -488.2 -476.1 -419·4
EG

(-8291.2)
33 45 76 7 42 85 7 33 93 10 39 96

DP 0 72 97 100 88 95 100 86 89 100 78 82 100

Table 2. Best results obtained for 3D-dimensional functions in 100 runs for each algorithm. The integer values denote
the number of cases not matching the global optimum in the case when algorithm was successful at least once. The real
italic values denote the best (upper) and the average (lower) solution found during 100 runs when algorithm was not
successful. In the first row the number of individuals is shown. For the test functions not included in the table algorithms
were always successful.

Fct f(xi) GMS MS DE GMS MS DE GMS MS DE
300 300 300 500 500 500 1000 1000 1000

RS 0 0 0 100 0 0 100 0 0 100
RO 0 1 3 0 0 1 0 0 0 0
NU -4930 0 0 100 0 0 100 0 0 100
SA 0 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2

0.13 0.1 0.2 0.1 0.12 0.2 0.1 0.15 0.2

WH 0 6 56 100 6 48 100 12 54 100
RN -512.7 -477.2 -456.7 -262.2 -472.3 -460.7 -263.1 -479.5 -466.1 -269·4

-442.3 -432 -228.9 -447.9 -426.5 -231.5 -445.8 -424·8 -238.8

EG - -26568.1 -26549.6 -12176.9 -26575.6 -26477 -12235.7 -26567.2 -26514 -13022.5
-25736 -24275 -10691 -25776 -24451 -10821 -26061 -24692 -11227

DP 0 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67

G? o
C
'tl
5'

Qq

a..

~
'" ~
[
tll

~
s:
o'
::l

1'"
;.
8

Q1
01>0­.....

:2
rJJ

~
~
-0
ii:
<z
.....
.....

:2
rJJ

~

Eo< o
ii:
p.;
<

C'l

lQ "'"

Table 3. Best results obtained for 50- and lOa-dimensional functions in 100 runs of each algorithm. The integer values
denote the number of cases not matching the global optimum in the case when algorithm was successful at least once.
The real italic values denote the best (upper) and the average (lower) solution found during 100 runs when algorithm
was not successful. In the first row the number of individuals is shown. For the test functions not included in the table
algorithms were always successful. In case of NU function - optima for 50- and lOa-dimensional functions differ, both are
presented in column f(xi).

50-dimensional functions 10D-dimensional functions

Fct f(xi) GMS
500

MS
500

DE
500

GMS
1000

MS
1000

DE
1000

GMS
1000

MS
1000

DE
1000

GR 0 0 1 0 0 0 0 0 3 0

AC 0 0 0 0 0 0 0 0 0 0

RS 0 0 0 100 0 0 100 0 0 100

RO 0 1 32 3 0 24 13 3 31 100

LM1 0 0 0 0 0 0 0 0 0 7
LM2 0 0 0 0 0 0 0 1 4 84

NU -22050/
-171600

0 0 100 0 0 100 0 0 100

SA 0 0.1
0.2

0.2
0.22

0.3
0.31

0.1
0.19

0.2
0.2

0.3
0.31

0.2
0.3

0.3
0.34

0.6
0.81

WH 0 1 45 100 8 56 100 0 54 100

RN -512.7 -460·4
-426.8

-438
-409.5

-192.9
-176.1

-480.1
-431.2

-442.9
-413.6

-206.6
-180.5

-438.8
-409.7

-418.8
-384·9

-142.2
-125·4

EG - -44843
-42241

-44415
-38494

-15703
-13497

-44761
-42517

-44478
-38997

-15715
-13699

-89938
-78038

-78142
-71214

-22020
-18896

DP 0 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67

SW -418.9 0 0 0 0 0 0 0 0 100

Table 4. Average number of function calls during 100 runs for 10- and 100-dimensional functions (in thousands). Numbers
for 100-dimensional functions are in italic (for 1000 individuals only). .

Fct GMS MS DE GMS MS DE GMS MS DE GMS MS DE
100 100 100 300 300 300 500 500 500 1000 1000 1000

GR 62 73 82 197 217 247 335 364 413 686
1284

724
1228

840
7500

AC 31 31 29 91 92 88 153 153 147 301
1686

303
1838

293
9000

RS 56 60 85 174 179 263 293 299 438 589
6371

595
6168

879
6840

RO 135 136 1317 365 396 1772 618 665 2466 1232
16007

1309
15025

4881
113715

LM1 13 13 13 40 40 40 66 66 66 130
644

130
633

131
6390

LM2 13 13 13 40 40 39 66 66 64 129
893

129
910

127
4997

NU 102 100 152 300 300 450 500 500 750 1000
65216

1000
18045

1500
2915

SA 100 100 103 300 300 300 500 500 500 1000
4644

1000
3855

1000
12175

WH 105 180 585 465 485 1977 618 797 3232 1560 1587 6430
4677 16147 19885

RN 587 374 214 1810 1090 634 2948 1772 1025 6443
20896

505
12575

2060
1540

EG 626 619 669 2176 1914 1855 3732 3510 2892 7570
31960

6810
18480

5185
1555

DP 85 98 100 283 293 300 491 930 500 453
2454

927
2000

1045
11250

SW 103 100 100 300 300 300 500 500 500 1000
4000

1000
4000

1000
3025

Gil g
'tl
5'
ao
Q.

§i
@
a
[

'" 2­
S­
o'
::0

e.
g.
;;
3

<:.n
~ "'"

544 A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI

The GMS algorithm does not clearly speed up the optimization process in
comparison with the basic DE method (see Table 4). However, it searches the
space of admissible solutions much better and, at the slight cost of computational
time, achieves much better success rate. When both MS and GMS are able to
find global optima, they usually need similar computational time.

It is interesting to trace the exchange of information between four groups, Le.
the different ways of finding the best solution by the proposed GMS algorithm.
Because it depends on a particular objective function, our discussion is limited
to probably the most interesting case of the 100-dimensional Rana function.
In Figs. 7-9 the best objective function values found by each group G(k) after
every 5000 iterations are presented for three selected runs of GMS algorithm,
which correspond to heavy, medium and low exchange of information. The
objective function values of each group are denoted by different patterns: the
triangles refer to G(l), squares to G(2), crosslets to G(3) and diamonds to
G(4). The change of logical value LG(k) for the first three groups from zero to
one, signifying that group k gains information from other groups, is marked by
vertical lines. The striped line corresponds to G(l), the solid line to G(2), while
the dotted line represents G(3). The striped, solid and dotted vertical lines mean
that stopping criterion was reached, but since StopFlag was 0 and inequality (6)
was fulfilled, the LG(k) of all groups were set to I and the algorithm proceeded
for the next PNI iterations.

In the case depicted in Fig. 7, no improvement was observed by using the
proposed GMS algorithm. Although the groups (G(I)-G(3)) did not share the
results, the group G(2) (not the expected G(4)) reached the best solution. The
final solution found (-382.8) is very poor in comparison with the best one found
in 100 runs (-438.8). It looks like the MS algorithm with K = 2.5M would
provide the same results much faster.

In Fig. 8, much better performance of the GMS algorithm is shown - each
group from time to time makes the total use of information about the local min­
ima found by the other groups. In this case, the alternate periods of exchanging
and not exchanging information between groups led to improvement of the per­
formance of the recommended technique. Finally, Fig. 9 depicts an even more
complicated and interesting example, in which the individual belonging to the
privileged group G(4) found the best optimum. In this case, the solution found
was the best among all 100 runs of GMS algorithm. It should be emphasized
that many local minima found during the search process successfully provided
additional information for G(4).

545 Grouping differential evolution algorithm

Figure 7. The objective function values found by each group. One example
of 100 runs solving the 100-dimensional Rana function. A poor case. G(l)­
triangles; G(2) - squares, G(3) - crosslets; G(4) - diamonds. The change of
logical value LG(k) for the first three groups from zero to one is marked by
vertical lines: LG(l) - the vertical line with strips; LG(2) - the vertical solid
line; LG(3) - the vertical line with dots; all LG(k) - vertical line with strips and
dots.

15000

.. ~~t 1=1001<=r1~~ .••,........
I I

10000

Iterations

5000

-150
f(x)

-200 ••
-250

-300

-350

-400

-450
0

Figure 8. The objective function values found by each group. One example of
100 runs solving the 100-dimensional Rana function. An average case. Notations
as in Fig. 6.

A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI546

f(x) RANA M=100 K=1000
-150

-200

-250

-300

-350

-400

-450
0 5000 10000 15000 20000 25000 30000 3500

... ,,-... ··":"t ,-." ~ ~ ..•.., "' ••••• ! ··.·;·.·."iA
•v "

Figure 9. The objective function values found by each group. The best of 100
runs solving the lOO-dimensional RANA function. Notation as for Fig. 6.

6. Conclusions

In the present paper the Grouped Multi-Strategy Differential Evolution algo­
rithm was proposed for multi-dimensional optimization of continuous real func­
tions. The method was compared with the original Differential Evolution algo­
rithm as well as an approach proposed by Mishra (2006), based on a set of 10- to
lOO-dimensional test functions of different complexity. The numerical results re­
vealed that the Grouped Multi-Strategy Differential Evolution algorithm clearly
provides the best results in terms of minimizing the objective functions, while
its superiority to competitors increases with the dimensionality of the problem.
For simpler problems the method is much less fallible, whereas for very difficult
multi-dimensional test functions, it is almost always able to provide significantly
better results than the two other tested approaches.

The impact of the number of individuals in population greater than the
heuristic choice recommended by Storn and Price (1995), namely 10-times the
dimensionality of the problem, on the performance of the algorithms, was stud­
ied. As it can be seen in Table 4, the increase in the number of individuals leads
to slowing down the search process and to increase of the number of function
evaluations. In most cases this is not advantageous and sometimes may even
result in the deterioration of the results.

Acknowledgment

This work has been supported by the Foundation for Polish Science.

547 Grouping differential evolution algorithm

Appendix

1. Griewank function (GR), Price, Storn and Lampinen (2005)

f (x) = 4;00 t, x; - ncos (~) + 1

f (x") =	 0, xj=O; in this paper -1000 :=; Xj :=; 1000.

2.	 Ackley function (AC), Price, Storn and Lampinen (2005)

f(x) ~ -20exp (-0.2 ;. t,x; -exp (;. t,COS(2~Xj))+20+,

f(x") =	 0, xj=O; in this paper -32:=; Xj:=; 32.

3.	 Rastrigin function (RS), Price, Storn and Lampinen (2005)

f (x) = L
M

(x; - lOcos (2?Txj) + 10)

j=1

f(x") = 0, x;=O; in this paper -1000:=; Xj :=; 1000.

4.	 Generalized Rosenbrock function (RO), Price, Storn and Lampinen (2005)

M-l
f (x) =	 L (100 (x j+1 - x;) 2 + (X j - 1)2

)

j=1

f(x") =	 0, x;=I; in this paper -1000:=; Xj :=; 1000.

5.	 Levy and Montalvo 1st function (LMl), Ali, Khompatraporn and Zabin­
sky (2005)

M-l
f(x) = (~) (lOsin2 (?TY1) + L (Yj_l)2 (1 + lOsin2 (?TYj+l») + (YM-l)2)

j=1

Yj = 1 + 0.25(xj + 1),

f (x") = 0, x; = -1; -10:=; Xj :=; 10.

6.	 Levy and Montalvo 2nd function (LM2), Ali, Khompatraporn and Zabin­
sky (2005)

M-l
f(x) = 0.1 (sin2 (3?Txd + L (xj-l)2(I+sin2(3?Txj+d)

j=1

+(XM _1)2 (1 + sin2(2?TXM»))

f (x") = 0, x; = 1; -5:=; Xj :=; 5.

548 A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI

7.	 Neumaier 3 function (NU), Ali, Khompatraporn and Zabinsky (2005)

M M

f (x) = I>Xj - 1)2 - L XjXj_1
j=1 j=2

f (x'") = -M(M + 4)(M - 1)/6, x; = j(M + 1 - j); _M2
:::; Xj :::; M 2

•

8.	 Salomon function (SA), Ali, Khompatraporn and Zabinsky (2005)

f (x) = 1- cos (2U~ tx;) + O.l~ tx;
J=1 J=1

f (x'") = 0, x; = 0, -100:::; Xj :::; 100.

9.	 Whitley function (WH), Whitley et al. (1996), Price, Storn and Lampinen
(2005)

M M ((100(Xj-Xn2+(I-Xd2)2) (2

f (x) = L L 4000 - cos 100 (x j - xn
j=11=1

+(I- Xl)2)+1

f (x'") = 0, x; = 1; -100:::; Xj :::; 100.

10.	 Normalized Rana function (RN), Whitley et al. (1996), Price, Storn and
Lampinen (2005), www.it.lut.fi/ip/evo/functions

M

f (x) = {;Xjsin (Vlxl + 1 - Xjl) cos (Vlxl + 1 + Xjl) +

(Xl + 1) cos (Vixi + 1 - Xjl) sin (Vixi + 1 + Xjl)

l = (j + I)Mod(M) f (x'") = -512.7531624, x; = -514.04168,

-520:::; Xj :::; 520.

11.	 Eggholder function (EG), Whitley et al. (1996), Adorio (2005)

M-l

f (x) = L - (Xj+! + 47) sinVlxj+! + xjO.5 + 471
j=1

f (x'") and x; depend on M, -512:::; Xj :::; 512

549 Grouping differential evolution algorithm

12. Dixon-Price function (DP), Heddar and Fukushima (2006)

M

f (x) = (Xl - 1)2 + Lj (2x; ­ Xj_I)2

j=2

2j -2)
f (x·) = 0, xj = 2- (---v- , -10:::; Xj :::; 10.

13. Schwefel function (SW), Price, Storn and Lampinen (2005)

f(x)	 = - ~ ~XjSin (~)
f (x·) = -418.983, xj = 420.9687, -500 :::; Xj :::; 500.

References

ADRIO, E.P. (2005) Multivariate Test Functions Library in C for unconstrained
global optimization. http://geocities.com/eadorio/mvf.pdf.

ALI,	 M.M., KHOMPATRAPORN, C. and ZABINSKY, Z.B. (2005) A numerical
evaluation of several stochastic algorithms on selected continuous global
optimization test problems. Journal of Global Optimization 31, 635-672.

ALI, M.M. (2007) Differential Evolution with preferential crossover. European
Journal of Operational Research 181, 1137-1147.

BREST, J., BOSKOVIC, B., GREINER, S., ZUMER, V. and MAUCEC, M.S.
(2007) Performance comparison of Self-Adaptive and Adaptive Differential
Evolution algorithms. Soft Computing 11, 7, 617~629.

CLERC, M. (2006) Particle Swarm Optimization. ISTE Ltd, London.
DAS, S., ABRAHAM, A., CHAKRABORTY, U.K. and KONAR, A. (2009) Dif­

ferential Evolution Using a Neighborhood-based Mutation Operator. IEEE
Transactions on Evolutionary Computations 13, 3, 526-553.

GUSTAFSON, S. and BURKE, E.K. (2006) The Speciating Island Model: An
alternative parallel evolutionary algorithm. Journal of Parallel and Dis­
tributed Computing 66 (8), 1025-1036.

HEDDAR, A.R. and FUKUSHIMA, M. (2006) Tabu Search directed by direct
search methods for nonlinear global optimization. European Journal of
Operational Research 170, 329-349.

HOLLAND, J .H. (2000) Building blocks, cohort genetic algorithms and hyper­
plane - defined functions. Evolutionary Computation 8 (4), 373-391.

ILONEN, J., KAMARAINEN, J.K. and LAMPINEN, J. (2003) Differential Evo­
lution training algorithm for feed-foreward neural networks. Neural Pro­
cessing Letters 17, 93-105.

KAELO, P. and ALI, M.M. (2006) A numerical study of some modified Differ­
tential Evolution algorithms. European Journal of Operational Research
169,1176-1184.

550 A.P. PIOTROWSKI, J.J. NAPI6RKOWSKI

Lru, J. and LAMPINEN, J. (2005) A Fuzzy Adaptive Differential Evolution al­
gorithm. Soft Computing 9, 448-462.

Lru, Y., YAO, X. and HIGRUCHI, T. (2000) Evolutionary ensembles with neg­
ative correlation learning. IEEE Transactions on Evolutionary Computa­
tion 4 (4), 380-387.

MISHRA, S.K (2006) Global optimization by Differential Evolution and Par­
ticle Swarm methods evaluation on some benchmark functions. Social
Science Research Network, Working Papers Series, http://ssrn.com/ ab­
stract=933827.

PRICE, KV., STORN, R.M. and LAMPINEN, J.A. (2005) Differential Evolu­
tion. A Practical Approach to Global Optimization. Springer-Verlag,
Berlin-Heidelberg.

QIN,	 A.K, HUANG, V.L. and SUGANTHAN, P.N. (2009) Differential Evolu­
tion algorithm with strategy adaptation for global numerical optimization.
IEEE Transactions Evolutionary Computation 13 (2), 398-417.

ROWINSKI, P.M. and PIOTROWSKI, A. (2008) Estimation of parameters of
transient storage model by means of multi-layer perceptron neural net­
works. Hydrological Sciences Journal 53 (1),165-178.

STORN, R. and PRICE, K.V. (1995) Differential Evolution - a simple and ef­
ficient adaptive scheme for global optimization over continuous spaces.
Technical Report TR-95-012, International Computer Sciences Institute,
Berkeley, CA, USA .

STORN, R. and PRICE, K. V. (1997) Differential Evolution - a simple and ef­
ficient heuristic for global optimization over continuous spaces. Journal
of Global Optimization 11 (1),341-359.

WANG, Y.J. and ZHANG, J.S. (2007) Global optimization by an improved
Differential Evolutionary algorithm. Applied Mathematics and Compu­
tation 188, 669-680.

WHITLEY, D., RANA, S., DZUBERA, J. and MATHIAS, KE. (1996) Evaluat­
ing evolutionary algorithms. Artificial Intelligence 85, 245-276.

WHITLEY, D., LUNACEK, M. and KNIGHT, J. (2004) Ruffled by Ridges: How
Evolutionary Algorithms Can Fail. In: LNCS 3103, Springer, Berlin­
Heidelberg.

TAo,	 J. and WANG, N. (2007) DNA computing based RNA genetic algorithm
with applications in parameter estimation of chemical engineering pro­
cesses. Computers and Chemical Engineering 31, 1602-1618.

