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Abstract 

Accurate application of the longitudinal dispersion model requires that specially designed 
experimental studies are performed in the river reach under consideration. Such studies are usually 
very expensive, so in order to quantify the longitudinal dispersion coefficient, numerous empirical 
formulae, based on hydraulic and morphometric characteristics, have been proposed as an 
alternative approach. The paper presents the application of three artificial neural networks as a 
parameter estimation technique. The networks were trained for a special arrangement of input 
nodes, namely: channel depth, channel width, cross-sectionally averaged water velocity, shear 
velocity and sinuosity index. 
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1 Introduction 
This paper discusses modeling of the transport of pollution in rivers by means of a 

longitudinal dispersion model. For one-dimensional case, after a substance has become fully 
mixed across the depth and width of a river, transport of the passive solutes in the main 
stream may be described by advection-dispersion equation (Fickian model): 

 1C C Cu DA
t x A x x

∂ ∂ ∂ ∂ + =  ∂ ∂ ∂ ∂ 
 (1) 

where: x – longitudinal direction, t-time, C – cross-sectional averaged solute concentration, u-
cross-sectional averaged velocity of water, D – longitudinal dispersion coefficient, A – cross-
sectional area of the channel.  

The solution domain of eq.(1) is the plane Oxt constrained by inequalities 0≤x≤L and 
t≥0, where L is the length of the modelled channel reach. The model equations are 
complemented by the following: 

- initial conditions: 

 ( , 0) ( )pC x t C x= =  (2) 

- and boundary conditions: 
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= = =
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where Cp is the initial distributions of solute concentration along the channel reach in the 
main stream and C0 describes the inflow of admixture at the initial cross-section. 

To treat the Fickian model as a predictive tool, one needs to know the way to relate the 
usually unknown longitudinal dispersion coefficient to basic characteristics of the natural 
stream under consideration. Empirical studies are usually very expensive, so in order to 
quantify longitudinal dispersion coefficient, various researchers proposed numerous empirical 
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formulae based on hydraulic and morphometric characteristics, as an alternative approach. A 
discussion is going on which expression is most useful. There are numerous publications 
dealing with different forms and methods of the evaluation of dispersion coefficients 
dependent on various hydraulic conditions (e.g. [4], [8], [14], [6], [2], [3]). Since all these 
formulae have simple forms which have been designed to fit the data obtained from specific 
type of rivers and do not take into account such an important characteristic like bed sinuosity, 
they fail to assess so called longitudinal dispersion coefficient in many actual cases.  

The paper presents successful application of the so-called “intelligent data analysis”, 
namely three types of Artificial Neural Networks: Multi Layer Perceptron Neural Network 
(MLP) (the most popular one in hydrological sciences), Fuzzy Neural Network (FNN) and 
Radial Basis Function Neural Network (RBF).  

Following a well established practice in the application of ANNs to work on 
combinations of the channel measurements, all networks were trained for specific 
arrangements of: mean channel depth H, mean channel width B, cross-sectional averaged 
water velocity U(m/s) and shear velocity U* (m/s), namely for nodes described as I1 = 3UB, I2 
= U/U*, I3 = B/H. Shear velocity U* is expressed as 

 U gSH∗ =  (4) 

where S(-) is a channel slope, and g is acceleration of gravity. Moreover, the ratio of the 
length of the main riverbed to the length of the valley, i.e. sinuosity index S was considered as 
an additional input node I4 = S. Please note, that 3UW is assumed to be a very rough 
assessment of dispersion coefficient for straight rivers [3]. Constant ‘3’ above was not omitted 
as it does not cause any impact on neural network performance.  

Database is collected from 81 experiments performed in USA [3] and Moldova [14]. 
This data set includes a wide variety of cases, from one of the world biggest rivers 
(Mississippi in Louisiana) to small creeks (with flow as low as 0.04m3/s) and inland channels 
(for example Chicago Ship Canal). Dispersion coefficients from these 81 experiments range 
from 1486 to 0.2m2/s. Because of data scarcity, the observations are randomly divided into 
two samples: training (50 experiments) and validation (31) one.  

2 Neural Networks  
Artificial Neural Networks have been developed by looking for the analogies to the 

behavior and functioning of brain and nervous system of living organisms. The most 
important feature imitating brain is the ability to learn from experience and to utilize the 
gained knowledge to solve new problems. It is a kind of ability to generalize which, we hope, 
could help identify the dispersion coefficient in water quality models. 

2.1 Multi-layer Perceprtrons 
The easiest way of transforming the input vector is to introduce one or more layers of 

artificial neurons in the perceptron architecture. Networks with more than one layer of 
artificial neurons, where only forward connection from the input towards the output are 
allowed, are called Multi-layer Perceptron (MLP). The topology of the neural network used in 
our study is presented in Fig. 1.  

The Rowinski et al. [11] showed recently, based on wide range of data, that MLP is able 
to evaluate longitudinal dispersion coefficient better than linear techniques and that 
implementing sinuosity index as input variable plays crucial role in improving the model 
performance. 
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Multi Layer Perceptron (MLP) 
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Figure1. A two-layer feedforward neural network 

 
The number of input nodes is the same as the number of input variables (four in this 

study), number of hidden neurons should be found “as optimal” for the solution of a given 
problem, the number of output nodes is equal to the number of output variables (one output 
variable, namely longitudinal dispersion coefficient is considered in this study). The applied 
network consists of only one hidden layer due to the general observation that neural networks 
with only one hidden layer and finite number of nodes are able to approximate every 
continuous, bounded, everywhere differentiable function (e.g. [7]). Simple computational 
elements (the nodes) are linked via weighted connections. The values of those connections are 
adaptively modified during the process of training the network. Each node processes a 
weighted sum of its inputs and filters it through a given, so-called activation function. 
Following a number of other authors a sigmoidal function was used for this purpose. 

Dozens of networks with different structures and different initial parameters value have 
been trained. To optimise these randomly selected parameters Levenberg-Marquardt 
algorithm was applied. Having in mind small size of data set available to the authors, the best 
network is formed by 3 hidden nodes, i.e. 19 parameters to be optimised. Results obtained 
from this network are presented in the final section. 

2.2 Radial Basis Function Network 

Radial Basis Function architecture (e.g. [10], [13]) includes one hidden layer of special 
units, that pre-process the input and feed a single-layer perceptron (Fig.2). Each unit k in the 
hidden layer contains the prototype ck of the given region of the input space. The 
corresponding nonlinear activation function φ () expresses, by means of distance measure, the 
similarity between any input I and the prototype ck. The most commonly adopted Basic 
Function is Gaussian: 

 ( )2( ) exp || || / 2k k
2
kφ σ= − −I I c  (5) 
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Radial Basis Function (RBF) 
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Figure 2. The architecture of a Radial Basis Function network 

The RBF networks with different number of centers have been tested. For the dataset 
described in the introduction, the best RBF network consists of 8 centres. Hence 48 
parameters, namely 8 pairs ( kσ ,ck) (where vector ck is composed of 4 elements), 8 weighting 
coefficients vk, 

)k

and 1 parameter representing the threshold value were optimised. The degree 
of fit of the longitudinal dispersion calculated by means of RBF network to measured value is 
shown in the final section. 

2.3 Fuzzy Neural Network 
In this section fuzzy rules [1] are used to characterize imprecise dependencies between 
combinations of the channel measurements and longitudinal dispersion. Using linguistic 
variables, the knowledge is described as fuzzy rules: 

 1 1 4 4: ( ( 1 2) ... ( 1 2)) (k k k k
j j jR IF I is A j OR j AND I is A j OR j THEN D is B= = = = (6) 

where k denotes the rule number; number of all possible rules is 24=16.  The structure of 
Fuzzy Neural Network applied for dispersion coefficient evaluation, shown in Fig.3, was 
adapted from [12]. For any input variables Ii  (i = 1,...,4), there are two fuzzy sets ( j ijA = 1,2), 
defined in our case by Gausian membership function  

 ( )2

exp i ij

ij ij

I I

A σ
µ − = −  

 (7) 

that represent two fuzzy values, namely “big” (GF) and “small” (Gf). Hence the number of 
that pre-processed elements in the first layer (L1), where a degree of membership of input 
data to appropriate fuzzy sets are evaluated, is equal 8. The second layer (L2) represents the 
inference unit. Note that k-th node in the second layer representing k-th rule is connected to all 
nodes in the first layer with corresponding fuzzy sets in the antecedent of this rule. The last 
two layers (L3 and L4) form defuzzification unit. In the third layer (L3) is 16 weights, so one 
has to find 32 unknown parameters.  
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Figure 3. The architecture of a Fuzzy Neural network 

 
All network parameters were optimized using gradient method with multiple random 

initialization of its initial values. 
 

3 RESULTS AND DISCUSSION 
To compare results obtained from different networks three measures are proposed to 

quantify the error. In the following equations Dm is measured and Df is a calculated dispersion 
coefficient. 
 
1) Percentage of the mean error (PME) is defined [9]: 
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The lower the PME index is, the better model performance.  
 
2) Mean relative error sensitive to outliers proposed by the first author  
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3) Number of Df cases (NC index) belonging to the interval Dm/s<Df<Dmּs (for assumed s>1) 
is a very simple statistic. It allows to compare results given by different models, especially if a 
few intervals with different s values are considered. The more cases match the interval, the 
better the performance of considered model is. 
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All mentioned measures for MLP, RBF, FNN and linear regression (REG) are presented in 
table 1. 

Table 1: Errors of dispersion coefficient assessment obtained from different neural networks 

NC (%) 

(Dm/s<Df<Dmּs) 

Network 

type 

Data set  

PME (%)

 

MREO 

s=1.5 s=3 

MLP   7.12 0.36 86 96 

RBF   9.60 0.49 68 98 

FNN 10.03 0.57 68 96 

REG 

 

Training 

12.05 0.65 58 96 

MLP 10.27 0.46 77 94 

RBF 12.13 0.51 58 97 

FNN 13.43 0.57 68 97 

REG 

 

Verification 

17.34 0.83 55 94 

 
Note, that all neural networks are better than simple linear regression and in the case of 

verification data set the difference between neural networks and linear regression is even 
more significant. In both cases, training and verification, the best results were obtained by 
means of MLP network.  

NC index in case of MLP network is much higher for lower s=1.5 than for other models, 
so dispersion coefficients are evaluated with smaller errors. However, in the verification set 
two outliers occurred (only one in case of RBF and FNN), which reflected in the increase of 
NC index.  

Based on the data set available to the authors ([3], [11], [14]) MLP network should be 
considered as the most reliable, RBF network better than FNN and much better than linear 
regression.  

Although the results obtained with the use of artificial neural networks are not fully 
satisfying, they are far less costly than physically-based models allowing for the prediction of 
longitudinal dispersion coefficient and, consequently, the pattern of pollution spread in rivers. 
The neural networks may be very useful in situations where the data cannot be easily 
provided. The performance of neural networks methodology was very much improved when 
the river sinuosity index was added to the input data. Then the results turned out to be better 
than those based on any other method.  
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