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Abstract 
 

                                                          

The paper considers global optimization algorithms. The focus is on heuristic methods, 
which do not guarantee the optimum solution, but rather provide with the reasonable 
solution in a reasonable time. This is due to the fact that traditional optimization methods 
often fail for complex, non-convex problems. Because of growing complexity of systems 
taken into consideration and possibilities of modern computers, we can observe 
increasing interest in the development of the global algorithms. 
 
The paper consists of two parts. First, the features of selected optimization methods - 
Controlled Random Search, Simulated Annealing, Genetic Algorithms and Evolutionary 
Strategies are summarized. The comparison of them based on the numerical experiments 
is presented. Next, the application of considered global algorithms designed to search the 
global minimum (maximum) of performance function in the case of complex control 
systems is discussed.  
 
The case study considered in this paper is operational control in multireservoir systems 
working in flood conditions. Taking into account the complexity of the problem a two-level 
control structure with periodic coordination is proposed for real-time flood operation. This 
control structure incorporates two decision levels each: the upper level with the control 
center and the local level formed by the operators of the reservoirs. It is based on the use 
of the repetitive optimization of the outflow trajectories, using predicted inflows. Within this 
structure the central dispatcher performs an analysis of possible future scenarios of the 
flood and determines the optimal vector of parameters influencing local operators’ 
decisions about the releases from the reservoirs. Because of the problem nonlinearity, 
cumbersome calculations (e.g. numerical simulation), it seems reasonable to apply the 
nongradient global optimization methods and parallel supercomputers to solve it. The 
global algorithms were applied to solve this problem. The paper describes how the 
optimization algorithms were chosen and how their efficiency was improved. Results of 
numerical simulations performed for the real-world water system of the Upper Vistula river 
basin are presented and discussed.  
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1 Introduction 
 
Operational control of water storage reservoirs during flood is very complicated task. Even 
in the case of a single reservoir system the solution of the control problem is difficult 
because of limited knowledge regarding future inflows. In the case of a multiple-reservoir 
system the control problem becomes much more complicated. The dimensionality of the 
overall problem, the nonlinearity of the flow transformation model, the nonlinear and state-
dependent constraints on control variables (water releases) make it already quite difficult. 
The next important factor involved in the control of such a complex system is connected 
with the multiple decision units (reservoir's operators) and, at the some time, many 
different individual objectives, i.e., minimization of a local damages caused by high outflow 
from the reservoir. These local goals are often in contradiction with the global objective, 
i.e., and the minimization of flood damages in the whole river basin. For example, it may 
be useful from the global point of view to desynchronize the peak flows on various rivers 
by accelerating the wave on one river and retarding the waves on the others. However, 
this might cause greater local damage than in the case of independent local operation of 
reservoirs. Taking into account these features it is necessary to introduce control 
mechanisms capable of satisfying the global objectives. Such mechanism for real-time 
flood operation was developed and investigated. The hierarchical control structure with 
periodic coordination was proposed [3], [7]. It is based on the use of repetitive optimization 
taking into account predicted inflows. The considered optimization problem consists in 
determining for all reservoirs some parameters, through which a coordinator influences 
releases from the reservoirs. The problem is non-convex. Two heuristic optimization 
algorithms were applied to solve it. The results of calculations based on local and global 
optimization methods are presented and discussed in the final part of the article. 
 

2 Considered global optimization methods 
 
Two global optimization methods: Controlled Random Search (two versions: CRS2 and 
CRS3) and Evolutionary Strategies were considered in the experiments. These algorithms 
have certain advantages over many other global optimization procedures. They can be 
used for many classes of functions.  

2.1 Controlled Random Search methods  
 
In principle, Controlled Random Search methods (CRS) [9] were designed as a 
combination of a local optimization algorithm with the global search procedure. Two 
versions were proposed: CRS2 and CRS3. The CRS2 algorithm starts from the creation of 
the set of points (much more than 1+n
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 points in -dimensional space), selected 
randomly from the domain. Let us denote it as P. Then the best  (i.e., that of the 
minimal value of the performance index) and the worst  (i.e., that of the maximal value 
of the performance index) points are determined and a simplex in -space is formed with 
the best point  and  points ( ) randomly chosen from P. Afterwards, the 
centroid   of points ,  ,…,  is determined. The next trial point  is calculated, 
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replaces the worst point  in the set P. Otherwise, a new simplex is formed randomly 
and so on.  

Hx

iσ,

The CRS3 algorithm is a combination of the CRS2 procedure with the local optimization 
procedure based on Nelder-Mead simplex method [1]. The local algorithm is switched 
when a newly generated point in CRS2 fell within the bottom one-tenth of the ordered 
array P. After completing the local search the global search is continued. The CRS3 
method tends to speed the convergence of the algorithm with respect to CRS2. The local 
optimization procedure operates only on the small part of set P and thus has a minimal 
effect on the global search performance of the CRS2 phase. The local procedure can 
operate at any stage of CRS3. It is triggered automatic but it can be modified to permit the 
user to switch the local procedure in or out according to his decision.  

2.2 Evolutionary Strategies 
 
Evolutionary Strategies (ESs) [5] emulate biological evolutionary theories to solve 
optimization problems. The ESs comprise a set of individual elements (the population P) 
and a set of biologically inspired operators defined over the population. According to 
evolutionary theories the most suited elements in a population are likely to survive and 
reproduce. In computing terms, evolutionary strategies map a problem onto a set of real-
value vectors  (chromosomes), each vector representing a potential solution. The 
ESs manipulate the most promising individuals in its search for improved solution. A 
general Evolutionary Strategy algorithm operates through a simple cycle of stages: 

nx ℜ∈

 
Initialization - An initial population P of potential solutions is generated at random. 
Evaluation - The performance (fitness) of each individual is evaluated with respect to the 

constraints imposed by the problem. 
Selection - The population for genetic manipulation is chosen from P based on each 

individual's fitness.  
Recombination - Recombination exchanges a population's genetic material. It takes two 

chromosomes and swaps part of their genetic information to produce new 
chromosomes. There are several types of recombination operator.  

Mutation - The mutation operator introduces new genetic structures in the population by 
randomly modifying of individuals. Each coordinate  of a vector  
representing an individual is mutated by adding an individual normally distributed 
random number, (

ix nx ℜ∈

0 ). The iσ  are also subject to mutation and recombination. 
 
Several schemes of Evolutionary Strategies can be selected [5]. In this paper the 
multimember (µ+λ)-ES variant was considered. In the case of this scheme λ offspring 
individuals are created from µ parents by means of recombination and mutation. The best 
µ individuals out of parents and offspring are selected to form the next population.  

2.3 Comparative performance of CRS and ES algorithms 
 
The CRS and ES algorithms were applied to search the global minimum of some standard 
non-convex functions: Branin, Camel-Back, Goldstein and Price, Griewank, Rosenbrock, 
Shubert, presented in literature [10]. The stop criterion was defined in terms of the 
convergence to the global minimum with the assumed accuracy. When the global 
optimum was reached with the accuracy 0.1, the algorithms stopped. The Table 1 shows 
the average numbers of function evaluations needed to find the global minimum with 
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assumed accuracy over a series of 100 trials. The CRS2 and ES procedures were 
compared with other, well known global optimization methods, such as: genetic algorithm 
(GA) [2], Meewella-Mayne algorithm [4] of linear subapproximations and simulated 
annealing algorithm (SA) taken from [8]. In the tests the methods ES and CRS2 were able 
to find the global minimum more quickly than the other tested methods.  
 
 

Optimization Algorithm Test 
Function 
 

M-M SA GA ES CRS2 

Branin 1195 623 643 80 143 
Camel-Back 495 246 200 68 53 
Camel-Back 6 225 364 350 68 88 
Goldstein Price 13555 424 7500 40 263 
Griewank 420 810 1650 122 192 
Shubert - 605 3200 422 1434 
 
('-' denotes that the algorithm did not converge)  
 
Table 1: Speed tests of the global optimization algorithms  
 

3 Case study: Flood control in multireservoir system 
 
The ES and CRS methods were chosen as the basic optimization algorithms in the control 
structure developed for the optimal flood operation in a multireservoir system.  
 
 

 
Figure 1: Layout of the considered river system 
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3.1 The water system description 
 
A multireservoir water system, where several reservoirs are located on tributaries to the 
main river, was considered (see Fig. 1). The overall objective was to minimize damages 
created by a flood wave passing through the river basin, related to the peak flows at the 
important cross-sections. The mathematical expression for the considered performance 
index is:  
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where  denotes control horizon,  weight related to the flow at the k-th cross-
section (different points have different importance),  flow at the k-th cross-section at 
time t,  maximal flow at the k-th cross-section which does not induce damages, K the 
number of cross-sections,  performance (loss) function associated with flow levels 
trajectories.  
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Each reservoir is described by the dynamics of a simple tank, with one input  (the 
forecasted value of this inflow rate is 

)(tdi

)(tdi , i=1,...,m; where m - the number of reservoirs) 
and one controlled output u , i.e.  )(ti

)()()( tutdtw iii −=&        (2) 
 
where -  storage of the i-th reservoir at time t and  - rate of outflow from the i-th 
reservoir at time t.  
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The entire river system is divided into several sections and each section is represented by 
a cascade of Z non-linear elements ("reservoirs") described by identical equations: 
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where  denotes inflow to the j-th element at time t,  outflow from the j-th 

element at time t,  storage of the j-th element at time t and l, r denote parameters 
connected with given river reach (together with the number of elements Z they are 
experimentally determined). Obviously, Q . 
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The objective, as considered by the central operator at time , is to determine such 
outflows from the reservoirs, that the performance function (1) is minimized. The following 
constraints on the reservoir storage and releases are taken into account:  
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The hierarchical control structure with periodic coordination was proposed for controlling 
this system [7]. This structure incorporates two decision levels: the upper level with the 
control center (coordinator) and the local level formed by several reservoir operators (see 
Fig. 2).  
 

 
Figure 2: Two-level structure for flood control 

3.2 Optimization problem formulation 
 
The upper level mechanism of parametric coordination is based on the assumption that 
each reservoir operator rule (local control law) is periodically modified using the vector  
of parameters set by the coordinator, i.e. by the control center (see Fig. 2). 
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The objective of the coordinator during flood, say at time t , is then to determine such joint 
vector of parameters  (where m is the number of reservoirs), that the 
performance measure related to damages in the whole river basin is minimized. This 
problem can be formulated as follows: 
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where A denotes set of admissible values of parameters ,  control horizon,  

vector of trajectories of flows in the river system at time t,  vector of real flows 

measured at time , 
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calculated at time ,  vector of releases from the reservoirs in period , '
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While formulating local optimization problems we should take into account that the natural 
objective of a single retention reservoir management during flood is the minimization of 
damages created by high water levels just downstream the reservoir - in an adjacent river 
reach. This is equivalent to minimizing the peak release from the reservoir. Hence, we can 
formulate the decision problem of the i-th local reservoir operator at time  as follows: "
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under the constrains (4) - (7).  
 
The instruments of coordination , mi ,...1=  provided by the control center, can be used 
to modify local operators' performance measures. In particular, the i-th reservoir operator 
control problem can be defined as follows: 
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where [  optimization horizon t , ], ""

lfl tt '"
ct≥ ),(mod ⋅⋅iq  modified local operator cost function,  

parameters specified by the control center. 
 
In the above problem, the vector  of coordinating parameters for the i-th reservoir is 
related to the weighting function . This function is defined as follows:  
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where 1  denotes the Heaviside's step function.  ()
 
Finally the vector is given as . The objective of these parameters is to shift the 
peak of the flow downstream of the i-th reservoir. It can be accelerated to occur before 
time 

], *
iT

> in the case when  or delayed when . For , the performance index 
(11) reduces to the one given by (10), and so local, independent control policy is realized.  
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In the calculation process performed by the central operator two phases can be 
distinguish (see Fig. 2): optimization and simulation. Taking into account the description of 
the entire problem (nonlinear model of flow transformation, internal optimization of the 
outflows from the reservoirs) we can not lead the analytical form of the performance 
function describing flood damages in the whole river basin. Every optimization step value 
of the performance index is the result of the simulation process. The optimization is 
realized as follows: after assuming certain values of parameters, simulation of the 
reservoirs operation and flow transformation in the whole river basin until the predicted 
end of the flood ( ) is performed. Then, the value of the overall performance index  
related to the given vector is computed.  
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3.3 Numerical experiments 
 
A case study of the Upper Vistula river basin system was considered. This system 
consists of three reservoirs, located on tributaries to the main river, and of three 
uncontrolled side inflows (see Fig.1). Calculations were performed for a set of data 
containing eleven hydrographs of historical floods, which occurred between the years 
1960-1974 and several hypothetical, so-called scenarios. The central operator performed 
optimization of 6 parameters forming vector a, using several optimization methods. 
Many calculations were performed for every method. The question was how the global 
algorithms influence the optimization results and thus influence the issues of the operation 
of a multireservoir system during flood. The most interesting numerical results obtained for 
three floods: two historical, which occurred in 1970 and 1972 and one hypothetical 
scenario, are collected in Tables 2 and 3. Table 2 presents the best (i.e., the lowest) and 
the worst (i.e., the highest) optimal values of the performance index (10) obtained during 
10 runs of each optimization algorithm and the reduction of the performance index with 
respect to the Nelder-Mead's algorithm. The results obtained by the Nelder-Mead, ES, 
CRS2 and CRS3 methods are compared. The available numerical results indicate that the 
global optimization algorithms give better results than the standard Nelder-Mead simplex 
algorithm. In most cases the best results were obtained by ES but the time required to 
compute a solution was longer than in CRS methods. The CRS3 method provided better 
results with respect to CRS2. However, the reduction of cost with respect to CRS2 method 
was not very big.  
 

hypothetical flood his. flood 1970 his. flood 1972 optim. 
method the best /* the worst the best / the worst the best /* the worst 

Nelder  
Mead 

1587 1587 1989 1989 773 773 

CRS2 1574 
0.81% 

1587 1892 
4.87% 

1907 765 
1.03% 

768 

CRS3 1578 
0.56% 

1583 1877 
5.61% 

1892 764 
1.17% 

770 

ES 1515 
4.51% 

1572 1773 
10.86% 

1792 722 
10.81% 

770 

/* -reduction of criterion w.r.t. Nelder-Mead method 
 
Table 2: Optimization results of different methods for historical data  
 
The results presented in Table 2 and discussed above are results of the optimization 
process, when the objective was to calculate the optimal coordination parameters for 
current inflow forecasts. The CRS2 and CRS3 methods were used in the simulation of an 
on-line reservoir management during flood. The whole control system is to be capable of 
working in real time so it is necessary to take into account the uncertainty of the inflow 
forecasts. Because of that all tasks have to be solved repetitively using actual 
measurements. We assume that the central operator of the whole system solves his 
problem at time . Each local operator of the reservoir changes his decisions more 
frequently, at times  until the new coordination decision at time . It is obvious, 
that  must contain several shorter time intervals  related to the use 
of the local mechanism. Because of that the central operator repeats the optimization 
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process several times, up to the end of the flood. The simulations were performed for 
several historical floods. Table 3 presents the minimal values of the loss function obtained 
for two historical floods from 1970 and 1972. Percent reduction of the criterion with 
respect to unregulated flood is given in parentheses.  

3.4 Conclusions 
 
In general, the available results of numerical experiments indicate that global optimization 
algorithms can bring benefits in the case of complex control problems. The considered  
 
optimization method historical  flood 1970 historical flood 1972 

Nelder Mead 1904  (32.71%) 792  (44.69%) 
CRS2 1872  (33.83%) 763  (46.72%) 
unregulated flood 2829 1432 
/* -reduction of criterion w.r.t. unregulated flood 
 
Table 3: Numerical results of flood control simulation 
 
global optimization procedures have given better results than the standard Nelder-Mead's 
simplex method. The best results were obtained by ES method but it was connected with 
longer computation time. It can involve decision delays, which can not be neglected in 
operational control (see [6]). This was the reason why the CRS methods were chosen for 
simulation of on-line flood control.  
It should be pointed out, that the optimization problem solved by us was rather difficult. It 
is so, because the multireservoir system in the Upper Vistula river basin (Fig. 1) is located 
in the mountain region, where the flood situation changes very rapidly. Due to the specific 
topography, it is impossible to expand the retention capacity. The efficient use of reservoir 
storage volume during conservation periods between floods (water distribution and power 
generation) can be achieved only through decreasing the mandatory storage capacity 
reserved for usage in flood emergency periods. Because of that, for big floods in the 
Upper Vistula river system, the coordination of the local operators activities itself may 
bring an additional improvement not greater than 10%, even when very accurate 
information about the future inflows is available. Hence, the influence of the optimization 
method used for determination of the coordination parameters is limited. 
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