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ABSTRACT:  The models aiming at forecasting or projection of water temperature in natural streams 
located in cold climate zones, where the seasonality plays important role, are of great importance, as 
stream temperature is still frequently not measured on site and some tools are needed to evaluate water 
temperature values for future climatic conditions based on simple hydro-meteorological variables. In sev-
eral papers Artificial Neural Networks (ANN) were proposed to stream temperature forecasting. How-
ever, it is still not clear which hydrological and meteorological variables, among the ones that could be 
available from Global Circulation Models, are the most significant as ANN model inputs. It is well known 
that using model ensembles may significantly improve the forecasting accuracy, also in the case of ANN 
models. However, the impact of ANN ensemble size and of the ensemble aggregation approach on the 
forecasting accuracy has been rarely studied so far. The present paper aims at both, the problem of the 
choice of proper ANN input variables, ensemble size and ensemble aggregation approach, at an example 
of Biala Tarnowska river catchment, located in mountainous part of southern Poland. The meteorologi-
cal data include declination of the sun, mean, minimum and maximum air daily temperature, which are 
available from two stations, in addition to the river runoff measured in a single gauging station. The river 
freezing and melting processes that occur during winter months in the catchment pose a major problem 
for stream temperature forecasting.

Water temperature in natural rivers may vary 
due to natural processes, anthropogenic impacts 
(Poole & Berman 2001) or due to human-made 
thermal pollutions (Vega et al. 1998). The present 
paper puts attention to the first issue. The mete-
orological parameters affecting stream tempera-
ture include air temperature, net solar radiation, 
cloud cover, relative humidity and wind speed 
(Bogan et  al. 2006). Other parameters affecting 
stream temperature include: water depth, stream 
flow rate, groundwater inflow rate and tempera-
ture, thermal conductivity of the sediments, wind 
sheltering and shading, and cooling water inputs 
(Erickson & Stefan 2000). If  sufficient data of 
weather and stream conditions are available, good 
estimates of stream temperature can be obtained 
from deterministic models.

In the last decades ensemble forecasting 
(learning) is recognized as a valuable strategy 
within the computational intelligence com-
munity. Ensemble forecasting has proven to be 
effective in solving many real world problems, 
in particularly in hydrology. The ensemble flood 
forecasting is a well-known paradigm for years 

1  InTroduction

Forecasting of water temperature in natural streams 
located in cold climate zones, where the seasonality 
plays important role, is of great importance, at least 
because some tools are needed to evaluate water 
temperature values for future climatic conditions 
based on simple hydro-meteorological variables.

Water temperature of rivers is needed in ecolog-
ical studies, as changes in temperature can signifi-
cantly impact fish distribution, growth, mortality, 
production, habitat use and community dynamics 
(Caissie 2006, St-Hilaire et  al. 2012). Models of 
river water temperature are essential in assessment 
of the possible impact of climate change on the 
future biological and chemical processes in rivers 
(Jeong et al. 2012), as the relation between climate 
change and the change of water temperature in 
natural rivers may be relatively complicated (van 
Vliet et al. 2011). Among various modeling tools, 
Artificial Neural Networks (ANN) show its abil-
ity to properly predict water temperature in riv-
ers (Chenard & Caissie, 2008; Sahoo et  al. 2009; 
Piotrowski et al. 2014).
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(see the review in Cloke & Pappenburger 2009). 
Ensemble learning is a distinct concept where 
decisions of  multiple models are combined to 
improve the prediction performance. It aims at 
improving the generalization ability and the reli-
ability of  the system. Studies have shown that an 
ensemble system is generally more accurate than 
any individual model, and its effectiveness has 
been recognized in different benchmark data sets 
(Dietterich 2000). The success of  the ensemble 
forecasting results from the degree of  diversity 
within the ensemble. A good ensemble is one in 
which the models make different errors on the 
same data point (Soares et al. 2013). In this set-
ting, ANN ensembles have been widely investi-
gated for regression problems.

A number of  aggregation algorithms of  various 
complexity are proposed in the literature (Optiz & 
Shavlik 1996, See & Abrahart, 2001, Zhou et al. 
2002, Granitto et al. 2005). Probably the simplest 
is the idea of  computing a median or a mean 
of  forecasts. Within the ensemble each ANN 
member may have different architecture, may 
be trained by different optimization algorithms, 
or may be trained based on different samples of 
data selected according to some method. Such 
different samples are usually obtained by means 
of  either bagging or boosting methods (see e.g. 
Breiman 1996, Granitto et  al. 2005, Zheng 2009 
and Erdal & Karakurt 2013).

The objective of this paper is verification of the 
importance of an ensemble modeling for water 
temperature forecasting in moderately cold climate 
zones. The impact of number of ensemble mem-
bers and the ensemble aggregation method on the 
performance of the model is tested. This study is 
based on the hydro-meteorological data collected 
from Biala Tarnowska (Poland) and is a direct 
continuation of research performed by Piotrowski 
et al. (2014).

In Piotrowski et  al. (2014) the detailed com-
parison of the performance of nature inspired 
optimization methods and Levenberg–Marquardt 
(LM) algorithm in Multi-Layer Perceptron ANNs 
(MLP) training was presented. Large number of 
metaheuristics, including Differential Evolution, 
Particle Swarm Optimization, Evolution Strate-
gies, multialgorithms and Direct Search meth-
ods were compared with LM algorithm on MLP 
training for the described case study. The impact 
of population size and some control parameters 
of particular metaheuristics on the ANN train-
ing performance was verified. It was found that 
despite widely claimed large improvement in 
nature inspired methods during last years, the vast 
majority of them are still outperformed by LM 
algorithm on the selected problem. Due to this 
finding and the speed of gradient-based methods, 

in the present study all ANNs are trained by means 
of LM algorithm.

2  Biala Tarnowska River 
catchments

The valley of Biala Tarnowska River is located 
in the central part of the Polish Carpathians. The 
source is located in the Low Beskid at altitudes of 
730 meters (Carpathian belt, southern Poland). The 
total length of the river is 101.8 km and the catch-
ment area to the Koszyce Wielkie gauging station 
(10 km to the south-west from the city of Tarnow) 
equals 956.9  km2. Biala Tarnowska catchment 
is very narrow and extends from the border with 
Slovakia. The majority of the river has unregulated 
banks and is in a natural state. Fields, pastures, 
meadows, and natural vegetation predominate in 
the catchment of the upper and middle portion 
of the river. Dominant geology can be defined as 
sandstone and shale flysch. Biala Tanowska catch-
ment is divided into two different parts. The south 
section, representing about 25% of the catchment, 
is a wooded mountain part with the average slope 
of 10‰. The north part representing almost 75% 
of the basin, characterized by deep river valleys 
(mostly agricultural hills and foothills), is generally 
deforested. The river slope in the northern part is 
in the range of 0.9–5 ‰.

The highest precipitation (up to 100 mm/month), 
and hence frequent spates are observed during 
summer months. Average (high/low) temperature 
is (1ºC/-5ºC) in January and (25ºC/13ºC) in July.

According to the Köppen Climate Classifica-
tion Biala Tarnowska river is located within the 
Humid Continental Zone. It may freeze during 
winter months and river ice may occur between 
November and April. If  the Biala Tarnowska River 
is frozen, it is assumed in this paper that its water 
temperature equals 0°C.

One lead-day forecasting of Biala Tarnowska 
River temperature in Koszyce Wielkie village is 
performed according to hydro-meteorological 
measurements collected between November 1983 
and October 2000. The data collected before 
November 1990 compose training set, the data col-
lected between November 1990 and October 1995 
are included into validation set, the rest of data 
form the testing set.

In the present study the MLP input variables 
are selected based on expert knowledge about the 
major factors that impact the river temperatures in 
moderately cold climate zones (Chenard & Caissie 
2008). Air temperature is used as a predictor vari-
able in the water temperature model, because it 
is a major component in calculating net changes 
of heat flux at the water surface. From the same 
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reason net solar radiation should be taken into 
account. Water temperature is inversely related to 
river discharge, reflecting a reduced thermal capac-
ity under decreasing flow volumes, hence river 
discharge is an additional input variable. Hence, 
taking into account data availability in Biala Tar-
nowska catchment the following measurements are 
considered as input variables:

–	 declination of the sun (Sun),
–	 daily average (Tavr) air temperature in Tarnow,
–	 daily maximum (Tmax) air temperature in 

Tarnow,
–	 daily average (Navr) air temperature in Nowy 

Sacz,
–	 daily maximum (Nmax) air temperature in the 

Nowy Sacz,
–	 daily runoff (Q) in Koszyce Wielkie gauging 

station,
–	 daily average water temperature (WT) in Koszyce 

Wielkie, which is to be predicted by the ANN.

3  Multi-Layer Perceptron Neural 
Networks

Multi-Layer Perceptron ANN consists of nodes 
grouped into input, hidden and output layers. 
Single hidden layer is considered enough to 
approximate continuous differentiable functions, 
but there is no widely accepted rule regarding the 
number of hidden nodes (Zhang et al. 1998). MLP 
neural network is defined as:
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where yp is a predicted value of  the output vari-
able, zk, k = 1, … K represents input variables, w 
and v are MLP weights (parameters to be opti-
mized), J is the number of  hidden units and f  is 
the so-called activation function. In the present 
paper the popular logistic activation function is 
used:
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The Mean Square Error (MSE) objective func-
tion is required by LM algorithm and is used in the 
present study
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where y is the measured value of the output vari-
able and N is the number of observations.

3.1  Method to prevent overfitting

The main problem with the practical application 
of ANNs is the possible overfitting to the train-
ing data (Holmstrom & Koistinnen 1992, Prechlet, 
1998). ANN overfitting is understood as fitting the 
ANN weights not only to the signal but also to a 
noise that is always present in the training sample. 
The possibility of overfitting depends on the ANN 
size, number of training patterns, the covering of 
feature space by the data and their quality.

To prevent overfitting in this paper only rela-
tively simple MLP architectures are considered. 
However, the choice of  simple MLP architec-
ture, although important, is not sufficient. Hence 
in the present paper the simple early stopping 
technique is used according to Prechlet’s (1998) 
Generalization Loss (GLα) class, which was 
developed for gradient-based training methods 
and turned out successful in water-related applica-
tions (Piotrowski and Napiorkowski, 2013). The 
data set is divided into three parts: training (TR), 
validation (V) and independent testing (TE), 
hence three different MSE values are computed in 
each iteration (MSETR, MSEV and MSETE). In the 
case of  Biala Tarnowska river this three data sets 
are of  almost equal size, each one is composed of 
10-years long measurements.

In case of gradient-based learning algorithms 
the derivatives and the step size are determined 
according to MSETR only. In this paper the LM 
training method is stopped at generation t at which 
(see Prechlet, 1998)
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where α is set to 1.2 and c < t is the number of the 
generation at which the lowest value of MSEV was 
obtained. The training may also be stopped after 
pre-defined number of function calls which is set 
to 1000, longer training does not lead to further 
improvement. After termination, the best solution 
returned by the algorithm is chosen according to 
the performance for the validation data, i.e. the 
solution with the lowest MSEV(c).

3.2  Initialization and bounds

ANN weights are frequently initialized within a 
small limited range around 0 (Thimm and Fiesler, 
1997; Zhang et  al. 1998). After previous experi-
ence of the authors (Piotrowski et al. 2014), in this 
study the ANN weights are generated randomly 
from uniform distribution within [-1,1].

In the case of MLP input and output variables are 
frequently linearly normalized to [0,1] interval (Zhang 
et al. 1998), what is also done in the present paper.
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3.3  Data sets for water temperature forecasting  
at Biala Tarnowska river

The considered input variables and MLP archi-
tectures are shown in Table 1. Notations are given 
in the section  2 of the text, except STavr(t-3_7), 
which is a sum of the daily average air tempera-
tures measured in Tarnow 3 to 7 days before t.

Note that there are no autoregressive inputs 
and the past water temperatures are never used to 
model the future ones in this study. There are two 
reasons of that. Firstly, the water temperature fore-
casting models are sometimes expected to provide 
forecasts for the future climate conditions, and 
secondly, the water temperature is still not always 
measured in natural rivers.

3.4  Median results achieved in single model case

Table 2 depicts the median performance from 50 
runs that are convenient for the comparison with 
forecasts obtained by means of aggregation algo-
rithms of ANN ensembles. The lowest values for a 
particular data set are bolded. This results are the 
same as reported in Piotrowski et al. (2014).

The 7-5-1-TMAX2 architecture performs best 
according to training-independent testing data. 
7-5-1-TMAX2 is composed of  7  inputs, 5 hidden 
nodes and a single output. TMAX2 means that 

Table 2.  The 50-run averaged performance of different 
MLP structures trained with LM algorithm.

Structure

Training Validation Test

Median Median Median Best

13-9-1 0.974 1.179 1.064 0.878
13-7-1 1.010 1.209 1.111 0.919
13-5-1 1.015 1.163 0.941 0.871
13-4-1 1.061 1.182 0.949 0.831

9-7-1 0.965 1.169 0.980 0.867
9-6-1 0.989 1.168 0.977 0.864
9-5-1 1.011 1.175 0.953 0.839
9-4-1 1.037 1.181 0.920 0.836
9-3-1 1.131 1.238 0.979 0.840

8-7-1 0.964 1.166 0.923 0.824
8-6-1 0.978 1.176 0.918 0.840
8-5-1 1.014 1.173 0.911 0.824
8-4-1 1.058 1.176 0.896 0.838
8-3-1 1.097 1.210 0.950 0.840

7-7-1-TMAX2 0.969 1.169 0.920 0.831
7-6-1-TMAX2 1.004 1.187 0.912 0.822
7-5-1-TMAX2 1.027 1.175 0.884 0.820
7-4-1-TMAX2 1.071 1.178 0.885 0.802
7-3-1-TMAX2 1.137 1.222 0.964 0.830

7-5-1-TAVER2 1.325 1.194 1.067 0.968
7-5-1-SUN2 1.300 1.557 1.252 1.200

Table 1.  MLP structures with description of input variables.

Structure No. param. Input variables

13-9-1 136 S(t-1), S(t-2), Tavr(t-1), Tarv(t-2),
13-7-1 106 STavr(t-3_7), Tmax(t-1), Tmax(t-2),
13-5-1 76 Navr(t-1), Navr(t-2), Nmax(t-1),
13-4-1 61 Nmax(t-2), Q(t-1), Q(t-2)

9-7-1 78
9-6-1 67 S(t-1), S(t-2), Tavr(t-1), Tavr(t-2)
9-5-1 56 STavr(t-3_7), Tmax(t-1), Tmax(t-2),
9-4-1 45 Q(t-1),Q(t-2)
9-3-1 34

8-7-1 71 S(t-1), S(t-2),
8-6-1 61 Tavr(t-1), Tavr(t-2), STavr(t-3_7),
8-5-1 51 Tmax(t-1), Tmax(t-2),
8-4-1 41 Q(t-1)
8-3-1 31

7-7-1-TMAX2 64
7-6-1-TMAX2 55 S(t-1), S(t-2),
7-5-1-TMAX2 46 Tavr(t-1), Tavr(t-2),
7-4-1-TMAX2 37 STavr(t-3_7), Tmax(t-1), Q(t-1)
7-3-1-TMAX2 28
7-5-1-TAVER2 46 S(t-1), S(t-2), Tavr(t-1), Tavr(t-2), Tmax(t-1), Tmax(t-2), Q(t-1)
7-5-1-SUN2 46 S(t-1), Tavr(t-1), Tavr(t-2), STavr(t-3_7), Tmax(t-1), Tmax(t-2), Q(t-1)
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this architecture was obtained from 8-5-1 one 
by discarding the daily maximum air tempera-
ture measured 2  days before the day for which 
the forecast is performed, the architectures 7-5-1-
TAVER2 and 7-5-1-SUN2 were obtained in similar 
fashion by discarding the average air temperature 
or declination of  the sun measured 2  days ago, 
respectively.

4  Improvement by means of 
aggregation of ANN ensemble

The temperature forecasting performance may be 
improved by means of aggregation algorithms of 
ANN ensembles. A large number of very differ-
ent methods to construct ensemble members and 
perform aggregation of the results have already 
been proposed in the literature. Some approaches 
that aim at using different training subsets for each 
ensemble member, like bagging, have strong theo-
retical background (see Breiman, 1996). Unfor-
tunately in case of many applications, the main 
assumptions like uncorrelated errors of ensemble 
members are not fulfilled (Jeong and Kim, 2005).

The performance of various approaches is fre-
quently very similar (see the comparison presented 
by Granitto et al. 2005). In the present paper, follow-
ing the results obtained by Zheng (2009), only the 
simplest methods are applied, in which data from 
the training set are used by each ensemble member 
and aggregated forecasts yp

agg,n are estimated as a 
mean or median of the forecasts yp

i,n performed by 
NEM particular members (NEM is a Number of 
Ensemble Members) randomly selected form the 
set of 50 MLP. Four different ensembles are tested, 
namely the ensembles with NEM = 5, 10, 20 and 
50 (all trained) members for each considered MLP 
structure. In such a simply way the impact of the 
ensemble size on the performance of temperature 
forecast can be examined. The structures of MLPs 
are defined in Table 1 and the 50-run median per-
formances obtained for each structure by single 
models are reported in Table 2.

In this paper the aggregated mean square error 
(MedianA and MeanA), based on aggregation 
by means of median and mean, respectively, are 
defined as follows:
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In above equations NEM ensemble members are 
chosen (NEM set to 50, 20, 10 and 5 are tested in 
the study) and N is the number of data in particu-
lar set (training, validation or testing). The results 
obtained for Biala Tarnowska river by means of 
aggregation algorithms of ANN ensembles are 
reported in Table 3 for training data, in Table 4 for 
validation data and in Table 5 for testing data.

The lowest mean and median values for each 
ensemble (i.e. each column) are bolded.

The best results for training data set are 
obtained by means of  13-9-1 MLP, i.e. when input 
set is formed by all considered variables and the 
number of  neurons in the hidden layer is the high-
est. This most complex architecture is defined by 
as many as 136 weights, so it is not surprising that 
the best performance for training data does not 
result in good performance for the validation or 
testing data sets.

Two architecture, namely 8-5-1 and 7-5-1-TMAX2 
perform best according to training-independent 
testing data for ANN ensembles aggregated by 
means of Mean and Median. This confirms that 
most important inputs for temperature forecast 
at Koszyce Wielkie are declination of the sun, the 
average and maximum temperature measured in 
Tarnow (close to Koszyce Wielkie) in last 2 days 
and flow measured 1 day ago.

One may note that for the testing data set the 
MeanA and MedianA are lower than the median 
MSE obtained by individual MLP models. Moreo-
ver, for 7-5-1 ANN, the increase in the number of 
ensemble members gives better results, both for 
MeanA and MedianA. However, the best among 
50 MLP models usually perform better than the 
aggregated MLP prediction.

The problem is just that basing on training and 
validation data sets no one is able to determine, 
which single MLP would perform best for the test-
ing data. On the other hand, aggregation of the 
forecasts achieved by MLP models of various per-
formance may improve the results. A good ensem-
ble is one in which the models make different errors 
on the same data point.

In Figures 1–4 the results of one lead-day water 
temperature forecasting by means of ANN ensem-
bles are illustrated for four seasons. To get better 
visual comparison of observed and predicted tem-
peratures in a single Figure, 2 characteristic moths 
for each season are depicted. The best architecture 
for testing data set is selected, namely 7-5-1-TMAX2. 
Similarly to the results included in Tables 3–5 the 
forecastings of four different ensembles with 5, 10, 
20 and 50 elements are plotted. Additionally, the 
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Table 3.  The results for ANN ensembles aggregated by means of Mean and Median—training data.

Ensemble 50 20 10 5

ANN Mean A Median A Mean A Median A Mean A Median A Mean A Median A

13-9-1 0.969 0.928 0.938 0.920 0.898 0.907 0.979 0.888
13-7-1 1.023 0.967 1.066 1.058 1.039 1.016 1.043 0.972
13-5-1 0.977 0.977 0.975 0.984 0.982 0.988 0.984 1.026
13-4-1 1.007 1.020 0.998 1.011 0.999 1.008 1.034 1.052

9-7-1 0.911 0.919 0.926 0.933 0.948 0.958 0.951 0.973
9-6-1 0.938 0.943 0.951 0.961 0.934 0.945 0.938 0.943
9-5-1 0.966 0.969 0.971 0.976 0.967 0.969 0.984 0.991
9-4-1 0.998 1.001 1.002 1.004 1.019 1.022 1.010 1.012
9-3-1 1.078 1.108 1.078 1.103 1.094 1.127 1.116 1.148

8-7-1 0.933 0.939 0.949 0.961 0.951 0.958 0.936 0.940
8-6-1 0.938 0.943 0.925 0.925 0.940 0.938 0.941 0.942
8-5-1 0.965 0.973 0.965 0.970 0.975 0.976 0.962 0.962
8-4-1 1.023 1.030 1.015 1.024 1.008 1.019 1.011 1.024
8-3-1 1.065 1.065 1.062 1.068 1.044 1.066 1.030 1.058

7-7-1-TMAX2 0.931 0.934 0.932 0.937 0.922 0.925 0.912 0.914
7-6-1-TMAX2 0.954 0.958 0.956 0.959 0.956 0.958 0.958 0.965
7-5-1-TMAX2 0.981 0.989 0.981 0.987 0.993 1.000 0.975 0.984
7-4-1-TMAX2 1.021 1.031 1.027 1.042 1.030 1.044 1.044 1.063
7-3-1-TMAX2 1.083 1.100 1.080 1.087 1.088 1.097 1.082 1.076

7-5-1-TAVER 1.262 1.276 1.259 1.278 1.291 1.311 1.296 1.332
7-5-1-SUN 1.265 1.276 1.274 1.295 1.262 1.285 1.251 1.259

Table 4.  The results for ANN ensembles aggregated by means of Mean and Median—validation data.

Ensemble 50 20 10 5

ANN Mean A Median A Mean A Median A Mean A Median A Mean A Median A

13-9-1 1.202 1.133 1.151 1.120 1.108 1.116 1.097 1.101
13-7-1 1.255 1.167 1.286 1.242 1.249 1.189 1.265 1.170
13-5-1 1.121 1.112 1.116 1.114 1.129 1.119 1.109 1.136
13-4-1 1.128 1.134 1.119 1.127 1.123 1.133 1.134 1.143

9-7-1 1.107 1.112 1.110 1.114 1.128 1.139 1.108 1.125
9-6-1 1.107 1.108 1.109 1.115 1.099 1.103 1.107 1.108
9-5-1 1.114 1.119 1.127 1.136 1.122 1.131 1.134 1.137
9-4-1 1.127 1.126 1.130 1.131 1.143 1.144 1.128 1.122
9-3-1 1.172 1.203 1.173 1.203 1.189 1.221 1.217 1.236

8-7-1 1.113 1.112 1.119 1.120 1.110 1.112 1.095 1.084
8-6-1 1.110 1.110 1.108 1.107 1.105 1.107 1.096 1.109
8-5-1 1.111 1.116 1.106 1.114 1.122 1.125 1.114 1.114
8-4-1 1.130 1.133 1.128 1.129 1.131 1.130 1.132 1.129
8-3-1 1.154 1.152 1.156 1.154 1.144 1.164 1.135 1.161

7-7-1-TMAX2 1.115 1.112 1.109 1.111 1.106 1.109 1.103 1.101
7-6-1-TMAX2 1.119 1.120 1.109 1.115 1.107 1.108 1.109 1.118
7-5-1-TMAX2 1.115 1.118 1.112 1.118 1.112 1.111 1.118 1.120
7-4-1-TMAX2 1.128 1.133 1.132 1.138 1.133 1.140 1.152 1.159
7-3-1-TMAX2 1.164 1.181 1.164 1.165 1.174 1.185 1.175 1.166

7-5-1-TAVER 1.143 1.150 1.127 1.130 1.133 1.142 1.136 1.149
7-5-1-SUN 1.516 1.526 1.515 1.532 1.508 1.527 1.514 1.526
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Table 5.  The results for ANN ensembles aggregated by means of Mean and Median—testing data.

Ensemble 50 20 10 5

ANN Mean A Median A Mean A Median A Mean A Median A Mean A Median A

13-9-1 0.969 0.928 0.938 0.920 0.898 0.907 0.979 0.888
13-9-1 0.857 0.845 0.844 0.846 0.834 0.852 0.848 0.877
13-7-1 0.892 0.857 0.925 0.916 0.883 0.863 0.891 0.857
13-5-1 0.816 0.819 0.814 0.820 0.821 0.829 0.849 0.858
13-4-1 0.830 0.836 0.828 0.835 0.832 0.838 0.859 0.864

9-7-1 0.833 0.839 0.835 0.832 0.840 0.857 0.835 0.859
9-6-1 0.817 0.824 0.819 0.831 0.827 0.838 0.817 0.824
9-5-1 0.825 0.830 0.830 0.831 0.848 0.844 0.867 0.868
9-4-1 0.834 0.839 0.833 0.838 0.856 0.860 0.851 0.857
9-3-1 0.876 0.911 0.872 0.895 0.891 0.922 0.908 0.930

8-7-1 0.821 0.817 0.822 0.822 0.821 0.820 0.830 0.828
8-6-1 0.811 0.811 0.821 0.821 0.825 0.827 0.828 0.845
8-5-1 0.808 0.812 0.806 0.804 0.821 0.815 0.824 0.825
8-4-1 0.822 0.821 0.827 0.826 0.834 0.841 0.886 0.853
8-3-1 0.854 0.857 0.859 0.852 0.854 0.876 0.849 0.874

7-7-1-TMAX2 0.825 0.820 0.817 0.809 0.839 0.835 0.854 0.845
7-6-1-TMAX2 0.815 0.816 0.810 0.813 0.819 0.822 0.838 0.850
7-5-1-TMAX2 0.805 0.808 0.809 0.812 0.809 0.817 0.820 0.820
7-4-1-TMAX2 0.939 0.952 0.937 0.938 0.948 0.954 0.962 0.973
7-3-1-TMAX2 1.192 1.200 1.199 1.210 1.203 1.211 1.215 1.229

7-5-1-TAVER 0.821 0.822 0.824 0.826 0.836 0.831 0.847 0.845
7-5-1-SUN 0.862 0.882 0.851 0.862 0.861 0.866 0.871 0.876

Figure 1.  One lead-day water temperature forecasting by means of ANN ensembles for one month in spring—testing 
data set.

Figure 2.  One lead-day water temperature forecasting by means of ANN ensembles for one month in summer—
testing data set.
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results of forecast by means of the worst among 50 
MLP models are included.

Both, the median and the average aggrega-
tion methods give very similar results. However, 
the median aggregation method is chosen since it 
eliminates the cases of  very poor predictions for 
particular ensemble elements. Such poor predic-
tions may happened when forecasting model is 
tested on data much different from those in train-
ing data set.

The best results are observed for spring and 
summer months (Figs. 1 and 2). Forecasts for 
June 1996 and May 2000 by means of all consid-
ered ensembles and the worst single model do not 
differ.

Figure  2 depicts temperature trajectories for 
2  summer months in 1997 and 2000. For both 
months, predictions obtained by means of four dif-
ferent integrated ensembles and single model are 
very close to each other. Only at July 11th 1997 on 
may observe sudden drop in the forecasted temper-
ature by all models when the actual temperature is 
rising. Such unexpected behavior results from rapid 
flow variations. Interestingly, for this single day the 
best forecast is made by single “worst” model.

Figure 3 depicts temperature forecast for selected 
months in autumn. According to our expecta-
tion, more elements in ensemble results in better 

forecast. Here the “worst” case of single prediction 
really suggests the worst prediction.

One lead-day water temperature forecasting by 
means of ANN ensembles in winter is probably the 
most interesting (Fig. 4). All aggregated ensembles 
lead to different predictions. In winter freezing and 
melting processes do occur in a river, which are 
very difficult to be predicted. Frequently the mod-
els expect a warming of water, whereas in nature 
the river is still frozen or, even if  the water is ice 
free, its temperature do not increase.

Systematic prediction error that is occasionally 
observed is caused by the absence of autoregressive 
input. In some cases the forecasts may differ from 
the measurements for a number of consecutive days, 
frequently due to specific meteorological conditions.

5  CONCLUSIONS

In the present paper the Multi-Layer Perceptron 
Artificial Neural Networks are applied for regres-
sion problem of forecasting water temperature in 
the Biala Tarnowska River located in Poland.

The problems involved in the proper choice of 
ANN input variables, ensemble size and ensemble 
aggregation approach are discussed. According to 
training-independent testing data the architectures 

Figure 3.  One lead-day water temperature forecasting by means of ANN ensembles for one month in autumn—
testing data set.

Figure 4.  One lead-day water temperature forecasting by means of ANN ensembles for one month in winter—testing 
data set.
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8-5-1 and 7-5-1-TMAX2 outperform the others 
tested.

Forecasting performance of the neural networks 
is satisfactory and generally more elements in 
aggregated ensemble results in better forecast.

Prediction errors observed in winter are related 
to the river freezing and melting processes, which 
are very difficult to be predicted accurately.
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