
PRODUCT UNIT NEURAL NETWORKS FOR ESTIMATIONS OF LONGITUDINAL DISPERSION 
COEFFICIENTS IN RIVERS 

Jaroslaw J. Napiorkowski1, Adam P. Piotrowski1, Pawel M. Rowinski1, Steve G. Wallis2 

1Institute of Geophysics, Polish Academy of Sciences, Poland, Ksiecia Janusza 64 st. 01-452 Warsaw 
2School of the Built Environment, Heriot-Watt University, UK, Riccarton, Edinburgh, EH13 9QJ 

E-mail: j.napiorkowski@igf.edu.pl 

 

Abstract 

The problem of estimating longitudinal dispersion 
coefficients in rivers, although studied for decades, is still a 
difficult task. A number of empirical equations have been 
proposed, many of them in a multiple power law regression 
form. Also, during the last ten years a number of data-
driven techniques have been suggested to improve the 
results, including a few types of neural networks. However, 
Product-Unit neural networks (PUNNs), which should be 
well suited for dispersion prediction, have never been used 
for this task. Hence, in this paper PUNNs are applied to 
estimate longitudinal dispersion coefficients in rivers. As 
identifying the global optimum of PUNNs is much more 
difficult than for classical Multi-Layer Perceptron neural 
networks (MLPs), two different global optimization 
training algorithms are compared. In order to avoid the 
problem of overfitting of neural networks to training data 
the popular noise injection method is used. Based on 50 
training runs, average objective function values from the 
PUNNs are generally not as good as those from the MLPs. 
However, if the best of the 50 runs are considered, the 
PUNNs allow for slightly better objective function values 
than MLPs. In general, noise injection makes a significant 
improvement to DEGL trained MLPs, but it appears to be 
much less beneficial for PUNNs.  

Introduction 

The simplest and most popular method of pollutant 
transport modeling is the one-dimensional advection-
dispersion equation in the form of: 

 
1C C CU AD

t x A x x
∂ ∂ ∂ ∂⎛ ⎞+ = ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (1) 

where C is the averaged pollutant concentration within the 
cross-section of area A, x is the longitudinal axis, t is the 
time, U is the cross-sectionally averaged velocity and D is 
the longitudinal dispersion coefficient. The most difficult 
parameter to obtain, even in such a simple model, is the 
longitudinal dispersion coefficient, which depends on the 
river reach and the flow conditions. 
Although extensively studied during recent decades, the 
estimation of longitudinal dispersion coefficients in rivers 
still poses a practical difficulty for both scientists and 

engineers. To avoid the requirements of expensive and time 
consuming tracer tests, a number of empirical formulae 
have been proposed for predicting the longitudinal 
dispersion coefficient in rivers based on a few 
morphological and hydraulic characteristics, which are 
considered as relatively easy to obtain. The most widely 
used data-based methods applied in the field include 
empirical equations in power law regression-like form 
(Fischer, 1979), neural networks (Kashefipour et al. 2002) 
or genetic programming (Azamathulla and Ghani, 2011). 
The most widely used are power law regression-like 
equations (Wallis and Manson, 2004), for example 
proposed by Fischer (1979) 
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and Deng et al (2001) 
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which are given in dimensionless form. In the above 
expressions U* is the shear velocity, W is the river width 
and H is the river depth, averaged over the cross-section. 
Since Kashefipour et al.’s (2002) paper, a number of 
researchers have reported the possibility of estimating 
longitudinal dispersion coefficients by means of artificial 
neural networks (ANNs) with reasonable success 
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(Rowinski et al., 2005; Toprak and Cigizoglu, 2008; Noori 
et al., 2011). In most cases only the well known Multi-
Layer Perceptron ANNs (MLP) were used (but there are 
exceptions – see Piotrowski et al., 2006 and Toprak and 
Cigizoglu, 2008). An obstacle in using other ANN types is 
the number of available data, which is very limited in the 
current subject. Unfortunately, most other ANN types 
require more parameters to be optimized to achieve 
comparable performance, and hence larger data samples are 
required.  
However, a type of ANN exists that requires fewer 
optimized parameters compared to MLP models and which 
shows much similarity with power law regression-like 
equations, so frequently used in the literature. This method, 
called the Product-Unit neural network (PUNN), although 
proposed by Durbin and Rumelhart in 1989 and despite 
showing so much structural similarities to widely applied 
equations was somehow ignored by the hydrological and 
hydraulic community. In the present paper we explore its 
ability to predict longitudinal dispersion coefficients based 
on a well studied database (Deng et al. 2001), which 
comprises 81 tracer experiments performed in USA, 
Moldova and Poland (see Godfrey and Frederick, 1970; 
Nordin and Sabol, 1974; Sukhodolov et al., 1997; Deng et 
al., 2002). 

Data 

The longitudinal dispersion coefficient is estimated with the 
same independent variables as in the case of power law 
regression-like equations (W,H,U,U*) and river sinuosity 
(sin), as proposed in Rowinski et al (2005). To allow a fair 
comparison with previously published results obtained by 
means of MLP neural networks and Deng et al.’s (2001) 
regression equation, in the present paper the same data, 
which includes 81 experiments, with identical division into 
training (50 cases) and testing (31 cases) data sets as in 
Piotrowski et al. (2012) are used. For details on the data 
division and the original data, consult Deng et al. (2002) 
and Piotrowski et al. (2012). 

Product-Unit Neural Networks 

MLP neural networks (probably the most popular type) 
have summation units in hidden and output layers. In 
practice, three layers are required to obtain good predictive 
performance (see Figure 1). Such an MLP may be defined 
as follows 
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Figure 1: Scheme of multi-layer perceptron neural network. 

Where yP is the output, J is the number of hidden units, K is 
number of inputs x, w and v are ANN weights (parameters 
which need to be optimized) and f(c) is a so-called 
activation function, which filters the results of nodal 
calculations before passing them to the next layer. Thus the 
argument, c, is the weighted sum of inputs to a node. 
Frequently and herein the logistic form of the activation 
function is used (Haykin, 1999) 
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Such an MLP neural network requires optimization of K*J 
+ 2*J + 1 parameters, if we assume that there is only one 
output from the network. Usually, MLP inputs and outputs 
are normalized to [0,1] interval (see Zhang et al., 1998). 
Durbin and Rumelhart (1989) proposed a Product-Unit 
neural network, which in its simplest form (see also 
Martinez-Estudillo et al., 2006) may be defined as  
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Figure 2: Scheme of product-unit neural network. 
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Such an ANN requires optimization of only of K*J + J + 1 
parameters. Moreover, according to Leerink et al. (1995), 
the information capacity of a PUNN increases to 3K 
(compared to 2K for a MLP), hence, at least theoretically, 
fewer hidden units are required to approximate a particular 
function with the same precision as by means of a MLP. Of 
course, input and output normalization range must exclude 
0 (because of the product formulation). According to 
Martinez–Estudillo (2006), the [0.1,0.9] range is a 
reasonable choice. This is especially important as negative 
inputs, if present, would lead to complex numbers if raised 
to non-integer powers.  
According to Janson and Frenzel (1993), PUNNs are 
difficult to train. This is a severe problem as the PUNN 
weights are unbounded, as are MLP ones. However, if the 
parameter space is reduced, for example by requiring that 
w,v ∈ [-2,2], which we suggest in the present paper as a 
good choice at least for longitudinal dispersion estimation, 
the difficulty with PUNN training becomes mitigated, and 
the risk of overfitting is reduced (see Haykin (1999) and 
Liu et al. (2008) for details on overfitting in ANN training). 
Following Kashefipour et al. (2002) and Piotrowski et al. 
(2012) we used  
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as the objective function for ANN training. Using 
logarithms of D avoids the situation where the model would 
fit to the large longitudinal dispersion coefficients only. 
In Piotrowski et al. (2012) a number of Evolutionary 
Computation methods were used for MLP training with 
noise injection as a method to avoid ANN overfitting. Due 
to the non-differentiable nature of the above objective 
function two training algorithms of different nature, that do 
not require gradient computation are used for PUNN 
training here, namely: Differential Evolution-based (Storn 
and Price, 1995) DEGL algorithm (Das et al., 2009), which 
ranked among the best methods in ANN training in 
Piotrowski et al (2012), and the recently developed 
simplex-based (Nelder and Mead, 1965) SP-UCI algorithm 
(Chu et al., 2011).  
ANNs require some method to avoid overfitting (Haykin, 
1999). The most popular one is the so-called early stopping  
(Prechlet, 1998), which requires dividing the available data 
into 3 sets – training, validation and testing (the only 
independent one). However, this poses a problem when 
only a small number of data are available. Another well 
known option is using noise injection. In this case dividing 
the data into only two sets is required.  
Noise injection to data during neural network training was 
experimentally found to improve their generalization 
capability (Holmstrom and Koistinnen, 1992), especially in 

the case of limited data (Hua et al. 2006). The similarities 
between noise injection and other methods designed to 
improve the generalization properties of neural networks, 
including weight decay, have been studied (Reed et al. 
1995). Although different variants of noise injection may 
be found in the literature, in the present paper we use the 
same approach as in Piotrowski et al. (2012), which proved 
to have a good performance for longitudinal dispersion 
coefficient estimation by means of MLP neural networks.   
In this, an m-th artificial case ( [1, ])m M∈  is generated 

for each i-th experiment ( [1,81])i∈  for 5 input and one 
output variables. Following Piotrowski et al. (2012) we set 
M to 100. For four of the input variables xk, i.e. W, H, U, 
sin, and for the output an additional case is generated by 
adding Gaussian noise ε = (0, )N σ , specific to the 
particular variable, and to the measured value, e.g.  
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The uncertainty of D, W, H, U and sin depend mostly on 
the quality of on-site measurements, performed by different 
researchers in various conditions. Hence, the noise variance 
of these variables is defined as 0.1ki kixσ = . The bulk 

shear velocity U* is treated a little differently. Under steady 
and uniform flow conditions it may be approximated by   

 *U gHs=  (11) 

where s is the bed slope and g is acceleration due to Earth’s 
gravity. We assume that Gaussian noise (0, )siN σ , with 

variance 0.1si isσ =  is added to the bed slope 
m m
i i is s ε= +  and then U* is computed according to:  

 *m m m
i i iU gH s=  (12) 

Hence the total number of data include 101*50 training and 
101*31 testing cases. Following Piotrowski et al. (2012), 
the case with only noise-free data was also considered.  

Results and Discussion 

In Piotrowski et al (2012) MLPs with noise injection were 
successfully used for dispersion estimation in rivers. A 
number of versions were studied – with 2 and 3 hidden 
nodes, with box constraints of [-1000,1000] and [-10,10], 
trained without noise injection and with noise injection, and 
using a number of Evolutionary Computation algorithms. 
Each MLP version was optimized 50 times. Due to the 
small number of testing data (31 experiments) the results 
were compared on noisy data (to be specific, 3100 noisy 
and 31 original experiments). It was shown that the MLP 
with 3 hidden nodes, box constraints set to [-1000, 1000] 
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and noise injection during training obtained the best results 
according to both the average and the single best objective 
function value obtained from the 50 optimizations.  
In the present study, a PUNN with 3 hidden nodes was used 
for the same task. Two training algorithms, DEGL and SP-
UCI, were used: each PUNN was optimized 50 times. 
Some objective function values evaluated using (9) from 
these two training methods, with and without noise 
injection, and the earlier MLP are presented in Table 1. 
Similarly to the previous study, the results are compared to 
noisy data.  
Table 1 shows that the 50-optimization averaged objective 
function results obtained from the DEGL trained PUNN 
were much poorer than those obtained from the MLP. This 
is true for both the training data set and the testing data set. 
Moreover, in the case of noise free training the PUNN 
averaged objective function values show very large values, 
which are due to an occasional very poor prediction. More 
stable results were obtained when noise was injected during 
training, however they were still worse than those obtained 
by the MLP (again for both data sets). 
However, a different view is possible if one concentrates on 
the single best objective function value obtained from the 
50 optimizations using the DEGL algorithm (see Table 2). 
Here the lowest objective function from the testing data set 
was found for the PUNN trained without noise injection 
(value of 0.54) (although the statistic is derived from noisy 
data, as defined earlier). This suggests that the PUNN is 
difficult to train and in some optimization runs DEGL is 
unable to achieve a reasonable performance, leading to a 
large 50-optimization averaged value of objective function. 
However, some successful training does occur and in such 
cases the derived values of longitudinal dispersion 
coefficients are of very good quality, being slightly better 
than those from the MLP model.  

Table 1: Averaged objective function values obtained for 
neural networks with 3-hidden nodes: NF – noise free; NI – 
noise injection. 

Algorithm - data set - noise MLP PUNN 
DEGL - training - NF 0.43 997.0 

SP-UCI - training - NF - 0.56 
DEGL - testing - NF 0.65 77.6 

SP-UCI - testing  - NF  - 0.89 
DEGL - training - NI 0.40 0.57 

SP-UCI - training - NI - 0.65 
DEGL - testing - NI 0.62 0.89 

SP-UCI - testing  - NI  - 0.87 
SP-UCI trained PUNNs didn’t lead to any very poor 50-
optimisation averaged results (see Table 1), however it also 
didn’t beat the corresponding objective function values 
obtained from the MLP. Note that the single best objective 
function values obtained by SP-UCI (see Table 2) were 

always higher than the MLP values. Hence it may be 
concluded that SP-UCI trained PUNNs give more stable 
results than DEGL trained PUNNs, but the former are 
unable to reach occasionally as good solution as are the 
latter. 
Table 2: Best objective function values obtained for neural 
networks with 3-hidden nodes. 

Algorithm - data set - noise MLP PUNN 
DEGL - training - NF 0.35 0.39 

SP-UCI - training - NF - 0.40 
DEGL - testing - NF 0.58 0.54 

SP-UCI - testing  - NF  - 0.65 
DEGL - training - NI 0.36 0.50 

SP-UCI - training - NI - 0.39 
DEGL - testing - NI 0.55 0.76 

SP-UCI - testing  - NI  - 0.56 

The graphical interpretation of calculated longitudinal 
dispersion coefficients from some of the cases shown in 
Table 2 are depicted in Figure 3 and 4. Figure 3 presents 
results for the training data set. The plot shows the 
measured data, results generated by means of the noise-
injected MLP, with optimal weighting coefficients, results 
generated by means of the noise-injected PUNN, with 
optimal weighting coefficients and results generated by 
means of the noise-injected Deng et al (2001) formula. 
Note that all points are distributed along the 50 horizontal 
lines corresponding to 50 river reaches and that the plots 
are in full agreement with  Table 2. The green clouds are 
more compact than the black ones.  

 

Figure 3: Comparison of longitudinal dispersion 
coefficients: measured (red squares), MLP (green dots), SP-
UCI trained PUNN with noise injection (black squares) and 
Deng et al (2001) formula (yellow dots). Plot shows 100-
times noise-injected and original data for 50 river reaches 
(training data).  
Figure 4 presents a similar comparison of results for the 
testing data set. In this case all points are more or less 
scattered along the 31 horizontal lines corresponding to 31 
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river reaches. Again plots are in full agreement with  Table 
2 and the points forming the black clouds are more 
scattered then the green ones. The Deng et al (2001) 
formula in many cases produces results outside its range of 
applicability. 

 
Figure 4: Comparison of longitudinal dispersion 
coefficients: measured (red squares), MLP (green dots), SP-
UCI trained PUNN with noise injection (black squares) and 
Deng et al (2001) formula (yellow dots). Plot shows 100-
times noise-injected and original data for 31 river reaches 
(testing data). 

Conclusions 

Comparing objective function values suggests that on 
average PUNNs do not perform better than MLPs for 
longitudinal dispersion coefficient estimation. In general, 
noise injection made a significant improvement to DEGL 
trained MLPs, but it appears to be less beneficial for PUNN 
training. This is probably the effect of the well known 
difficulty of training PUNNs. However, the single best 
result was obtained by means of a PUNN trained by DEGL, 
which shows the potential of this kind of neural network. 
The stochastic nature of MLPs and PUNNs means that any 
version of either of them has the potential for making good 
dispersion predictions.  
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