
PRODUCT UNIT NEURAL NETWORKS FOR ESTIMATIONS OF LONGITUDINAL DISPERSION
COEFFICIENTS IN RIVERS

Jaroslaw J. Napiorkowski1, Adam P. Piotrowski1, Pawel M. Rowinski1, Steve G. Wallis2

1Institute of Geophysics, Polish Academy of Sciences, Poland, Ksiecia Janusza 64 st. 01-452 Warsaw
2School of the Built Environment, Heriot-Watt University, UK, Riccarton, Edinburgh, EH13 9QJ

E-mail: j.napiorkowski@igf.edu.pl

Abstract

The problem of estimating longitudinal dispersion
coefficients in rivers, although studied for decades, is still a
difficult task. A number of empirical equations have been
proposed, many of them in a multiple power law regression
form. Also, during the last ten years a number of data-
driven techniques have been suggested to improve the
results, including a few types of neural networks. However,
Product-Unit neural networks (PUNNs), which should be
well suited for dispersion prediction, have never been used
for this task. Hence, in this paper PUNNs are applied to
estimate longitudinal dispersion coefficients in rivers. As
identifying the global optimum of PUNNs is much more
difficult than for classical Multi-Layer Perceptron neural
networks (MLPs), two different global optimization
training algorithms are compared. In order to avoid the
problem of overfitting of neural networks to training data
the popular noise injection method is used. Based on 50
training runs, average objective function values from the
PUNNs are generally not as good as those from the MLPs.
However, if the best of the 50 runs are considered, the
PUNNs allow for slightly better objective function values
than MLPs. In general, noise injection makes a significant
improvement to DEGL trained MLPs, but it appears to be
much less beneficial for PUNNs.

Introduction

The simplest and most popular method of pollutant
transport modeling is the one-dimensional advection-
dispersion equation in the form of:

1C C CU AD

t x A x x
∂ ∂ ∂ ∂⎛ ⎞+ = ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (1)

where C is the averaged pollutant concentration within the
cross-section of area A, x is the longitudinal axis, t is the
time, U is the cross-sectionally averaged velocity and D is
the longitudinal dispersion coefficient. The most difficult
parameter to obtain, even in such a simple model, is the
longitudinal dispersion coefficient, which depends on the
river reach and the flow conditions.
Although extensively studied during recent decades, the
estimation of longitudinal dispersion coefficients in rivers
still poses a practical difficulty for both scientists and

engineers. To avoid the requirements of expensive and time
consuming tracer tests, a number of empirical formulae
have been proposed for predicting the longitudinal
dispersion coefficient in rivers based on a few
morphological and hydraulic characteristics, which are
considered as relatively easy to obtain. The most widely
used data-based methods applied in the field include
empirical equations in power law regression-like form
(Fischer, 1979), neural networks (Kashefipour et al. 2002)
or genetic programming (Azamathulla and Ghani, 2011).
The most widely used are power law regression-like
equations (Wallis and Manson, 2004), for example
proposed by Fischer (1979)

2 2

0.011
* *

D U W
HU U H

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2)

Liu (1977)

0.5 2

0.18
* *

D U W
HU U H

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3)

Seo and Cheong (1998)

1.428 0.62

5.915
* *

D U W
HU U H

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4)

and Deng et al (2001)

2 5 / 3

1.38

0.15
* 8 *

10.145
3520 *

t

t

D U W
HU k U H

U Wk
U H

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5)

which are given in dimensionless form. In the above
expressions U* is the shear velocity, W is the river width
and H is the river depth, averaged over the cross-section.
Since Kashefipour et al.’s (2002) paper, a number of
researchers have reported the possibility of estimating
longitudinal dispersion coefficients by means of artificial
neural networks (ANNs) with reasonable success

2nd IAHR Europe Congress 1

(Rowinski et al., 2005; Toprak and Cigizoglu, 2008; Noori
et al., 2011). In most cases only the well known Multi-
Layer Perceptron ANNs (MLP) were used (but there are
exceptions – see Piotrowski et al., 2006 and Toprak and
Cigizoglu, 2008). An obstacle in using other ANN types is
the number of available data, which is very limited in the
current subject. Unfortunately, most other ANN types
require more parameters to be optimized to achieve
comparable performance, and hence larger data samples are
required.
However, a type of ANN exists that requires fewer
optimized parameters compared to MLP models and which
shows much similarity with power law regression-like
equations, so frequently used in the literature. This method,
called the Product-Unit neural network (PUNN), although
proposed by Durbin and Rumelhart in 1989 and despite
showing so much structural similarities to widely applied
equations was somehow ignored by the hydrological and
hydraulic community. In the present paper we explore its
ability to predict longitudinal dispersion coefficients based
on a well studied database (Deng et al. 2001), which
comprises 81 tracer experiments performed in USA,
Moldova and Poland (see Godfrey and Frederick, 1970;
Nordin and Sabol, 1974; Sukhodolov et al., 1997; Deng et
al., 2002).

Data

The longitudinal dispersion coefficient is estimated with the
same independent variables as in the case of power law
regression-like equations (W,H,U,U*) and river sinuosity
(sin), as proposed in Rowinski et al (2005). To allow a fair
comparison with previously published results obtained by
means of MLP neural networks and Deng et al.’s (2001)
regression equation, in the present paper the same data,
which includes 81 experiments, with identical division into
training (50 cases) and testing (31 cases) data sets as in
Piotrowski et al. (2012) are used. For details on the data
division and the original data, consult Deng et al. (2002)
and Piotrowski et al. (2012).

Product-Unit Neural Networks

MLP neural networks (probably the most popular type)
have summation units in hidden and output layers. In
practice, three layers are required to obtain good predictive
performance (see Figure 1). Such an MLP may be defined
as follows

 0 0
1 1

J K
P

j j jk k
j k

y v v f w w x
= =

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ ∑ (6)

output layer

x1

x2 v1

xiwjk

hidden layer

x3

input layer

Multi-Layer Perceptron Neural Network

xK

1()
1 e af a −=
+

0 0
1 1

J K
P

j j jk k
j i

y v v f w w x
= =

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ ∑

w01

w02

v0

vJ

∑

∑

Figure 1: Scheme of multi-layer perceptron neural network.

Where yP is the output, J is the number of hidden units, K is
number of inputs x, w and v are ANN weights (parameters
which need to be optimized) and f(c) is a so-called
activation function, which filters the results of nodal
calculations before passing them to the next layer. Thus the
argument, c, is the weighted sum of inputs to a node.
Frequently and herein the logistic form of the activation
function is used (Haykin, 1999)

1()

1 e cf c −=
+

 (7)

Such an MLP neural network requires optimization of K*J
+ 2*J + 1 parameters, if we assume that there is only one
output from the network. Usually, MLP inputs and outputs
are normalized to [0,1] interval (see Zhang et al., 1998).
Durbin and Rumelhart (1989) proposed a Product-Unit
neural network, which in its simplest form (see also
Martinez-Estudillo et al., 2006) may be defined as

 0
1 1

jk
KJ

wp
j k

j k

y v v x
= =

= +∑ ∏ (8)

output layer

x1

x2 v1

hidden layer

x3

input layer

Priduct-Unit Neural Network

xK

0
1 1

jk
KJ

wp
j k

j k

y f v v x
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∏

v0

vJ

jkw
jx

∏

∏

Figure 2: Scheme of product-unit neural network.

2nd IAHR Europe Congress 2

Such an ANN requires optimization of only of K*J + J + 1
parameters. Moreover, according to Leerink et al. (1995),
the information capacity of a PUNN increases to 3K
(compared to 2K for a MLP), hence, at least theoretically,
fewer hidden units are required to approximate a particular
function with the same precision as by means of a MLP. Of
course, input and output normalization range must exclude
0 (because of the product formulation). According to
Martinez–Estudillo (2006), the [0.1,0.9] range is a
reasonable choice. This is especially important as negative
inputs, if present, would lead to complex numbers if raised
to non-integer powers.
According to Janson and Frenzel (1993), PUNNs are
difficult to train. This is a severe problem as the PUNN
weights are unbounded, as are MLP ones. However, if the
parameter space is reduced, for example by requiring that
w,v ∈ [-2,2], which we suggest in the present paper as a
good choice at least for longitudinal dispersion estimation,
the difficulty with PUNN training becomes mitigated, and
the risk of overfitting is reduced (see Haykin (1999) and
Liu et al. (2008) for details on overfitting in ANN training).
Following Kashefipour et al. (2002) and Piotrowski et al.
(2012) we used

, 1

1(,) min (,) ln
N

P
n nw v n

J y D
N =

= −∑w v w v (9)

as the objective function for ANN training. Using
logarithms of D avoids the situation where the model would
fit to the large longitudinal dispersion coefficients only.
In Piotrowski et al. (2012) a number of Evolutionary
Computation methods were used for MLP training with
noise injection as a method to avoid ANN overfitting. Due
to the non-differentiable nature of the above objective
function two training algorithms of different nature, that do
not require gradient computation are used for PUNN
training here, namely: Differential Evolution-based (Storn
and Price, 1995) DEGL algorithm (Das et al., 2009), which
ranked among the best methods in ANN training in
Piotrowski et al (2012), and the recently developed
simplex-based (Nelder and Mead, 1965) SP-UCI algorithm
(Chu et al., 2011).
ANNs require some method to avoid overfitting (Haykin,
1999). The most popular one is the so-called early stopping
(Prechlet, 1998), which requires dividing the available data
into 3 sets – training, validation and testing (the only
independent one). However, this poses a problem when
only a small number of data are available. Another well
known option is using noise injection. In this case dividing
the data into only two sets is required.
Noise injection to data during neural network training was
experimentally found to improve their generalization
capability (Holmstrom and Koistinnen, 1992), especially in

the case of limited data (Hua et al. 2006). The similarities
between noise injection and other methods designed to
improve the generalization properties of neural networks,
including weight decay, have been studied (Reed et al.
1995). Although different variants of noise injection may
be found in the literature, in the present paper we use the
same approach as in Piotrowski et al. (2012), which proved
to have a good performance for longitudinal dispersion
coefficient estimation by means of MLP neural networks.
In this, an m-th artificial case ([1,])m M∈ is generated

for each i-th experiment ([1,81])i∈ for 5 input and one
output variables. Following Piotrowski et al. (2012) we set
M to 100. For four of the input variables xk, i.e. W, H, U,
sin, and for the output an additional case is generated by
adding Gaussian noise ε = (0,)N σ , specific to the
particular variable, and to the measured value, e.g.

m m
ki ki ki

m m
i i Di

x x

D D

ε

ε

= +

= +
 (10)

The uncertainty of D, W, H, U and sin depend mostly on
the quality of on-site measurements, performed by different
researchers in various conditions. Hence, the noise variance
of these variables is defined as 0.1ki kixσ = . The bulk

shear velocity U* is treated a little differently. Under steady
and uniform flow conditions it may be approximated by

 *U gHs= (11)

where s is the bed slope and g is acceleration due to Earth’s
gravity. We assume that Gaussian noise (0,)siN σ , with

variance 0.1si isσ = is added to the bed slope
m m
i i is s ε= + and then U* is computed according to:

 *m m m
i i iU gH s= (12)

Hence the total number of data include 101*50 training and
101*31 testing cases. Following Piotrowski et al. (2012),
the case with only noise-free data was also considered.

Results and Discussion

In Piotrowski et al (2012) MLPs with noise injection were
successfully used for dispersion estimation in rivers. A
number of versions were studied – with 2 and 3 hidden
nodes, with box constraints of [-1000,1000] and [-10,10],
trained without noise injection and with noise injection, and
using a number of Evolutionary Computation algorithms.
Each MLP version was optimized 50 times. Due to the
small number of testing data (31 experiments) the results
were compared on noisy data (to be specific, 3100 noisy
and 31 original experiments). It was shown that the MLP
with 3 hidden nodes, box constraints set to [-1000, 1000]

2nd IAHR Europe Congress 3

and noise injection during training obtained the best results
according to both the average and the single best objective
function value obtained from the 50 optimizations.
In the present study, a PUNN with 3 hidden nodes was used
for the same task. Two training algorithms, DEGL and SP-
UCI, were used: each PUNN was optimized 50 times.
Some objective function values evaluated using (9) from
these two training methods, with and without noise
injection, and the earlier MLP are presented in Table 1.
Similarly to the previous study, the results are compared to
noisy data.
Table 1 shows that the 50-optimization averaged objective
function results obtained from the DEGL trained PUNN
were much poorer than those obtained from the MLP. This
is true for both the training data set and the testing data set.
Moreover, in the case of noise free training the PUNN
averaged objective function values show very large values,
which are due to an occasional very poor prediction. More
stable results were obtained when noise was injected during
training, however they were still worse than those obtained
by the MLP (again for both data sets).
However, a different view is possible if one concentrates on
the single best objective function value obtained from the
50 optimizations using the DEGL algorithm (see Table 2).
Here the lowest objective function from the testing data set
was found for the PUNN trained without noise injection
(value of 0.54) (although the statistic is derived from noisy
data, as defined earlier). This suggests that the PUNN is
difficult to train and in some optimization runs DEGL is
unable to achieve a reasonable performance, leading to a
large 50-optimization averaged value of objective function.
However, some successful training does occur and in such
cases the derived values of longitudinal dispersion
coefficients are of very good quality, being slightly better
than those from the MLP model.

Table 1: Averaged objective function values obtained for
neural networks with 3-hidden nodes: NF – noise free; NI –
noise injection.

Algorithm - data set - noise MLP PUNN
DEGL - training - NF 0.43 997.0

SP-UCI - training - NF - 0.56
DEGL - testing - NF 0.65 77.6

SP-UCI - testing - NF - 0.89
DEGL - training - NI 0.40 0.57

SP-UCI - training - NI - 0.65
DEGL - testing - NI 0.62 0.89

SP-UCI - testing - NI - 0.87
SP-UCI trained PUNNs didn’t lead to any very poor 50-
optimisation averaged results (see Table 1), however it also
didn’t beat the corresponding objective function values
obtained from the MLP. Note that the single best objective
function values obtained by SP-UCI (see Table 2) were

always higher than the MLP values. Hence it may be
concluded that SP-UCI trained PUNNs give more stable
results than DEGL trained PUNNs, but the former are
unable to reach occasionally as good solution as are the
latter.
Table 2: Best objective function values obtained for neural
networks with 3-hidden nodes.

Algorithm - data set - noise MLP PUNN
DEGL - training - NF 0.35 0.39

SP-UCI - training - NF - 0.40
DEGL - testing - NF 0.58 0.54

SP-UCI - testing - NF - 0.65
DEGL - training - NI 0.36 0.50

SP-UCI - training - NI - 0.39
DEGL - testing - NI 0.55 0.76

SP-UCI - testing - NI - 0.56

The graphical interpretation of calculated longitudinal
dispersion coefficients from some of the cases shown in
Table 2 are depicted in Figure 3 and 4. Figure 3 presents
results for the training data set. The plot shows the
measured data, results generated by means of the noise-
injected MLP, with optimal weighting coefficients, results
generated by means of the noise-injected PUNN, with
optimal weighting coefficients and results generated by
means of the noise-injected Deng et al (2001) formula.
Note that all points are distributed along the 50 horizontal
lines corresponding to 50 river reaches and that the plots
are in full agreement with Table 2. The green clouds are
more compact than the black ones.

Figure 3: Comparison of longitudinal dispersion
coefficients: measured (red squares), MLP (green dots), SP-
UCI trained PUNN with noise injection (black squares) and
Deng et al (2001) formula (yellow dots). Plot shows 100-
times noise-injected and original data for 50 river reaches
(training data).
Figure 4 presents a similar comparison of results for the
testing data set. In this case all points are more or less
scattered along the 31 horizontal lines corresponding to 31

2nd IAHR Europe Congress 4

river reaches. Again plots are in full agreement with Table
2 and the points forming the black clouds are more
scattered then the green ones. The Deng et al (2001)
formula in many cases produces results outside its range of
applicability.

Figure 4: Comparison of longitudinal dispersion
coefficients: measured (red squares), MLP (green dots), SP-
UCI trained PUNN with noise injection (black squares) and
Deng et al (2001) formula (yellow dots). Plot shows 100-
times noise-injected and original data for 31 river reaches
(testing data).

Conclusions

Comparing objective function values suggests that on
average PUNNs do not perform better than MLPs for
longitudinal dispersion coefficient estimation. In general,
noise injection made a significant improvement to DEGL
trained MLPs, but it appears to be less beneficial for PUNN
training. This is probably the effect of the well known
difficulty of training PUNNs. However, the single best
result was obtained by means of a PUNN trained by DEGL,
which shows the potential of this kind of neural network.
The stochastic nature of MLPs and PUNNs means that any
version of either of them has the potential for making good
dispersion predictions.
References
Azamathulla, H. M. & Ghani, A. A. (2011) Genetic Programming for
predicting longitudinal dispersion coefficients in streams. Water Resources
Management 25(6), pp. 1537-1544.
Chu, W., Gao, X. & Sorooshian, S. (2011). A new evolutionary search
strategy for global optimization of high-dimensional problems.
Information Sciences 181, pp. 4909-4927.
Das, S., Abraham, A., Chakraboty, U. K. & Konar, A. (2009) Differential
Evolution Using a Neighborhood-based Mutation Operator. IEEE
Transactions on Evolutionary Computation 13(3), pp.526-553.
Deng, Z. Q., Singh, V. P. & Bengtsson, L. (2001) Longitudinal dispersion
coefficient in straight rivers. J. Hydrauic. Engng. ASCE 127(11), 919-927.
Deng, Z. Q., Bengtsson, L. & Singh, V. P. (2002) Longitudinal dispersion
coefficient in single-channel streams. J. Hydraulic Engng. ASCE 128(10),
pp. 901–916.
Durbin, R. & Rumelhart, D. E. (1989) Product Units: a computationally
powerful and biologically plausible extension to back propagation
networks. Neural Computation 1, pp. 133-142.
Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., and Brooks, N. H.
(1979) Mixing in inland and coastal waters, Academic. New York,
104–138.

Godfrey, R. G. & Frederick, B. J. (1970) Stream dispersion at selected
sites. U.S.Geological Survey Professional Paper, 433–K.
Haykin, S. (1999). Neural Networks, a Comprehensive Foundation.
Macmillan College Publishing Co., New York, USA.
Holmstrom, L. & Koistinen, P. (1992) Using additive noise in back-
propagation training. IEEE Transactions on Neural Networks 3, pp. 24-38.
Hua, J.P., Lowey, J., Xiong, Z. & Dougherty, E. R. (2006) Noise-injected
neural networks show promise for use on small-sample expression data.
BMS Bioinformatics 7, art. no. 274.
Janson, D. J. & Frenzel, J. F. (1993) Training product unit neural networks
with genetic algorithms. IEEE Expert-Intelligent Systems & Their
Applications 8(5), pp. 26-33.
Kashefipour, S. M., Falconer, R. A. & Lin, B. (2002) Modeling
longitudinal dispersion in natural channel flows using ANNs. In: River
Flow 2002 (ed. By D. Bousmar & Y. Zech), 111–116. A.A.
Balkema/Swets & Zeitlinger, Lisse, The Netherlands.
Leerink, L. R., Giles, C. L., Horne, B. G. & Jabri, M. A. (1995) Learning
with product units. In : Advances in Neural Information Processing
Systems 7, Cambridge, MA : MIT Press, pp. 537-544.
Liu H. (1977) Predicting dispersion coefficient of streams. Journal of the
Environmental Engineering Division, American Society of Civil
Engineers, 103, EE1, pp. 59–69.
Liu, Y., Starzyk, J. A. & Zhen, Z. (2008) Optimized approximation
algorithm in neural networks without overfitting. IEEE Transactions on
Neural Networks 19(6), pp. 983-995.
Martinez-Estudillo, A., Martinez-Estudillo, F., Hervias-Martinez, C.,
Garcia-Pedrajas, N. (2006) Evolutionary product unit based neural
networks for regression. Neural Networks 19, pp. 477-486.
Nelder, J. A. & Mead, R. (1965) A simplex method for function
minimization. Computer Journal 7, pp. 303-313.
Noori, R., Karbassi, A. R., Mehdizadeh, H., Vesali-Naseh, M.& Sabahi,
M. S. (2011) A Framework Development for Predicting the Longitudinal
Dispersion Coefficient in Natural Streams Using an Artificial Neural
Network. Environmental Progress & Sustainable Energy 30(3), pp. 439-
449.
Nordin, C. F. & Sabol, G. V. (1974) Empirical data on longitudinal
dispersion. US Geol. Survey Water Resour. Investigations 20–74.
Piotrowski, A., Rowinski, P.M. & Napiorkowski, J.J. (2006). Assessment
of longitudinal dispersion coefficient by means of different neural
networks. In: 7th Int. Conf. on Hydroinformatics, HIC 2006, Nice, France,
(ed by P. Gourbesville, J. Cunge, V. Guinot & S. Y. Liong), Research
Publishing.
Piotrowski, A. P., Rowinski, P. M. & Napiorkowski, J. J. (2012)
Comparison of evolutionary computation techniques for noise injected
neural network training to estimate longitudinal dispersion coefficients in
rivers. Expert Systems with Application 39, pp. 1354-1361.
Prechlet, L. (1998) Automatic early stopping using cross-validation:
quantifying the criteria. Neural Networks 11(4), pp. 761-777.
Reed, R., Marks, R. J. & Oh, S. (1995) Similarities of Error
Regularization, Sigmoid Gain Scaling, Target Smoothing and Training
with Jitter. IEEE Transactions on Neural Networks 6(3), pp. 529-538.
Rowinski, P. M., Piotrowski, A. & Napiorkowski, J. J. (2005) Are
artificial neural network techniques relevant for the estimation of
longitudinal dispersion coefficient in rivers?. Hydrological Sciences
Journal 50(1), pp. 175–187.
Seo I. W. & Cheong T. S. (1998) Predicting longitudinal dispersion
coefficient in natural streams. Journal of Hydraulic Engineering,
American Society of Civil Engineers, 124, No. 1, pp. 25–32.
Storn, R. & Price, K. V. (1995) Differential Evolution – a simple and
efficient adaptive scheme for global optimization over continuous spaces.
Tech. Report TR-95-012, International Computer Sciences Institute,
Berkeley, California, USA.
Sukhodolov, A. N., Nikora, V. I., Rowiński, P. M. & Czernuszenko, W.
(1997) A case study of longitudinal dispersion in small lowland rivers.
Water Environment Research 69(7), pp. 1246–1253.
Toprak, Z. F. & Cigizoglu, H. K. (2008) Predicting longitudinal dispersion
coefficient in natural streams by artificial intelligence methods.
Hydrological Processes 22, pp. 4106-4129.
Wallis, S. G. & Manson, J. R. (2004) Methods for predicting dispersion
coefficients in rivers. Proceedings of the Institution of Civil Engineers,
Water Management 157, pp. 131-141.
Zhang G., Patuwo, B. E., Hu, M. Y. (1998) Forecasting with artificial
neural networks: the state of the art. International Journal of Forecasting
14, pp. 35-62.

2nd IAHR Europe Congress 5

