
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

1 INTRODUCTION 

Models describing the geophysical processes 
contributing to the hydrological cycle were 
developed in non-linear form in the nineteenth 
century. From their physical basis such models 
can simulate the complete runoff regime, 
providing such outputs as: river discharge, 
groundwater head and evaporation losses. 
Furthermore, transfer of mass, momentum and 
energy can be calculated directly from 
governing partial differential equations which 
are solved using numerical methods, for 
example the St. Venant equations for surface 
flow and river flow, the Richards equation for 
flow in the unsaturated zone and the 
Boussinesq equation for ground water flow.  
An accurate application to rivers of this 
hydraulic approach requires a detailed 
topographical survey and the determination of 
roughness parameters. In order to avoid these 

difficulties, alternative non-linear approaches 
were developed, namely conceptual and black 
box models. Conceptual hydrological models 
are designed to approximate within their 
structure the general internal sub-processes and 
physical mechanisms that govern the 
hydrological cycle. Such models usually 
incorporate simplified forms of physical laws. 
Until recently, for practical reasons most 
conceptual models were lumped. In the second 
approach, known as black-box analysis, an 
attempt is made to extract, from the past 
records of input-output events of the system 
under examination, enough knowledge of the 
dynamics of the system, to provide a basis for 
predicting its output from other specified inputs 
(Dooge and O’Kane, 2003).  

In this paper, alternative approaches to 
describing the transport of a conservative 
soluble pollutant along a channel are compared, 
namely a conceptual model of a cascade of 
continuously stirred tank reactors, a black-box 
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nonlinear Volterra series model in the form of a 
sum of convolution integrals, and a Fischer’s 
routing procedure with dispersion coefficients 
determined by means of a Multi-Layer 
Perceptron Artificial Neural Network or via 
linear regression.  

 

2 MURRAY BURN EXPERIMENTS 
 

Between 1999 and 2001, 26 tracer experiments 
were performed on the Murray Burn, which is a 
small river that flows through the Heriot-Watt 
University Campus at Riccarton in Edinburgh. 
These experiments were undertaken at various 
flow rates in a 540m long reach. Each 
experiment consisted of the release of a tracer 
(Rhodamine WT) followed by the collection of 
tracer concentrations at up to 4 cross-sections. 
The tracer was injected to the river at the same 
place each time. In the first few experiments 
concentration measurements were collected 
only at the first two cross-sections, but in the 
later experiments three or four of the cross-
sections were used. In a few cases, equipment 
or human failure led to data not being 
successfully collected. Further information on 
the experiments is available in Burke (2002), 
Wallis and Manson (2005) or Wallis et al 
(2007). 

In the present paper models are used to 
predict the tracer concentration versus time 
profiles at the second cross-section using 
concentration measurements at the first cross-
section. The distance between these two cross-
sections is about 137 meters. The data come 
from 18 experiments, which were considered to 
contain reliable data.  

 

3 LINEAR DISPERSION MODEL  
 

A simple approach to modelling pollutant 
transport is a cascade of continuously stirred 
tank reactors as depicted in Fig. 1.  

This completely mixed system can be used 
to model pollutant concentration in sub-reaches 
of a natural watercourse. The mass balance 
equations for a conservative pollutant can be 
expressed in terms of concentrations (C), flows 
(Q) and volumes (V) as: 

 
 
Fig. 1. Cascade of continuously stirred tank reactors 
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Let us denote the inverse of the hydraulic 
residence time as follows  

/a Q V=  (2) 

It may be readily shown that for an actual river 
reach a depends linearly on mean water 
velocity and nonlinearly on river flow. To 
solve the set of Equations (1) the Laplace 
transformation is applied (s is a complex 
variable). 
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One can see that for steady state flow 
conditions the input-output relation for the 
cascade of continuously stirred tank reactors in 
Laplace transform domain is given by 
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The term  
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is simply a transfer function and its inverse 
Laplace transform is given by 
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−
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Hence taking the inverse Laplace transform of 
Equation (4) gives the Linear Dispersion 
Model (LDM) 

0

( ) ( ) ( )
t

out inC t h C t dτ τ τ= −∫  (7) 

Note that the LDM approach (determined by 
the kernel ( )h t ) has two parameters (n, a) that 
can be estimated based on input-output 
concentration data pairs. 

 

4 VOLTERRA SERIES – NONLINEAR 
DISPERSION MODEL  

 
The description of the spreading of a pollutant 
in a river reach for steady flow conditions by 
means of the Volterra series is a generalization 
of the concept of the transfer function 
described in the previous section, which is of 
great importance in the analysis and design of 
linear systems. The Volterra Series Nonlinear 
Dispersion Model (VDM) represents an 
explicit input-output relation for nonlinear 
systems and consists of an infinite series 
composed in the form of convolution integrals. 
The first term is the convolution integral of the 
first order kerne1 and the input function. The n-
th order term is an n-fold convolution integral 
containing the n-th order kernel multiplied by 
an n-th order product of the input function: 
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where ( )outC t  is the  concentration of pollutant 
at the downstream location, ( )inC t  is the 
concentration of pollutant at the upstream 
location, 1 1( )h τ  is the first order kernel which 
reflects the linear properties of the system, 

2 1 2( , )h τ τ  is the second order kernel which 
reflects the quadratic properties, and so on.  

This type of series was applied for the first 
time by Volterra and Frechet in 1910 on 
functional equations (Volterra, 1959). It was 
used by Wiener (1958) in cybernetics. In 
hydrology, to model rainfall-runoff or flood 
routing, it was applied by Amorocho and 
Brandstetter (1971), Napiórkowski and O’Kane 
(1984), Napiórkowski and Kundzewicz (1986). 

The identification of the kernels of the 
Volterra series was discussed in detail by 
Napiórkowski and Strupczewski (1984). It was 
shown that in general the identification of the 
kernels is a typical example of an ill-posed 
problem in the sense of Tichonov (1963), so 
very good fitting of the output from the model 
to the observed data may be completely 
misleading, as far as identification of the 
system is concerned (see example in 
Napiórkowski and Strupczewski, 1984).  

The Volterra series is suitable for 
representing conservative systems mainly due 
to necessary and sufficient conditions for mass 
conservation, which were introduced by Boneh 
(1972) and are given for symmetric kernels by 
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The condition (9) means that the nonlinear 
component affects only the distribution of the 
predicted pollution ordinates and the total value 
of it is zero. 

To overcome the problem of ill-posedness 
of identification of the kernels, Napiórkowski 
and Strupczewski (1979, 1981) reduced the 
class of functions in which the solution is 
sought. They analytically derived the first two 
kernels of the Volterra series for the model that 
is a nonlinear analogy of Equation (3). For that 
model the structure of the kernels was shown to 
be  

1 1 1( ) ( )nh t aH t=  (11) 
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The two Equations (11) and (12) are linked 
through the fact that two parameters, a and n, 



appear in the equations of both kernels. One 
can see that 1 1( )h t  in Equation (11) is a transfer 
function for a cascade of linear continuously 
stirred tank reactors in steady flow conditions. 
The second-order kernel described by Equation 
(12) meets the conditions specified for 
conservative systems. It is worth mentioning 
that the shape of the second-order kernel is 
determined by parameter a, and that parameter 
b can be treated as a measure of nonlinearity.  

The VDM determined by two kernels 
1 1( )h t  and 2 1 2( , )h t t  has three parameters 

(n, a, b) that can be estimated from input-
output concentration data pairs.  

The optimization problem:  
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T
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o
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where [1, ]i I∈  and I is the number of input-
output pairs, ( )i

outC t  is output from the model, 
( )i

obsC t  is the observed concentration at the 
downstream cross-section and T is the 
measurement duration, can be reduced to 
optimization with respect to one variable only. 
Let us denote by ( )outC tδ  the linear response 
of the VDM, and by 2 ( )outC tδ  the quadratic 
response for b=1. Then due to the linearity of 
the second term with respect to b the objective 
function takes the form:  
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Note that the functions ( )outC tδ  and 2 ( )outC tδ  
depend on parameters n and a but do not 
depend on the parameter b. Hence b can be 
determined from the necessary condition for an 
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The following steps are therefore required in 
the overall optimization of the VDM: 
- assuming b=0 compute the initial values of 

the parameters n* and a* as in linear 
analysis, e.g. by moment matching; 

- assuming an integral value of the 
parameter n (close to n*) compute the 
functions ( )i

outC tδ  and 2 ( )i
outC tδ ; 

- compute directly b from Eq. (16); 
- maintaining the same value of n and 

varying the parameter a determine the 

optimal set of values of (a, b) for assumed 
value of n; and  

- assuming a range of values of n repeat the 
procedure for each n to determine the 
optimal set of three parameters (n, a, b). 

Note that for b=0 the two-term model reduces 
to the LDM, described by Equation (7), so the 
optimization is even simpler for this case. 
 

5 FISCHER'S ROUTING PROCEDURE 
 

The third technique used to predict the tracer 
concentration versus time profiles is the so-
called frozen cloud method, or Fisher’s 
Routing Procedure. It allows estimation of a 
concentration-versus-distance profile from a 
concentration-versus-time profile, routes it 
downstream from one cross-section to another 
and transforms it back to a concentration-
versus-time profile at the new site. Here we 
present just the outline of the method proposed 
by Fischer, the details may be found, for 
example, in Rutherford (1994). If it is possible 
to assume, that  

i i ix U t=  (17) 

where xi is the i-th cross section location, Ui is 
the averaged cross-sectional velocity and ti 
represents the time at which the spatial 
variance is evaluated for cross section xi, then 
the relation 
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is valid. Using centroids ( it ) instead of times ti 
one obtains the following frozen cloud formula 
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with the relation between two centroids   
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where τ is a dummy integration variable. 
The method may be used to evaluate the 

concentration-versus-time profile at cross-
section i+1, assuming that the centroid 1it +  and 
longitudinal dispersion coefficient (DL) are 



known. In the present paper DL is evaluated by 
two different methods: a simple linear 
regression (RPL) and a Multi-Layer Perceptron 
Artificial Neural Network (RPN). 

Multi-Layer Perceptron Artificial Neural 
Networks have been successfully applied for 
the evaluation of dispersion coefficients 
(Kashefipour et al., 2002; Rowinski et al., 
2005). In the current work the neural network 
model described in Wallis et al. (2007) is used. 
This model was optimized using 
morphormetric and hydraulic data – namely 
reach mean values of channel width, channel 
depth, flow velocity, shear velocity and river 
sinuosity index – collected for many different 
small rivers, excluding the Murray Burn. A 
database composed of measured dispersion 
coefficients and various bulk flow hydraulic 
parameters from 81 river reaches published in 
Deng et al. (2001) and Sukhodolov et al. 
(1997) was available. All details of the neural 
network structure and optimization may be 
found in Wallis et al. (2007). Since the Murray 
Burn tracer measurements had not been used 
during the training of the network, this use of 
the network was a truly independent test of its 
ability to predict dispersion coefficients.  
 

6. COMPARISON OF THE MODELS 
 

Four models were applied to transform the 
breakthrough curves from cross-section 1 to 
cross-section 2 – LDM, VDM, RPN and RPL. 
The data obtained during 18 tracer 
experiments, performed under different flow 
conditions, were divided randomly into training 
(10 experiments) and validation (8 
experiments) sets.  

In case of the LDM and VDM approach 
for each experiment separately, parameter a, or 
parameters a and b, accordingly, were 
optimized to the data collected. Note, that the 
values of parameter a of the LDM and VDM 
models differ. Then using only the 10 training 
experiments (see Fig. 1 for LDM and Fig. 2 for 
VDM case) the linear dependence of parameter 
a on water velocity (U) was found. Clearly, the 
result is in accordance with our expectation.  

From these relations the values of 
parameters a of the LDM and VDM models for 
all experiments were computed. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Linear dependence of LDM parameter a on water 
velocity [U]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Linear dependence of VDM parameter a on water 
velocity [U]. 
 
Table 1.  Optimized and evaluated parameter a of LDM 
for each experiment; t – training set; v – validation set. 

Exp. Data n a optimal a evaluated Flow (l/s)
2 v 18 0.0279 0.0278 72.1 
4 t 18 0.0222 0.0218 45.5 
5 v 18 0.0226 0.0218 47.5 
6 t 18 0.0408 0.0408 129.8 
7 t 18 0.0418 0.0435 142.3 
8 v 18 0.0225 0.0229 45.8 
9 t 18 0.0205 0.0213 38.2 
10 t 18 0.0254 0.0255 59.5 
15 t 18 0.0254 0.0259 55.2 
16 v 18 0.0122 0.0107 16.4 
17 t 18 0.0123 0.0108 13.8 
18 v 18 0.0183 0.0174 35.5 
20 t 18 0.0664 0.0652 261.6 
21 v 18 0.0472 0.0490 190.0 
22 t 18 0.0617 0.0616 273.1 
23 t 18 0.0253 0.0255 61.4 
24 v 18 0.0827 0.0831 524.1 
26 v 18 0.1263 0.1337 1041.2 

 
In Tab. 1 flow values noted during the 

experiments are presented. Tab. 1 and 2 clearly 
show that computed a parameters are very 
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close to the optimized ones, not only for 
training, but also for validation data.  

It was more difficult to find any relation 
between b parameter – governing the nonlinear 
behaviour of the VDM approach – and river 
flow or water velocity. The fluctuations of 
optimal b values seem to be random from 
experiment to experiment, however they are 
not very big (see Tab. 2b). Because of that, 
using the mean value of b parameter optimized 
for 10 training experiments, was found to be a 
reliable estimate of this parameter’s value.  
 

Table 2a.  Optimized and evaluated parameter a of 
VDM, with optimized n, for each experiment; t – 
training set; v – validation set. 

Exp.  Data n a optimal a evaluated 
2 v 18 0.0256 0.0259 
4 t 18 0.0203 0.0200 
5 v 18 0.0209 0.0200 
6 t 18 0.0380 0.0383 
7 t 18 0.0386 0.0409 
8 v 18 0.0206 0.0211 
9 t 18 0.0190 0.0195 
10 t 18 0.0230 0.0236 
15 t 18 0.0230 0.0240 
16 v 18 0.0113 0.0093 
17 t 18 0.0120 0.0094 
18 v 18 0.0172 0.0158 
20 t 18 0.0640 0.0620 
21 v 18 0.0409 0.0463 
22 t 18 0.0585 0.0584 
23 t 18 0.0233 0.0236 
24 v 18 0.0789 0.0792 
26 v 18 0.1160 0.1280 
 

Table 2b. Optimized and evaluated parameter b of VDM 
for each experiment; t – training set; v – validation set. 

Exp. Data (b*106) 
optimal 

(b*106) 
evaluated 

2 v 0.6773 0.4905 
4 t 0.5850 0.4905 
5 v 0.5117 0.4905 
6 t 0.8102 0.4905 
7 t 0.4471 0.4905 
8 v 0.5838 0.4905 
9 t 0.4706 0.4905 
10 t 0.3395 0.4905 
15 t 0.7765 0.4905 
16 v 0.3180 0.4905 
17 t 0.1038 0.4905 
18 v 0.1870 0.4905 
20 t 0.3558 0.4905 
21 v 0.9340 0.4905 
22 t 0.4304 0.4905 
23 t 0.5860 0.4905 
24 v 0.2003 0.4905 
26 v 0.1729 0.4905 

 
 

In the case of the RPL, DL was estimated 
from a linear regression to the flow based on 
the training data set only. This was a similar 
technique to that used for the LDM model in 
which the a parameter was obtained from a 
linear regression to velocity, also based only on 
the training data set.  

 
Table 3.  Root mean square error (RMSE) and maximum 
error (MAX) evaluated for LDM, VDM, RPN and RPL. 
In case of the last method, no data obtained from Murray 
Burn was used during optimization (t), hence all 
experiments compose validation set (v).  

Exp. Set Measure LDM VDM RPN RPL 
RMSE 0,036 0,025 0,062 0,063 2 v 
MAX 0,118 0,103 0,176 0,182 
RMSE 0,048 0,036 0,080 0,081 4 t 
MAX 0,146 0,127 0,197 0,198 
RMSE 0,050 0,051 0,083 0,084 5 v 
MAX 0,141 0,185 0,241 0,244 
RMSE 0,019 0,019 0,043 0,045 6 t 
MAX 0,071 0,092 0,170 0,180 
RMSE 0,071 0,074 0,085 0,088 7 t 
MAX 0,446 0,398 0,338 0,353 
RMSE 0,048 0,028 0,063 0,063 8 v 
MAX 0,151 0,076 0,196 0,196 
RMSE 0,061 0,043 0,063 0,061 9 t 
MAX 0,213 0,115 0,182 0,167 
RMSE 0,072 0,120 0,137 0,137 10 t 
MAX 0,266 0,390 0,411 0,411 
RMSE 0,041 0,027 0,056 0,055 15 t 
MAX 0,035 0,031 0,169 0,170 
RMSE 0,180 0,209 0,125 0,125 16 v 
MAX 0,458 0,560 0,330 0,307 
RMSE 0,170 0,223 0,116 0,115 17 t 
MAX 0,536 0,727 0,348 0,345 
RMSE 0,125 0,186 0,195 0,194 18 v 
MAX 0,324 0,549 0,466 0,454 
RMSE 0,061 0,057 0,127 0,119 20 t 
MAX 0,214 0,220 0,389 0,397 
RMSE 0,136 0,130 0,154 0,161 21 v 
MAX 0,465 0,457 0,467 0,439 
RMSE 0,044 0,036 0,121 0,116 22 t 
MAX 0,148 0,114 0,342 0,334 
RMSE 0,033 0,021 0,053 0,056 23 t 
MAX 0,102 0,061 0,161 0,162 
RMSE 0,085 0,165 0,194 0,185 24 v 
MAX 0,259 0,466 0,664 0,577 
RMSE 0,408 1,161 0,403 0,382 26 v 
MAX 1,499 3,020 1,616 1,247 

 
Results for four representative experiments 

– to allow visual comparison – are presented in 
Fig. 3-6. One of them was numbered among 
the training set (experiment 23, Fig. 5) and 
shows an almost perfect fit, especially by 



means of the VDM approach. The other three 
were selected from the more important 
validation set. These include the very good 
prediction for experiment 8 (Fig. 3), a case for 
which all the methods used have “truncated” 
the peak (experiment 21, Fig. 4) and one of the 
most difficult cases – with much higher flow 
conditions than noted during other experiments 
– experiment 24 (Fig. 6). Note, that the mean 
value of b parameter turned out to be not 
appropriate for much bigger flow conditions 
(see Tab. 2b), which results in a poorer 
performance of the VDM model for experiment 
24, compared with the other methods. 

Two measures were used to compare the 
results – the root mean square error between 
the predicted and measured concentration 
values (RMSE) and the maximum difference 
between measured and computed 
concentrations for each experiment (MAX). It 
must be mentioned, that the maximum 
difference was not always noted at the peak – 
see for example, RPN method in case of 
experiment 21 (Fig. 4). Tab. 3 presents the 
RMSE and MAX measures for all experiments. 
The grey highlight indicates the best model for 
a particular experiment, according to RMSE 
and MAX separately.  

It can be seen that in 10 out of 18 
experiments, the VDM model turns out to be 
the best one according to RMSE, however only 
3 of them were included in the validation set. 
The RPL or RPN models are the best for 3 
experiments only – 2 of them were contained in 
the validation set, including the case with the 
highest flow recorded (experiment 26). For 
both experiments with higher flows (24 and 26) 
choosing the mean value of b parameter cannot 
be recommended. This is clear from Tab. 2b, 
which shows that optimal b value is much 
smaller.  

Although the RPN model is rarely among 
the best methods, its ability to still make good 
forecasts should be highlighted, as this method 
does not use any of the tracer concentration 
measurements from the Murray Burn to 
evaluate the rate of dispersion (the model was 
optimized on data sets collected from different 
rivers, see Wallis et al., 2007). 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Prediction of concentration versus time profile for 
cross-section 2 by means of LDM, VDM, RPL and RPN 
approaches. Experiment 8, validation data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Prediction of concentration versus time profile for 
cross-section 2 by means of LDM, VDM, RPL and RPN 
approaches. Experiment 21, validation data set. 

 
 
 

 

 

 

 

 

 

 

 

 
Fig. 5 Prediction of concentration versus time profile for 
cross-section 2 by means of LDM, VDM, RPL and RPN 
approaches. Experiment 23, training data set (with 
exception of RPN approach – see paper text). 
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Fig. 6 Prediction of concentration versus time profile for 
cross-section 2 by means of LDM, VDM, RPL and RPN 
approaches. Experiment 24, validation data set. 

 
Comparing MAX values, the difference in 

the performance between the LDM and VDM 
models is negligible, however both are better 
than the RPL or RPN approaches. Hence both 
error measures used in the paper show similar 
performance for the  approaches used. In 
general, including the mean value of nonlinear 
b parameter improves the results obtained from 
the LDM model, with the exception of very 
different hydrological conditions to those 
included in the training set.  

7. CONCLUSIONS 
 
In the present paper the nonlinear Volterra 
series based dispersion model was introduced. 
Its ability to transform breakthrough curves of 
solute concentration from one cross-section to 
another has been verified, and results have 
been compared with predictions made by a 
linear cascade model and by Fischer’s routing 
procedure using two different methods for 
evaluating the longitudinal dispersion 
coefficient. Concentration-time data sets 
obtained during several tracer tests performed 
in the Murray Burn under different 
hydrological conditions were used for 
evaluating model parameters, finding their 
dependence on water velocity and for testing 
the proposed approaches. The results obtained 
indicate that generally the nonlinear Volterra 
model gives better results than those obtained 
by the routing procedure and that it gives 
marginally better results than the cascade 
model.   
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