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ABSTRACT 
The two-layer hierarchical technique with three different prediction methods was 
applied to a part of the Wupper Reservoir System. The reservoir system consists 
of two reservoirs in series with additional inflow to the lower reservoir. The tasks 
of these reservoirs are flood control, recreation, hydropower and low flow 
augmentation with the aim of water quality improvement. It is shown that the 
introduced optimisation concept improves considerably the system performance in 
comparison with the Standard Operation Rule. 
 
1.   INTRODUCTORY COMMENTS 
A method for determining the yield of a multireservoir water supply system has 
been applied to a part of the Wupper Reservoir System in Germany. The major 
objectives of this particular system are flood control, recreation, hydropower and 
low flow augmentation. The proposed technique may be reduced to the following 
associated parts: the optimisation of a simplified quantitative model of the actual 
system and the multiobjective verification and/or comparison through simulation. 
The first part consists in constructing a relatively wide class of control schemes 
based on the two-level optimisation technique method. We focus our attention on 
the implementation of a number of prediction techniques of the system inflow 
(ARIMA, Deterministic Chaos, Artificial Neural Networks) that result in different 
operation rules. The second part is based on the simulation performed for historical 
data over a long time horizon (39 years). This simulation consists of testing the 
control rules for chosen scalar objectives. The diagrams of frequency (reliability) 
criteria, calculated on the basis of simulation for a number of scalar criteria are 
analysed to obtain the final comparison results.  
 Several control schemes corresponding to the prediction models considered 
have been proposed in the form of computer programs. The simulations have been 
performed for a large number of years and for many objectives. To present 
advantages of the control schemes corresponding to the prediction systems, they 
are compared with so-called Standard Decision Rule (SDR) and Stochastic 
Dynamic Programming (SDP).  
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2.   DESCRIPTIONS OF THE CASE SYSTEM MODEL 
The catchment of river Wupper is located in the southern part of North Rhine 
Westfalia. The hydrological features of this catchment are characterised by a 
massive rocky underground covered only by a small layer of soil and an average 
yearly precipitation of about 1300 mm per year. The absence of underground water 
storage leads to dangerous floods as well as to extreme droughts. To accommodate 
this problem several reservoirs were built. Here we are just interested in the 
management of the two reservoirs governing the discharges in the city of 
Wuppertal, which lies about 20 km downstream of reservoir No. 2.  Figure 1 
shows the simplified Wupper Reservoir System.  
 

 
Fig. 1. Basic structure of reservoir system. 
 
 It contains two reservoirs located in series, the control centre at reservoir 
No. 2 and several runoff and rainfall gauges. The release of the reservoirs depends 
mainly on the runoff at the control gauge in Wuppertal.  A runoff of 5 m3/s at this 
gauge is sufficient for the required water quality, runoff less than 3.75 m3/s should 
be avoided and the runoff less than 1 m3/s has to be regarded as ecologically 
disastrous. The basic hydrological and reservoir characteristics are given in 
Table 1. 
 The purpose of the model is to describe relationships between flow rates in the 
rivers over a long time horizon (one year) with the discretization period of 10 
days. Therefore, only the dynamics of the storage reservoir are considered, while 
effects of flow dynamics in the river channels are neglected. 
 For brevity, the following notation is used: j- number of 10-day intervals, Vj - 
state of the reservoir, dj - natural inflow, uj - flow in a given cross-section, zj - 
water demand, mj - outflow from the reservoir, 1,2 - denote the Bever and Wupper 
reservoirs, 3 - denotes the lateral inflow, W- cross-section at Wuppertal. 
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Table 1. The basic characteristics of the Wupper Reservoir System. 
 

 
Reservoir 

 
Bever 

 
Wupper 

 
total storage Vmax (mln m3 ) 

 
23.70 

 
25.90 

 
dead storage Vmin (mln m3) 

 
0.70 

 
2.10 

 
max. outflow (m3/s) 

 
17.00 

 
180.00 

 
min. outflow (m3/s) 

 
0.10 

 
1.00 

 
annual average flow (m3/s) 

 
0.94 

 
3.51 

 
catchment area km2 

 
25.7 

 
212.00 

 
 According to the introduced notation, the state equations for the reservoir 
system and flow balance equation for the selected cross-section W are: 
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3.   THE OPTIMISATION PROBLEM 
The objective function of the optimisation problem under consideration for any 
time instant k (for any 10-day period) and for annual time horizon T can be written 
in the form of a penalty function: 
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In equation (5), symbols a and b with respective subscripts denote weighting 
coefficients. The performance index Q is expressed explicitly on controls mj and 
the state trajectory Vj (reservoir contents) as follows: 
 

)V,mQ(=V)(m, jj
T+k

kj=
∑Q  

 
(6) 

 
The objective function during each 10-day period is subject to the constraints on 
the state of the system, controls and flows in given profiles: 
 
 

V   V    V jjj
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(7) 

 
 
3.1   Required retention trajectory V*j 
It is assumed that the operation of the reservoir system is carried out on an annual 
basis in the following way: 
• by late December, the reservoirs are normally returned to low level to prepare 

the system for the next flood season, completing the annual cycle. 
• the storage reservation for flood control on January 1 was determined for 

controlling the maximum probable flood. During the normal filling period, 
January-April, the reservoirs should be filled up completely. 

• during the May-August period the first reservoir should be filled up to meet 
recreational requirements. 

• during the May-November period the water stored in and released from the 
reservoirs is used for low-flow augmentation and hydropower.  

 
3.2   Weighting coefficients aj+ and  bj 
According to the general objective of the control problem, which is aimed at the 
rational protection against water deficits and at reaching the desired state at the end 
of April, the following values of weighting coefficients in the optimisation 
problem are used: aj+=1  if demands  are  greater  than supply and aj+=0.01 
otherwise,  
for k=[1,36]. As far as the second coefficient is concerned, in order to avoid a  
good performance in one year followed by a very poor performance in the next 
 year bj =0.01 for j=[1,12]  (May-August), bj =0.001 for j=[1,30] (September- 
February), bj=0.004 for j=[31,33] (March) and bj=0.01 in April, for j=[34,36].  
 
4.   TWO-LEVEL OPTIMISATION TECHNIQUE 
To solve the aforementioned problem we adjoin the equality constraints (1) with 
the Lagrange  multiplier  sequence λ (prices). The Lagrangian function has the 
form: 
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 To include the state-variable and outflow constraints the above problem is 
solved by means of the two-level optimisation method in a decentralised (co-
ordinated) fashion. At this stage we make use of the additivity of the Lagrangian 
function (9) and the possible separation of the decision variables. 
 The Lagrangian function has a saddle point which can be assigned by 
minimising L(λ,V,m) with respect to V and m, and then maximising with respect  
to λ. Finally, the optimisation problem can be expressed in the form:  
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with inequality constraints on state and control and no constraints on Lagrange 
multipliers. Figure 2 illustrates how the two-layer optimal control method works. 
 
 

m(λ) 
V(λ) 

λ 

max ϕ(λ) 
λ

min (λ, m, V) = ϕ(λ) 
mmin ≤ m ≤ mmax 
Vmin ≤ V ≤ Vmax

 
 
 
 
 
 
 
 
 
 

Fig. 2 Two-level optimisation method. 
 
At the lower level for given values of the Lagrange multipliers we look for the 

minimum of the Lagrange function. The required condition is the zero value of the 
gradient with respect to m and V. The task of the upper level is to adjust the prices, 
λ, in such a way that the direct control of the reservoir, affected by λ, results in the 
desired balance of the system (the mass balance equation (1) is fulfilled 
satisfactorily). In the upper layer, in the maximisation of the Lagrange function 
with respect to λ the standard conjugate gradient technique is used.  
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5.  INFLOW PREDICTION MODELS
Three inflow prediction techniques that we
two-layer control method are briefly present
 
5.1  Box-Jenkins ARMA model 
A classic multiplicative decomposition was
data and then ARMA (Auto Regressive Mo
prediction of inflows to the reservoir system
relevant procedures from Microsoft IMSL
Microsoft Fortran Power Station v. 4.0. was
 These procedures enable the computati
moving average parameters of the ARMA(
values of inflow estimates for specified nu
forecast of a fitted model. 
 Calculations showed that the most effec
better forecasts than the model in the form o
time horizon.  
 
5.2  Artificial Neural Network model 
Inflow predictions based on the neural netw
help of the NeuroSolutions software packag
 NeuroSolutions adheres to the so-calle
element (PE) simply multiplies an input 
transforms the result into an output value. T
level are deceptively simple. The power o
massive interconnection among the PEs 
processing task and from the adaptive na
interconnect the PEs. Under this model, ea
using only its own weights and activations a
network architecture used is the multilayer
real decisio

ontrol method. 
 control method (TLM) illustrated in 
tion problem (9) is the essential “upper 

 
re used for inflows predictions in the 
ed below. 

 applied to deseasonalise the observed 
ving Average) model was used in the 
. In the practical calculations the set of 
 Library of Professional Edition of 

 adopted. 
on of estimates of auto-regressive and 
p,q) model and then the calculation of 
mber of points to be included in the 

tive model was ARMA(2,1). It enables 
f average historical values for 20-days 

ork simulation were generated with the 
e (NeuroDimension, Inc., 1997).  
d local additive model. A processing 
by a set of weights and nonlinearly 
he principles of computation at the PE 
f neural computation comes from the 
which share the load of the overall 
ture of the parameters (weights) that 
ch component can activate and learn 
nd those of its neighbours. The neural 
 perceptron (MLP) (Lippman, 1987). 
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The performance of an MLP is measured in terms of a desired signal and an error 
criterion. The output of the network is compared with a desired response to 
produce an error. NeuroSolutions uses an algorithm called back-propagation 
(Rumelhart et al., 1986). The network is trained by repeating this process many 
times. The goal of training is to reach an optimal solution based on the 
performance measurement.  
 
The simulation results obtained justified 3 points as the maximum that can be 
included in the forecast with the following parameters of applied MLP:  

• Hidden Layers = 1 
• PEs = 8 
• Transfer function = TanhAxon (hyperbolic tangent -1/+1) 
• Learning Rule = Momentum (gradient and weight change, momentum = 0.7) 
• Transfer function specified for output layer = LinearTanhAxon (piecewise 

linear -1/+1). 
 It should be noted that the ANN model gives the best predictions of inflows to the 
system. 
 
5.3  Model Based On Deterministic Chaos Concept 
The real process in its whole complexity is defined by a given generalized-state 
evolution mapping:  t a Xt = (Xt , . . . ),  where Xt is a generalised state value, 
often of unknown character and dimension. If the dimension of Xt is infinite, we 
deal with a case of chaos. However, according to the concept of deterministic 
chaos, a distinguished “sub-vector” Xt of Xt may satisfy a functional relationship 
between precedent and the next state value. Xt is assumed to evolve on the so-
called attractor. The phenomenon is of deterministic nature: there exists a 
functional relationship: Xt+T = F(Xt) strongly non-linear and unstable. Xt evolves 
on an attractor M ⊆ X , in the space X =Rn.(Takens, 1981), where M is a smooth, 
compact manifold of specific properties, see also (Soukhodolow et al., 1996). 
 The dimension of attractor M, e.g. the so-called Hausdorff dimension, occurs 
to be relatively small in practical applications. It is usually not topological 
dimension (is less than n) and may be not an integer (strange attractor). 
 The fundamental task is to determine the proper prediction model, that is, to 
construct a good approximation of function F. Practically, we are faced with 
measurement and approximation errors that grow exponentially in time, due to 
process unstability. Hence, it is possible to have a prediction of a given accuracy 
only for a short time horizon. The second difficulty results from the limited 
observability of the process: one disposes of a sequence {xi} of measured scalar 
values only (time series) and not of a whole vector Xi ∈ Rn. Therefore, while 
constructing a prediction model from a given inflow time series, we apply the so-
called embedding approach. The idea of this concept (Takens, 1981) consists in 
determining the relationship between the value of state Xj+T at time instant j+T and 
a finite sequence yj

m of its m past values.  
),...,,()( )1(1 −−−+ == miiiT

i
mTTi xxxfyfx  (10) 
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According to the embedding theorem of Takens, it is possible to adjust the value 
m, called embedding dimension, such that that the resulting evolution (10) of xi 
reconstructs the topological properties of the original attractor M. The value m is 
closely related to the attractor Hausdorff dimension. To find it, we use the so-
called correlation integral concept, introduced and developed in (Grassberger and 
Procaccia, 1983; Packard et al., 1980). In Takens, the embedding dimension m can 
be defined as: m=2m∗(υ) + 1, where m∗(υ) is the minimum integer number greater 
than attractor dimension υ. 
 When constructing an approximation of function fT in relation (10), almost all 
authors (e.g Porporato and Ridolfi, 1997; Casdagli, 1989), propose an 
approximation of fT by polynomials of a given order (local model concept): 
 for a given “embedding point” yi

m the set Y i = {yj
m: j ∈ Ki} is determined, as 

the set  of K nearest (in the norm ❘ ❘i❘ ❘) neighbours to yi
m. Then, function fT is 

adjusted, such as to obtain: min ∑  ❘ xj+T - fT(yj
m) ❘2, over j∈Ki, where xj+T  is the 

first component of vector yj+T
m . 

 Function fT is searched as a linear function (2-nd order approximation), or as a 
polynomial of 2-nd degree (3-rd order approximation). We put then respectively:  
 

byaxxxf i
mmiiiT +>=<−−− ,),...,,( )1(1  (11) 
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m
i
m
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where ‘a’ is a vector, ‘b’ is a constant; C is m×m matrix; < > is inner product. 
 Numerous computations for inflows in the Wupper Reservoir System were 
performed, in order to verify the hypothesis of deterministic chaos and to find the 
embedding dimension m. It has been shown, that the data represent the chaotic 
dynamics of dimension m = 7. Then, two prediction models (11) and (12) have 
been built. The best quality of forecast (the minimum error between forecasts and 
the original data) was obtained with m = 4 and m = 5; thus, less than m=7. The 
quadratic approximation model (with prediction horizon T=3) showed better 
results than the linear model and the model in the form of average historical 
values. 
 
6.  COMPARISON OF CONTROL METHODS BY SIMULATION 
The simulation of some of the chosen control methods were carried out over the 
long time horizon of 39 years, with the real, historical data of natural inflows to the 
system. The methods under investigation have been partially discussed in the 
previous sections. Let us mention here once again those, which - after an initial 
stage of synthesis consisting of adjusting their parameter values - have been 
thoroughly compared by simulation.  
1) TLM - Two-layer optimisation method with: 
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 a) the complex, long-term planning aiming at the optimisation of all the 
particular goals in a compromising manner. 
 b) the realisation of the planned decisions (water supplies and discharges) in 
the real, current conditions. 
2) SDR -The standard decision rule was developed by simulation techniques on the 
basis of a historical record of 39 years and ten synthetic records of 50 years 
(Schultz and Harboe, 1989).  
3) SDP - Sequential Stochastic Dynamic Programming (Napiórkowski et al., 
1997). 
 In the first method, requiring solution of the optimisation problem (9), the 
long-term prediction of inflows (for 36 10-day periods) consists of two parts. For 
10-day periods j = [1,3] the results of one of the discussed inflow prediction 
models were used and for j = [4,36] the average values of historical data were 
applied. Furthermore, to compare and investigate the ‘power’ of optimising 
methods, the variants denoted OPT and AVR have been considered, which differs 
from the optimising methods only in the fact that real/average values of inflows are 
put in place of predicted values.  
 In order to compare in a clear, well-ordered manner the results of different 
controls and the results of the other control techniques, we introduce the following 
scalar criteria goals (Napiórkowski and Terlikowski, 1996): 
-global deficit time TD: 
 

})({ z < u  :jCard = TD j
W

j
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- average relative deficit AvD: 
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- maximum relative deficit MxD; 
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- average losses in recreation area in the summer period for Bever Reservoir: 
 

12
1 
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)V(f-REmax  = AvRE

j
BV

12
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(16) 

 
where REmax corresponds to maximum possible water area. 
 As a result, we obtain a sequence of 4 numbers, characterising system 
performance in a synthetic way. This could be sufficient to evaluate and compare 
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the different functions for one year, e.g. with the aid of any multiobjective 
optimisation method. However, it is more complicated, because we have to 
compare the control effects not for a particular year, but for 39 years long 
historical record. 
 To solve such a problem it is necessary to use a specific approach, which is 
arbitrary to some extent and makes use of intuition. To obtain the final comparison 
results we analyse the diagrams of s.c. frequency (reliability) criteria calculated on 
the basis of simulation for 4 scalar criteria (13-16). 

Those frequency criteria are also functions, but defined over the set of 
values of respective scalar criteria. Their values represent the number of years, for 
which the respective scalar criterion has its values in a given range. Formally, e.g. 
for MxD we have: 

 
})({  x MxD  :I Card = (x)F I

MxD ≤  (17) 

 
where MxDI denotes the value of criterion MxD for the year I. As it is seen, F 
corresponds to the notion of cumulative distribution function of the “random 
variable” MxDI, when I is treated as representing the elementary events. 
 
7.   RESULTS AND CONCLUSIONS 
 
Some of the simulation results for the control methods considered, namely SDR, 
TLM, SDP and OPT are presented below by means of the reliability criterion F. 
Fig.(4-7) show the diagrams of distribution F corresponding to the criteria (13-16). 
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Fig.4   Maximum relative deficit at W cross-section. 

 
The advantage of TLM, for all considered inflow prediction models (AVR, DCH, 
ARMA, ANN), but especially for ANN (the best forecast) and DCH, is evident in 
the sense of MxD criterion (Fig.4). It stems from the fact that TLM takes into 
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account the co-operation of the whole system and better co-ordinates the partial 
decisions when compared with the other methods discussed.  
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Fig.5   Global deficit time at the W cross-section. 

 
 For TD criterion (Fig.5) the plot of OPT is below the plots of ANN, DCH, 
ARMA and AVR models. It reflects the fact that the “system” prefers longer and 
small deficits rather than short and deep ones and of course the knowledge of 
future inflows guarantees the lowest maximum deficit.  
 For the criterion AvD (Fig.6) the differences between diagrams corresponding 
to 4 prediction models are smaller, but the method TLM is still shown to be better 
than SDP. Moreover, these diagrams are then closer to the “optimal” ones (those 
for OPT).  
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Fig.6    Average relative deficit at W cross-section. 
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 SDR gives results between TLM and SDP; the latter giving the worst results 
for all but the recreational loss criterion (fig.7).  
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Fig.7   Losses in recreation area for Bever reservoir. 

 
 SDP gives the worst results for all criteria. This results from the character of 
this technique. SDP requires the discretization of both inflows and storages and 
due to “curse of dimensionality” that discretization cannot be too dense. 
 To recap, the method called TLM proved to be the best for reservoir system 
simulation with short time prediction obtained by means of ANN. 
 

 



 

 

51

ACKNOWLEDGEMENTS 
The authors would like to thank Mr. H. Kissler, Wuppertal Water Authority, for 39 
historical scenarios. 
This work was supported by Polish Committee for Scientific Research under grant 
6 P04D 015 013 
REFERENCES 
Casdagli M., 1989. Nonlinear prediction of chaotic time series, Physica D 35, 335-

356. 
Grassberger P. and Procaccia I., 1983. Characterization of strange attractors, 

Physical Review Letters, Vol. 50, No 5, 346-349. 
Lippman R. 1987. An introduction to computing with neural nets. IEEE Trans., 

ASSP Magazine 4, 4-22,. 
Napiórkowski, J.J. & T.S. Terlikowski 1996. Operational control for a 

multireservoir system - multiobjective approach. In P. Zannetti & C.A. 
Brebbia (eds.) Development and Application of Computer Techniques to 
Environmental Studies VI, Computational Mechanics Publications, 
Southhampton, Boston. 

Napiórkowski J.J., Terlikowski T.S., Wolbring F., 1997. Multiobjective Approach 
to the operational control synthesis - The Wupper Reservoir System Case 
Study. In Operational Water Management, Eds. Refsgaard and Karalis, 165-
170, A.A.Balkema/Rotterdam/Brookfield. 

NeuroDimension, Inc., 1997. The Neural Network Simulation Environment, 
Manual Version 3. 

Packard N.H., Crutchfield J.P., Farmer J.D. and R.S. Shaw., 1980. Geometry from 
a time series, Phys. Rev. Lett., 45, 712-716. 

Porporato A. and Ridolfi L., 1997. Nonlinear analysis of river flow time 
sequences, Water Resources Research, Vol. 33, No 6, 1353-1367. 

Rumelhart D., Hinton G. and Williams R. "Learning internal representations by 
error propagation." In Parallel Distributed Processing, (eds. Rumelhart and 
McClelland), MIT Press, 1986. 

Schultz, G.A. and R. Harboe 1989. Development of reservoir operation rules for 
Wupper Dam during floods and low flow periods. Wasserwirtschaft 79, 1-4. 

Sukhodolov A., Napiórkowski J.J., Rowinski P., 1996. Applicability of Flow 
Prediction Based on Attractors. Acta Geophysica Polonica, XLIV, No.3, 277-
286. 

Takens F., 1981, Detecting strange attractors in turbulence. In: D.A. Rang and 
L.S. Young (eds.), “Topics in Dynamical Systems and Turbulence”, 366-381, 
Springer-Verlag, Warwick. 


