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ABST RA CT 

A lumped nonlinear state mocjel (LNLSM) is·derived from hydrodynamics. 
To obtain the model th~ diffusion wave model was lumped using the mean 
sJope of water level throucihout the length of uniform river reach. Th'e 
linear approximation of the resulting model is equivaleht to Muskincium model 
and gives theoretical evaluation of Muskincium model parameters. The results 
of linear approximation of the LNLSM around unsteady state was used to 
generate a discrete scheme of solution. The results of transformation of 
flow ciiven by the above model were compared with the Discrete Muskingum 
Method. · 

1. INTRODUCTION 

In recent years the relationships be_tween various types 
of models used ·;n hydrology have been studi.ed carefully. In 
particular the linkage between physically based models and the 
systems approach seems to be a promising ohe for future development. 
The Muskingum flood routing method which had seemed to be purely 
empirical was shown to be linked with model~ based on·convective 
diffusion equations. By comparison of both models relationships 
between their parameters were found. Cuncie {1969) compared the 
difference schemes and Dooge (1973) the impulse responses using 
moment matching technique. Dooge's results are mare general as 
he used. the complete linear solution of Saint Venant equations, which 
for Froude number equals zero reduces to linear diffusion model. 
Koussis's method (1978) leads from the Muskingum equation to the 
linear convective diffusion equation. He transformed the lumped 
Muskingum model. into a diStributed mpdel by expressing outflpw as 
a function of inflow and its length derivatives and using the 
relation val1d for kinematic wave only. There exists a mare direct 
possibility of deriving the Muskingum equations from Saint -Venant 
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equations. One approach initiated by Strupczewski and Kundzewicz 
{1980) , applied by them to the case of a wide rectangular channel 

" and developed further in the present paper, is the lumping of the 
nonlinear convective diffusion model under the assumption of linear 
changes of water level alson the river reach and then linearising 
it around the steady state. However Dooge , Strupczewski and 
Napiorkowski (1980) using the method of inverse order obtained 
results appl i cab le to any shape of cross section and to any type 
of friction law. · 

Tbe dependence of the Muskingum parameters on:.reference 
values was used by Koussis (1978) and Ponce and .Yevjevich (1978) 
in the discrete Muskingum method with variation in space and time 
parameters. The results obtained were compared with the solution of 
a numerical analog of the convective diffusion equation. The 
present paper attempts to give the answer to the quest1ons 

(i) what physically based model is best approximated 
by the Muskingum method with variable parameters? 

(ii) whether it is possible to increase the accuracy of 
this approximation? 

2. DERIVATION OF LUMPED NONLINEAR STATE MODEL (LNLSM) 

Unsteady flow in an open chan~el is described by means\ of 
the continuity equation 

_J.Q + 3A = o 
3x at ( l ) 

and the dynamie equation 

3y u ()U + 1 au - sf (2) + -- = s 
ax g ax 9 at o 

Where Q = discharge, A= cross-sectional ~rea, x = distance al?ng 
the channel, t =time, u= average veloc1ty of the cross-sect1?n• 
y = depth, S = bottom slope Sf = friction ~lop~. Both equat1ons 
have prognos~ic form as they contain time der1vat1ves. 

The dynamie equation for low values of the Froude number can 
be approximated by the convective diffusion equation 

aY 
e -J-

ax 
= s (1 - b) 

o 
(3) 

sf 
where b = --· The task of the coefficient e is to approximate 

So 
the omitted acceleration terms. For the, purposes of this paper the 
coefficient e will be assumed constant. 

By tntegrating Eq. 1. along the river reach, its lumped form is 
obtained as 

Ql(t) - Q2(t) = ~ y(t) 
d't 

{4) 

where o
1

, o
2 

v. are inf1ow, outflow and storage for the river reac~ 
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Similar integration ·of Eq. 3, under the assumption of constant 
values o\ e and b (ie constant friction slope S ) aloną the 
Hver reach at any instant an<i uniform bed slop~ s

0 
gives Eq.3 

in lumped form as 

Y2(t) - Yl (t) = S
0

L(1 - b(t) ) / e (5). 

where L is a length of the river reach, 

In general, the friction slope can be expressed as 

Sf = f (Q,y, roughness) (6) 

which allows us to express y on the left hand side of Eq.5 in terms 
of Q(t) and b{t) when the roughnes parameter is assumed as fixed. 
Eq.5 for a pr1smatic channel can now b~ rewritten as 

1jl(Q2,b) - l/!(Ql ,b) = S
0

L (1 - b) /e (7) 

Because there are two equa·tion and four variables 
for evaluation of downstream discharge Q2 (t)corresponding to a ~iyen 
upstream o1 (t), one further e011~tfon is re(luired · 

From Eq. 3 one can see that as· a consequence of the constant 
value of b at any instant throughout the reach there is also constant 
~ater level slope. This enables us to express the storage in 
the reach in terms of upstream and downstream depths as 

(8) 

or using Eq. 6 

V = (9) 

The linear aproximation of water level should be good enough for 
flood waves having lengths greater than the channel reach~ It 
obviously cannot handle such input signals as a delta function or a 
unit step function. 

Equations (4), (7), (9) from the physically based lumped 
nonl inear state model, (LNLSM) for open channel flow. As a state 
variable the storage V is chosen, so the initial condition for the 
LNLSM is V(o) = Vo. The second variable that is b(t) is an 
auxil i ary one, and it can be el imi nated between two diagnostic 
equation (7) and (9). They contain no time derivatives and hence can 
only be used to relate dependent variables at the same instant of 
time. · 

.Even'though the only prognostic equation is the linear continuity 
equation (14), the model remains a nonlinear one since both diagnostic 
equations (7) and (9) are always non1inear as the friction slope is 
a nonlinear function of Q and y. 

the 

3. LNLSM FOR RECTANGULAR CHANNEL 

For a uniform rectangular wide open channel with the width B, 
friction slope may be written (at least locally) form 

sf = a Q2 I y2m (6a) 
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-2 -2 For Chezy friction a= c2 B_2 and m = 1.5, while for Manning 
friction a = n B and m = 5/~. Furthermore for this 
case Eq. 8 becomes linear since 

(Ba) 

The LNLSM for this simplified_case can be expres.sed by means of 
fo 11 owi ng equa t ions. The cant i nu ity equa t ion ·is 

d 
- V(t) = Q1 (t) - Q2 (t} 
dt 

dynamie equation is 

l/m l /m -l/2m 
(Q2 - Q1 ) b 8(1 - b) 

and the storage equation is : 

l/m l/m -l/2m 
V y (Ql + Q2 ) b 

-l/2m a l/2m 
where y 0.5LBS

0 

l + l/2m -l/2m 
and f3 = SO a L/e 

(4a} 

(7a} 

(9a) 

( l o) 

( ll) 

Even for the case of a linear rating curve, that is form= l, the 
model is still non-linear because of the parameter b(t) which 
reflects the hysteresis loop in the storage relationship. 

4 .. LINEARISATION OF THE LNLSM AROUND THE 
TRANSIENT STATE 

The system of equat1ons {4a), (?a), {9a) describing the 
LNLSM for a wide rectangular open channel will qe now approximated 
by a linear model·for increments around transient state (Napiorkowski 
1978). A change of infl.ow from Q (t) to Q (t) hy an amount 
óQ1 {t) will be accompanied by lih2ar perturiations of the remaining 
variables around the1r original values,.that is 

Q2 (t) = Q2o(t) + oQz (t) 

b(t) = b
0

(t) + ob(t) 

V(t) = V
0

(t) + óV(t) 

Expanding the system of equations (4a), (?a}, (9a), into a Taylor 
series of a function of the four variables and retaining only the 
first-order increments, we obtain the linear system 

2_ óV(t) 
dt 
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1 1/m-1 l /1)1-1 -l/2m l l/m l/m. 
- (Q20 óOz - 010 ó01l bo (020 -Ol o . ) 
m 2m 

-l/2m-1 
·b ób = -s ób (7b) o 

-l/2m l/m-1 l/m-r l/m 1/m. -1/2m-l 
óV =.~bo (QlO óQl + 020 602)- ~(010 + 020 )bo ób 

(9b) 

in which the coefficients are evaluated for the initial transient 
state conditions. 

From Eqs.(7b) and using (7a) for the initial condition 

1/m-1 1/m-1 
2(020 °02 - 010 . 001) 

ób = ---~1~72~m---~,---- ( 12) 
Sb0 (b

0 
- l -2m) 

Substituting this expression for b(t) into the storage equation 
(9b) we get the storage increment in terms of inflow and outflow· 
increments 

o V = Dl oQ1 + D2 .so2 (13) 
where 

l /m-1 
Dl = A( l + B_) 01 o (l 3a) 

l/m-1 
D2 = A(l - B) 020 (13b) 

and 
-l/2m 

A = y b
0 

(l 3c) 

l/m l/m 

B = 
010 + 020 

( l 3d) 1/2m -I 
.S b0 (bu - l -2m) 

IDne can recognize (13) as 5torage equation of ~uskinoum 
Model valid for increments around the transient state .. The Muskin9um 
parameters 

K = Dl + D.2 

are functions of hydraulic characteristics of channel r.each 
(that is y, s. m) and of both inflow and outflow. 
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5. LNLSM LINEARISATION AROUND THE STEADY STATE 

The system of equations (4a), (7a), (9a), will no~ be 
approximated by a linear model around the steady state in which 
QlO = Q20 =~o and b0 = 1. In this case Eqs(l3a)-(13d) take the 
form 

A = y Im ( l 6c} 

1 lim 
B = - Q (l6d) flm o 

~ l lim llm-1 
Dl = y(l - -Q ) Qo Im (l6a) 

!lm o 

+~ 
lim 1/m-1 

Dz y(l ) Qo Im (16b) 
!lm o 

l lm-1. 
(14a) K = 2 yQ0 

Im 

' l . l IJ!l a = 0.5 (1 - -Q ) ( l 5a) 
!lm o 

that is the linear approximation of the LNLSM for perturbation 
from the steady state turns out to be the classical linear Muskinąum 
Model with parameters given by equations (14a) and (15a). · 
Substitution in Dq. 10 fory and Eq. 11 for Il gives 

K = L 
m U0 

e Yo . 
a = 0.5 (1 - --s-r-} 

m So 

(14b) 

(l Sb) 

These results are conformable to the results obtained by 
Dooge (1973) usinq the moment matching technique between complete 
'linear solution of St. Venant equation and Muskihgum Model. However, 
if acceleration terms in Eq .. 2 are neglected, that is if e is equal 
one, then the equation for the Muskingum Model parameters are exactly 
the same as were used in the Discrete Muskingum Method by obviously 
approximates·the solution of LNLSM. 

6. ON LINE APPROXIMATION OF LNLSM SOLUTION 

(Fig.1) If the problem is posed as the discrete approximation 
of the LNLSM the question arises whether it is possible to improve 
significantly the accuracy of the Muskinqum method with variable 
parameters. At almost every instant, except the initial one, there 
is unsteady state in the river reach 'durinc:i the flood. This is why 
use of Eqs 13 derived for transient state instead of Eqs. 16 should 
improve accuracy of LNLSM solution. 

writinq 
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n+ l n 
Q
2

(t) _ o.5 {Q2l + {Qzl, ) 

n+l n 
dV/dt - {V } - {V } .)/6t 

the continuity equation (4a) takes form 

({V}~+l .-{V}n )/at·= 0.5 ({Qi;n+l + {Ql}n}-({Q2}n+l+{02}n) 

wbere from equa~ion (9a) 

1 ri+ 1 
+ {Q2 /ml 

n 
{V} 

and from equation (7a) 

{Q2
1/m1 n. _ {Q

1
1/m} n_ { l/2m n n = s b } ( 1 - {b} ) 

Linearisating the set of equations (16), (17) for increments 

(l 6a) 

( 16b) 

(17a) 

(Hb) 

n + 1 n n+l n n+l n 
<5Ql = {Ql} - {Ql} , <5Q2 :; {Q2} - JQ2} ,<5b " {b} -{ b} 

as in section 4, one finds that (see Eq. 13) 

n + l 
{V} 

n+1 n+I 
01 Q 
---------~·2 

ti.x = L 

Figure 1: Space~time discretisation of LNLSM . 
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Figure ~. Predicted outflow for urdated parameters. 
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and 
(18) 

n + 1 
{Qz } + D1 + b.t/2 

?z + ?it/2 

0 - lit/Z n 
{Q1}n + _2 ____ {QZ} 

Dz + llt/Z 

where D1 and Dz are given by Eq s . l3 {a ) and l 3 ( b) 

Above discrete scheme shou1d be app1ied as fol1ows: 

First step 
For initia1 conditions Q and Q , variab1e b is determined 

10 zo 
• from Eq. 7a and then from equations 13 (a) to 13 (d) the parameters 

D1 and Dz for use in Eq. (18). If there is a steady state in a river 
reach (Q10 = Qz0) the 1nitia1 value b0 wi11 be equa1 to 

Step "n" 
A new value of b is determined from formula 

n + l n 
{b} = {b} + c5b.b 

n 
in which {b } is known from the previous time interval and b is 
calculated from Eq. lZ. The new va lues of the parameters D1 • Dz for 
use in Eq .. 18 are evaluated. from Eqs. l3(a) and 13 (b) . 

. , At the end of thi s chapter authors wou1 d 1 i ke to emphas i se 
that methods presented in this paper reduces to Discrete Muskingum 
Method with variable parameters ·when linearisation around the steady 
state instead of 1ineariation around the transient state is used 
in the derivat1on of Eq. 18. The farmer model Eqs. 16a 14 and 15 
and in that case Eq. 18 takes form 

n + 1 -Kc5 + lit/Z n + Ko_ + lit/Z n 
{Qz} = {Q1} + {Q1} K( 1 - o} + lit/Z K/1 - .s) + lit/Z 

n 
K( 1 - ć) - b.t/Z ( 18a) + {Qzl 
K(l - o) + /it/2 

where K, a are the Muskingum Model parameters. Eq. (l8a) is 
exact1y the same as were used in the methods of Koussis (1978) and 
Ponce and Yevjevich (1978). 

7. RESULTS OF NUMERICAL EXPERIMENTS 

The effect of updating the values of the -routing parameters 
is illustrated for a particu1a_r case by a comparison of figure 2 
(no updating) and figure 3 (updating at each step). In the 
riumerical computations, the channel is taken as rectangular with a 
width of 100 rn, with a bottorn slope of S = O.OOOZ48 and a Manning 
roughness of n = O.OZ5. The initial con8ition was taken as a steady 
flow in the reach of ZOO m3/s and the upstream inflow as 

Q1 (t). = zoo + t. exp ( - t/Cz} ;c1 

with c1 = 16.377 sz/rn3 and Cz = 13,355 seconds. The downstrearn 
outflow was ca1culated for a reach length of 10 km both for3(a) 

550 

ł 

I 

i 
j 
; 

I 



I •. I ,, 

~ 

ró~ting parameters based on the initial steady flow of 200 mis 
as described in section 5 above and (b) routing parameters updated 
at each step as described in 3 ~ection 6, thus taking account of the 
increase in flow from 200 m /s. 

Case (a) is fllustrated in figure 2 in which the full line 
represents an accurate numerical solution of the complete non -
linear St. Venant equations and the dotted line the lumped solution 
with the lfnearisatfon and consequently the routing parameters based 
on the initial flow. Case (b) is illustrated in figure 3 in which 
the dotted line represents the lumped solution based on a linearisation 
which is updated at time step ie. every 3 minutes. In bo.th cases, 
the lumped solution predicts negative outflows during the early part 
of the event. This arises because the length of the channel reach is 
10 km which is greater than the ini~ial c~aracteristic reach length of 
4.8 km ( corresponding to a flow of 200 m Is). For longer lengths of 
channel, this negative contrfbution would become even more marked. 
For case (a) shown·fn figure 2, the peak value is well predicted 
but the predicted time to peak is latęr than for the complete 
distributed model. For. case (b) shown in figure 3 the predfcted 
output is indistinguishable from that given by the comp1ete 
distrfbuted model except at the beginn1ng of outflow. 
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