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ABSTRACT

A Tumped nonlinear state model (LNLSM) is-derived from hydrodynamics.
To obtain the model the diffusion wave model was lumped using the mean
slope of water level throughout the length of uniform river reach. The
linear approximation of the resulting model is equivalent to Muskingum model
and gives theoretical evaluation of Muskingum model parameters.. The results
of linear approximation of the LNLSM around unsteady state was used to
generate a discrete scheme of solution. The results of transformation of
flow given by the above model were compared with the Discrete Muskingum
Method.

1. INTRODUCTION

In recent years the relationships between various types
of models used -in hydrology have been studied carefully. In
particular the linkage between physically based models and the
systems approach seems to be a promising one for future development.
The Muskingum flood routing method which had Seemed to be purely
empirical was shown to be linked with models based on“convective
diffusion equations. By comparison of both models relationships
between their parameters were found. Cunge {1969) compared the
difference schemes and Dooge (1973) the jmpulse responses using
moment matching technique. Dooge's results are more general as
he used the complete 1inear solutien of Saint Venant equations, which
for Froude number equals zero reduces to linear diffusicn model.
Koussis's method (1978) leads from the Muskingum equation to the
linear convective diffusion equation. He transformed the lumped®
Muskingum model. into a distributed model by expressing outflow as
a function of inflow and its length derivatives and using the
relation valid for kinematic wave only. There exists a more direct
Possibility of deriving the Muskingum equations from Saint -Venant
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equations. One approach initiated by Strupczewski and Kundzewicz
{1980) , applied by them to the case of a wide rectangular channel
and developed further in the present paper, is the lumping of the
nonlinear convective diffusion model under the assumption of linear
changes of water level alson the river reach and then linearising
jt around the steady state. However Dooge , Strupczewski and
Napiorkowski (1980) using the method of inverse order obtained
results applicable to any shape of cross section and to any type
of friction law. '

: The dependence of the Muskingum parameters on-reference
values was used by Koussis {1978) and Ponce and Yevjevich (1978)
in the discrete Muskingum method with variation in space and time
parameters. The results obtained were compared with the solution of
a numerical analog of the convective diffusion equation. The
present paper attempts to give the answer to the questions

(i) what physically based model is best approximated -
by the Muskingum method with variable parameters?

(1) whethe} it is possible to increase the accuracy of
this approximation? ‘
2. DERIVATION OF LUMPED NONLINEAR STATE MODEL (LNLSM)

® )
Unsteady flow in an open channel is described by means of
the continuity equation

B0+ 3A = o : i
ax at . Mm

and the dynamic equation
Ll

— f
g 3x gat o}

% . -5 ‘ @
9x ’
discharge, A = cross-sectional area, x = distance along

Where () = 3 0
the channel, t = time, u = average velocity of the cross—sect1qn,
= bottom slope 'S¢ = friction slope. Both equations

= depth, S S e
%ave p?ognosgic form as they contain time derivatives. ;
The dynamic equation for low values of the Froude rumber can

be approximated by the convective diffusion equation

3y e ' ‘
o . s {1-b) : (3)
) € X So R :
S¢ .
where b = = . The task of the coefficient e is to approximate

So
the omitted acceleration terms. For the purposes of this paper the

coefficient e will be assumed constant. -

By integrating Eq. 1.along the river reach, its lumped form is
obtained as o

0,(t) - 0(e) =y} (4)
dt

where Q;, Q, V- are inflow, outflow and storage for the river reacp
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Similar integration of Eq. 3, under the assumption of constant
values of e and b (ie constant friction slope S_ ) a]onq the
river reach at any instant and uniform bed s]opg 5o 9ives Eq.3
in Jumped form as

Ypt) -y ft) =5 LY - b(t) ) / e . 4(‘5)«

where L is a length of the river reach, -

In general, the friction slope can be expressed as

S¢ = T (Q.y, roughness) (6)

which allows us to express y on the left hand side of Eq.5 in terms
of Q(t) and b(t) whep the roughnes parameter §s assumed as fixed.
£q.5 for a prismatic channel can now be rewritten as

¥(Qp.b) - ¥(Qy,b) = S.L (1 - b) /e )

Because there are two equation and four variables
for evaluation of downstream discharge Qz {t)corresponding to a civen
upstream Ol(t), nne further enmuatinon is reoudred :

From Eq. 3 one can see that as’ a consequence of the constant

va]ue of b at any instant throughout the reach there is also constant:

yater level slope. This enables us to express the storage in
the reach in terms of upstream and downstream depths as

vEoslyps vp) (8)

or using Eq. 6
v

§(0y.0,» @ » b) @)
The 1inear aproximation of water level should ‘be good enough for
flood waves having lengths greater than the channel reach. It
obviously cannot handle such 1nput signa]s as a delta function or a
unit step function.

Equations (4), (7}, (9) from the physically based ]Umped
nonlinear state model (LNLSM) for open channel flow. As a state
variable the storage V is chosen, so the initial condition for the
LNLSM is V(o) = Vo. The second variable that is b(t) is an
auxiliary one, and it can be eliminated between two diagnostic
equation {7) and (9). They contain no time derivatives and hence can
only be used to relate dependent variables at the same instant of
time. -

_Even though the only prognostic equation is the linear continuity
equation (14}, the model remains a nonlinear one since both d1agnost1c
equations (7) and (9) are always nonlinear -as the friction slope is
a nonlinear function of Q and y.

. 3. LNLSM FOR RECTANGULAR CHANNEL

For a uniform rectangular wide open channel with the width B,
the fr1ct1on s]ope may be ﬂrltten (at least ]oca]]y) form

a gty Y ‘ . (6a)
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For Chezy friction a = 052 ng and m = 1.5, while for Manning
friction a=n B and m = 5/3.  Furthermore for this
case Eq. 8 becomes linear since

V=B L (y] + yz) /2 : (8a)

TheALNLSM for this simplified case can be expressed by nieans of
following equations. The continuity equation s -

d
— V(t) =0 () - Qy (1) (4a)
dt
dynamic equation is ;

Imo Um0

(QZ = Q'I ) b = 8(] — b) ) (73)
and the storage equation is :
~ 1/m 1/m -1/2m 9 '
Voov (g + Q. )b . (92)
-1/2m
where Y = 0.5LBS a }/2m (10)
: » 1+ /2m <Y2m )
and B= 5, a L/e

Even for the case of a linear rating curve, that is for m = 1, the
model is still non-linear because of ‘the parameter b(t) which
reflects the hysteresis Toop in the storage relationship.

4. LINEARISATION OF THE LNLSM AROUND THE
TRANSIENT STATE

The system of equations (4a), (7a), (9a) describing the
LNLSM for a wide rectangular open channel will be now approximated
by a linear model  for increments around transient state (Napiorkowski
1978). A change of inflow from Q,, (t) to Q, (t) by an amount
GQ] (t) will be accompanied by 1ilgar pertur%ations of the remaining
variables .around their original values, that fis ‘ :

Qp (1) = Qyq(t) + 80, (t)

o
—
+
~—
i

b (t) + 8b(t)

V(t) =V (t) + 8v(t)
‘Expanding the system of equations (4a), (7a), (9a), into a Taylor
series of a function of the four variables and retaining only the
first-order increments, we obtain the linear system
d

8V(t) = 6Qq(t) - 8Qy(t) - . ()
dt ’ ‘
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Um-l T 1/ /72m mo 1/m,

]
- ( 8Q, - Q 6Qy) b -~ (Q -Q
— (%0 2~ %o 1) b o (020 0. )
) -1/2m-1 :
b &b = -B &b {7b)
0 . N
-1/2m 1/m-1 o l/m-T 1/m 1/m.  -1/2m-1
v =‘% by Q19 80y + Qp 8Q,)- %_(Q]O * O by o
. {9b)

in which the coefficients are evaluated for the initial transient
state conditions. '

From Egs.(7b) and using (7a) for the initial condition

" 1/m-1 1/m-1
’ 0 80, - Q 60y)
sb o 20 2~ %o % 02)

m -1
Bb (b, -1 -2m)

o] ¢}

Substituting this expression for b(t) into the storage equation
(9b) we get the storage increment in terms of inflow and outflow

increments ) -
7 §V = Dy 6Q; + D, 80, y - (13)
where . :
. 1/m-1 ‘
D; = A(1 + B) Oy (13a)
' 1/m-1 "
D, = A(1 - B) Qy : ~ {13b)
and
=1/2m :
A = Y bo . (]BC)
1/m 1/m
Oy  *0Qp - :
B=—m— : (13d)
B by (b, =1 -2m)

One can recognize (13) as storage equation of Muskinoum
Model valid for increments around the transient state.. The Muskinaum
parameters M

D

[N
=
)

1+ D2 . (1)
a = Dy/K s (15)

are functions of hydraulic characteristics of channel reach
(that is y, B, m) and of both inflow and outflow.
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5. LNLSM LINEARISATION AROUND THE STEADY STATE

The system of equations (4a), (7a}, (9a), will now be
approximated by a linear model around the steady state in which

?10 = Qyp = 0, and bo = 1. In this case Eqs(13a)-(13d) take the
orm
A=y /m ‘ {(16¢)
, i/
B=a (16d)
é 1 1/m T/m-1
Dy = (1 - E;'Q° ) Q, - /m (16a)
1 VMm 1/m-1
Dy = v +—0, )0, /m {16b)
Bm
1/m-1, ‘ ‘ .
K =2 vQ, /m (14a)
L Mm
«=05(0-—0q ) (15a)
Bm

that is the ltinear approximation of the LNLSM for perturbation

from the steady state turns out to be the classical linear Muskingum
Model with parameters given by equations (14a) and (15a).
Substitution in Dg. 10 for y and Eq. 11 for B gives

L ; .
K = (14b)
m UO
ey, (15b)
a=0.5(1- — <

These results are conformable to the results obtained by
Dooge (1973) using the moment matching technique between complete
Tinear solution of St. Venant equation and Muskingum Mcdel. However,
if acceleration terms in Eq. 2 are neglected, that is if e is equal
one, then the equation for the Muskingum Model parameters are exactly
the same as were used in the Discrete Muskingum Method by obviously °
approximates’the solution of LNLSM.

6. ON LINE APPROXIMATION OF LNLSM SOLUTION

(Fig.1) If the problem is posed as the discrete approximation
of the LNLSM the question arises whether it is possible to improve
significantly the accuracy of the Muskingum method with variable
parameters. At almost every instant, except the initial one, there

" is unsteady state in the river reach during the flood. This is why

use of Eqs 13 derived for transient state instead of Eqs. 16 should
improve accuracy of LNLSM solution. T

writing
n+l n

O(t) ~0.5 ( Q)+ 10} )
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2

n+}

Q(t) - 0.5 ({0} + {Q,) R

‘ n+1 n
dv/dt ~ { (v} - (v} y/at

the continhity equation (4a) takes form

(=" /st = 0.5 (10,™ ¥ 101™) - (10,3 +(0,0™)

where from equation (9a)

1 n+) ri-ﬂ ) . )
it . ({Q]]/m} o {021/m} {b_]/zm}n+l
r 1/m" V/my " n
L (e B (A TR )
and froﬁ equation (7a).
| ' : o
{0, /m] ntl {Q]]/m} n+l . B{b]/Zm} n+l (1 - {b}n+1)
1
{q, /my on {Q]I/m} ? - g{pl/2m n (1- 1" )
Linearisating the set of equations (16), (17) for increments
' no+ 1 n n+1 " n n+1
80, = {0y} - 1q;3 2 6Q, = Q) = {Q,},8b = {b} ~{ b)
as in section 4, one.finds that (see Eq. 13)
n+1 n n+l i n+ n
A (N A R AR R ALY 0 )
net ) N+t
Q4 Q,
At | -
a?  Ax=L 03

Figure 1. Space-time djscretisation of LNLSM.
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Figure 2. Predicted Outflow for constant parameters.
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Figure 3. Predicted outflow for updated parameters,
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and

: (18}

n + N ) - AMtyf2 n
0,1 =D aw 0} Yoy py stz gpyn + 22 / {q,}
) Ny TR iy 1 ) D LA

D, + 472 D, + Aty2

where D, and DZ are given by Eqs. 13 (a) and 13 (b)

Above discrete scheme should bebapplied as follows:

First step
For initial conditions Q]O and QZO ,» variable b 1s determined

from Eq. 7a and then from equations 13 (a) to 13 (d) the parameters
D, and D2 for use in Eq. {18). 1If there is a steady state in a river
rlach (Q10 = QZO) the initial value b, will be equal to

Step “n”
A new value of b is determined from formula

n+1 n -
{bl} = {b} + &ab

n ,
in which {b } is known from the previous time interval and b is
calculated from Eq. 12. The new values of the parameters D]' D2 for
use in Eq. 18 are evaluated from Eqs. 13(a) and 13 (b). !

. At the end of this chapter authors would Tike to emphasise
that methods presented in this paper reduces to Discrete Muskingum
Method with variable parameters when 1inearisation around the steady
state instead of lineariation around the transient state is used
in the derivation of Eq. 18. The former model Egs. 16a 14 and 15
and in that case Eq. 18 takes form

{ ntl ks o+ ats2 L S n
% wa T ez Wt greereaye )
’ n
K(1 - 8) - At/2
. (q,} (18a)

K(1 - 8) + at/2

where K, o are the Muskingum Model parameters. Eg. (18a) is
exactly the same as were used in the methods of Koussis (1978) and
Ponce and Yevjevich (1978). :

7. RESULTS OF NUMERICAL EXPERIMENTS

.The effect of updating the values of the routing parameters
is illustrated for a particular case by a comparison of figure 2
{no updating) and figure 3 (updating at each step). 1In the
numerical computations, the channel is taken as rectangular with a
width of 100 m, with a bottom slope of S_ = 0.000248 and a Manning

. roughness of n = 0.025. The initial conflition was taken as 'a steady

flow in the reach of 200 m’/s and the upstream inflow as
Qp (t) =200 + t.exp ( - t/Cy) /¢

with C, = 16.377 52/m3 and C2 = 13,355 seconds. The downstream
outflow was calculated for a“ reach length of 10 km both fors(a)
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3 3

réuting parameters based on the initial steady flow of 200 m/s

as described in section 5 above and (b) routing parameters updated
at each step as described in,section 6, thus taking account of the
increase in flow from 200 m /s.

Case (a) is i1lustrated in figure 2 §n which the full line
represents an accurate numerical solutfon of the complete non -
Tinear St. Venant equations and the dotted line the lumped solution
with the T{nearisation and consequently the routing parameters based
on the initial flow. Case (b) is illustrated in figure 3 in which
the dotted line represents the lumped solution based on a Tinearisation
which is updated at time step fe. every 3 minutes. 1In both cases,
the lumped solution predicts negative outflows during the early part
of the event. This arises because the length of the channel reach is
10 km which js greater than the initial characteristic reach Tength of
4.8 km { correspending to a flow of 200 m"/s). For longer lengths of
channel, this negative contribution would become even more marked.
For case (&) shown'in figure 2, the peak value is well predicted
but the predicted time to peak is later than for the complete
distributed model, For.case. {b) shown in figure 3 the predicted
output {is indistinguishable from that given by the complete
distributed model except at the beginning of outflow. ‘
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