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Chapter 1

Linear theory oCopen channel flow
JAROSLAW J. NAPIÓRKOWSKI

Abstract

The linearized solution of the St. Venant equations is discussed for the general
case of aDYshape of channel and aDYfriction law. The upstream and downstream
transfer functions are derived analytically for a channel reach of finite length. For
the limit ing case of a semi-infinite channel the properties of the upstream transfer
function are studied using the cumulants, and amplitude and phase spectra. A
number of simplified forms of the S1.Venant equations are presented.

1. Introduction

In the unsteady motion of walec in canals and rivers, the strategy is folIowed of
proposing simplified models and comparing their performance with field data and
with the result of simulations by means of the 81. Venant equations. The main aim
is to obtain convenient predictive models. Although non-linear systems modelling
is already extensively developed, it does not seem useful for stochastic hydrology
ar for optimal control problems when flow routing in channels must be repeated
maDYlimes for different scenarios. When the starting point in such a strategy is the
linearization of a set of non-linear equations, and moreover the aim is to gajo insight
into the nature of the complete non-linear problem, the problem then belongs to a
very special class. That class bas been termed by Polish hydrologists Doogeology in
recognition of Prof. Dooge's contribution to the linear theory of open channel flow.

The most important problems in the linear theory of open channel flow are:
(1) The twa-point boundary problem in which both upstream and downstream

boundary conditions are taken joto accoun1.
(2) The downstream problem, Le. the prediction of the flood characteristics at

a downstream section on the basis of a knowledge of the flow characteristics at an
upstream section and the hydra ulic characteristics of the channel between the twa
sections.

(3) The steady-state rating curve at a downstream control.
(4) The tributary problem which involves predicting the effect of tributary inflow

on conditions in the main channel both upstream and downstream of the point of
<entry.
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(5) The lateral inflow problem in which there is a distributed inflow to the
channel reach. The above classification and description applies only to a tranquil
(subcritical) flow in which the Froude number is less than one. For rapid (supercrit-
ical) flow there is no upstream effect. The present paper concentrates on the first
twa problems ot Doogeology only.

2. Linearization oCthe St. Venant equations

When only one space dimension is taken joto account, the equation ot continuity
tor the unsteady flow in an open channel in the absence ot lateral inflow is given by:

oQ oA-+- =0
ox ot (1)

where Q(x, t) is the discharge,A(x,t) is the cross-sectional area,x is the distance
erom the upstream boundary, and t is the elapsed time.

If the assumption is made that only acceleration in the direction ot motion needs
to be taken joto account then the equation tor the conservation ot linear momentom
in this direction can be written in terms ot the same variabIes (Dooge et aL, 1982):

2 _BA 2Q oQ oQ
(I-F )gy- + -- + - = gA(So - Sf)ox A ox ot (2)

where F is the Froude number,y is the hydra ulic mean depth (the Talio ot the area
ot flow to the width ot the channel at the waleT surtace), So is the bottom slope
and Sf is the triction slope defined by the equilibrium condition tor steady uniform
flow.

The triction slope depends on the type ot triction law assumed, the shape and
roughness ot the cross-section, the flow ot the section and the area ot tlow. It can be
written in very general form as:

Sf = [(A, Q, shape, roughness) (3)

The problem ot linsteady open channel flow involves the solution ot the above
set ot non-linear equations subject to given initial conditions and twa appropriate
boundary conditions. No analytical solution is available and equations (1) and
(2) most be solved by same method ot numerical approximation. To determine
analytically the solution, the StoVenant equations ale simplified by considering the
first order (linear) variation erom a steady-state trajectory.

Th compute the linearized equations we make use ot expansion ot non-linear
terms in equation (2) in a Thylor series around the uniform steady stare (Qo,Ao)
and limitation ot this expansion to the first order increments Q' (x, t), A' (x, t). The
resulting equations ale (Dooge and Napi6rkowski, 1984):

oQ' oA'-+- =0
ox ot (4)
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2 aA' aQ' aQ'
[

aSr, aSr '
]

(1 - F )gy, - + 2~ - + - = gA - -Q - -A
o ax o ax at o aQ aA (5)

where Vo = Qo/Ao is the average velocity of flow, and the derivatives of the friction
slope Sr(Q,A) with respect to discharge Q and the areaA on the right-hand side of
the equation are evaluated at the reference conditions.

The variation of the friction slope with discharge at the reference condition for
all frictional formulae for rough turbulent flow could be taken as:

aSr = 2 So
aQ Qo (6)

1b express the variation of the friction slope with ftow area we define for conve-
nience a parameter m asthe ratio of the kinematic wave speed to the average
velocity of flow:

m = Ck
Vo

(7)

where Ckis the kinematic wave speed (Dooge and Napiórkowski, 1984):

Ck = - [~~] / [~ci] = ~ (8)

When equations (6) and (7) are substituted in equation (8) we obtain:

aSr So- = 2m~ -
aA o Qo

(9)

The parameter m is a function of the shape of channel and of area of ftow. For
a wide rectangular channel with Chery friction, m isalways equal to 3/2 and with
Manning friction is always equal to 5/3. For shapes of channel other than rectangles,
m will take on different values.

Since equations (4) and (5) are linear fiest-order equations in iwo variables,
they are equivalent to a single second-order equation in one variable. The most
general form of ibis second-order equation is that obtained by using the unsteady
flow potential (Dooge, 1980). This potential caD be defined as the function U' (x, t)
whose partial derivatives with respect to distance gives minus the perturbation in
the area of ftow, that is: -

aU' = -A' (x, t)ax (lOa)

and whose partial derivative with respect to time gives the perturbation from the
reference discharge:

aU' = Q'(x,t)at (lOb)
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Consequent1y, the perturbation potential U'(x,t) automatically satisfies the conti-
nuity equation (4). When equations (10) are substituted in equation (5) we obtain
the dynamie equation for the unsteady ftow potential U' (x, t) in the form:

{pU' a2u' a2u
[

aS au' asau'
](1 - F})gyo ax2 + 2voaxat + at2 = gAo - a~ ax + aQfu (11)

Any linear function of the perturbation potential u' (x, t) will a"lso represent a
solution of equation (11). Since differentiation is a linear operation, both A' (x, t)
and Q' (x, t) will also be governed by an equation of the same form as equation (11).
Similarly, any linear combination of solutions is also a solution of the basic linear
equation, e.g. the perturbations of the velocity v' (x, t), the surface width of the
channel T' (x, t) and the Froude number F' (x, t). The choice of dependent variable
in any given problem will be governed largely by the form in which the boundary
conditions are given.

3. Solution for finite channel reach

The basic equation (11) to be solved is hyperbolic in form. Accordingly there are
twa real characteristics defined by:

d\:

dt = Cl,2 = Vo:l: V(gY)
(12)

along which the discontinuities in the derivatives of the solution will propagate.
We will consider the basic case of tranquil ftow (Froude number less than one)
in which A' (x, t) will be prescribed both at the upstream boundary x = O and at
the downstream boundary x = L. The use of other boundary conditions does not
introduce any new principie.

The problem is to solve equation (11) subject to the double initial condition:

aA'
-=0
atA'(x,O) = O (13)

and subject to the boundary conditions:

A' (O,t) =Au(t)

~

A'(L,t) =Ad(t) (14)

The solution can be sought in terms of the Laplace transform. Equation (11) when
transformed to the Laplace transform domain becomes:

2 d2A

[

aSi

]

dA

[

2 as
]

-

(1 - Fo)gy d\:2 + -2vos + gAo aA d\: - s + gAo aQs A = O

whereA(x,s) is the Laplace transform ofA'(x,t). Equation (15) is a second-order
homogeneous ordinary equation, sa the solution can be written in the general form:

(15)
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A(x,s) = C1(s)exp[A1(S)X] + C2(s)exp[A2(S)X] (16)

where Al and A2are the roots of the characteristic equation for equation (16) and
are given by:

A1,2= es + f ::I:J(as2 + bs + c) (17)

Here the parameters a, b, c, e and f are given in terms of hydra ulic variabIes by the
following relationships:

1
a=

g)lo(l - F02)2
(18a)

b = 2So 1 + (m - 1)F02
vo)lo (1 - F02)2

(18b)

(
mso

)
2 1

c = )lo (1 - F})2
(18c)

Vo 1
e=--

g)lo1 - F2o
(18e)

f = J(c) (18f)

Having determ!!!ed the parameters CI (s) and C2(s) from the boundary conditions,
one tan write A(x, s) in terms of the hu(x, s) and hd (x, s) which may be defined
as the Laplace transforms of the responses of the channel feach to delta-function
inputs at the upstream and downstream ends respectively. Accordingly we tan write:

A(x,s) = hu(x,s)Au(s) + hd(X,s)Ad(S) (19)

The linear channel responses to an upstream input hu(x, s) and to a downstream
input are given by (Dooge and Napiórkowski, 1987a):

sinh [J (as2 + bs + c) (L - X)]
h (x s) = exp[(es + f)x]

u , sinh[J(as2 + bs + c)L]

sinh[J(as2 + bs + c)x]
hd(x,s)=exp[-(es+f)(L-x)]. /

.
2 .

smh[y (as + bs + c)L]

(20)

(21)

The original function in the time dbmain is determined from the corresponding
boundary condition through the relationship:

A'(x,t) = hu(x,t) *Au(t) + hd(X,t)*Ad(t) (22)

The exRlicit formulation for the transfer.functioI1,s hu(x, t) ;:Indhd(X, t) in the time
domaini\have been obtained by, Dooge and Napiórkowski (1987a). Thetransfer
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funetion due to an upstream input is found'to have twa distinet parts so that we caD
write:

hu(x,t) = h~(x,t) + h~(x,t) (23)

The first part of the solution, which may be termed the head of the wave, is given
by:

00

h~(x,t) = Lexp(-2nLal - azx)8(t - nto -X/CI)
11=0

00

- L exp( -2nLal + a3X) 8(t - nto - x/cz)
11=1

(24)

The eelerities CI and Czare defined in equation (12) and the parameters al, az, a3
and to (funetions of the ehannel parameters) are given by:

al = b/2y1(a) (25a)

(25b)

(25e)

(25d)

az = al - f

a3 = al + f

to = L/CI - LIcz

It caDbe seen that the head of the wave moves downstream at the dynamie speed
CI in the form of a delta funetion of exponentially declining volume proportional
to exp( -azx). At X = L the delta funetion is refteeted with an inversion of sigo
and is propagated upstream at the speed Cz and with a heavier damping faetor
exp[-a3(L - x)]. Then it is refteeted again at x = O to move in a downstream
direetion etc.

The seeond part of the upstream response, which may be termed the body of the
wave, is:

00

h~(x,t) = Lexp(-,6lt + ,6zX)(h/Cl - h/cz)(2nL +x),
11=0

h {2hJ[(t - nto - X/Cl)(t + Mo - x/cz)]} U[t - nto - x/cd
J[(t - Mo - X/Cl)(t + nto - x/cz)]

00

- Lexp(-,6lt + ,6zX)(h/Cl - h/cz)(2nL -x).
n=l

h {2hJ[(t - Mo - x/cz)(t + Mo - X/CI)]}
U[t - nto - x/Cz]

J[(t - nto - x/Cz)(t + nto - X/CI)]

wher~ h {} is a modified Bessel funetion of the first kind, U[] is a unit step
funetion, and the remaining parameters are given by:

(26)
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(31 = b/2a

(32 =i - be/2a

h = J(b2/4 - ac)/2a

(27a)

(27b)

(27c)

As in the case of the head of the wave, the body of the wave is subject to
successive refiection at both the downstream and upstream boundaries but moves
and dissipates more slowly than the head of the wave.

For the downstream transfer function, the head of the wave is given by:
00

h~(x,t) = :Lexp[-2nLal - a3(L -x)]b[t -nto + (L -X)/C2]
n=O

00

- :L exp[-(2n + I)Lal - iL - a2x] bet - nto + Llc2 - X/CI)
n=O

(28)

and is subject to refiection at the two ends of the reach as in the case of h~(x, t).
The body of the wave is given by:

00

h~(x,t) = :Lexp[-(31t - (32(L -x)](h/Cl - h/C2) [2nL + (L -x)].
n=O

h {2hv[(t - nto + Llc2 - X/C2)(t + nto + LICI - X/CI)]}
U[t-nto -x/cd

v[(t - nto + Llc2 - X/C2)(t + nto + LICI - X/CI)]
00

- :L exp[( - (31t - (32(L - x)](h/Cl - h/c2)[2(n + I)L + x] .
n=O

h {2hv[(t + nto + LICI - X/C2)(t - nto + Llc2 - X/CI)]}
U[t-nto-x/cd (29)

V[(t + nto + LIc} - X/C2)(t - nto + Llc2 - X/CI)]

Note that:

(1) For the case where there is both an upstream and a downstream boundary
condition the unsteady wave morion produced by each of the boundary conditions
will be successively refiected at each end of the channel feach and thus will require
representation by an infinite series.

(2) Allowance for a downstream boundary condition thus bas a double effect,
since it produces the refiection of the movement due to the upstream input as wen
as a direct effect on the channel reach of the downstream boundary condition.

(3) The refiection of the iwo sets of wave morion at opposite ends of the channel
from the point of generation, results in representing each of the linear channel
responses by iwo infinite series, one representing each direction of propagation.

Considering that the modified Bessel function is itself represented by an infinite
series, the solution is in the form of a double infinite series which seems too
complidied for practical application in river fiow forecasting. However, due to
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heavy damping, only the first few terms of the transfer functions would be required,
and the polynomial appraximation of the first order modified Bessel function is
sufficiently accurate and can be calculated easily (Napiórkowski and Dooge, 1988).
It was found moreover, that:

(1) The total volume of the contribution to the input response due to a delta
function input at the upstream boundary and a delta function input at the down-
stream boundary sum to unity for any point in the channel reach.

(2) The fale of convergence in the twa infinite series characterizing the response
to an upstream input and the twa infinite series characterizing the response to a
downstream input is the same in all tour cases and is equal to exp( - 2f L).

4. The generalized linear channel response

In the present paragraph we will concentrate on the downstream wave which is of
primary importance in flood rauting. To filter out the downstream wave we can set
L -+ 00 in equation (20) and deal with the limiting case of downstream flow for
a semi-infinite reach (Le. the case where the downstream contral is so distant fram
the section of interest that the downstream boundary bas no influence). In such a
case the upstream transfer function in Laplace transform domain and in the time
domain is given respectively by:

hu(x,s) = exp(exs + fx -xJ(asz + bs + c)

hu(x,t) = exp(-o:zx)5(t -X/CI) +

(30)

II {2hJ[(t - X/Cl)(t - x/cz)]}
exp(-Plt + pzX)(h/Cl - h/cz) / .

U[t - x/cI] (31)
v [(t - x/cI)(t - x/cz)]

which corresponds to use of only the first term in equations (24) and (26). The
above expressions are generalized forms (Dooge, 1980; Dooge et aL, 1987a) of
those obtained by Dooge and Harley (1967a, b) for the special case of a wide
rectangular channel with Chezy friction.

4.1. Cunlulants of generalized chamIel response

The use of cumulants (or moments) bas been widely used both in unit hydragraph
analysis and in flood routing to study the praperties of linear responses and to
compare the various models praposed for use in representing the linear channel
response or the unit hydragraph (Dooge, 1973). If the corresponding cumulants (or
moments) of the impulse responses are equal to each other, up to and including N,
then both systems respond identically to input signais which are at most Nth order
polynomial functions of time.

In establishing a theoretical relationship, it is more convenient to use the
cumulants, rather then the moments which are related to lbem. While the moments
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are generated by the Laplaee transform, the eumulants are generated by the
logarithm of the Laplaee transform. Aecordingly they are given by: '

dR

kR[h(x,t)] = (-l)R dsR {ln[h(x,s)}s=o
(32)

The fiest eumulant is identical with the fiest moment about the origin; the seeond
eumulant is identical to the seeond moment about the eentre; the third eumulant
is identical to the third moment about the eentre; but in the ease of the higher
moments and eumulants this identity does not exisL

It is elear erom the above that in ease of the linear ehannel response it is possible
to derive the values of the momen ts or of the eumulants erom the solution in the

Laplaee transform domain given by equation (30) even if the explicit solution in the
time domain given by equation (31) is very eomplieated. Substituting erom equation
(30) in equation (32) we obtain for the eumulants:

dR
kR[h(x,t)] = (-l)R- R {[-J(as2 + bs + c) + es + f]x }ds s=o

(33)

where the parameters a, b, c, e and f have the values given by equation (18).
The fiest rwo eumulants are relatively easy to obtain erom implicit equation (33):

X

kI = mvo
(34a)

1 22

[

X

][
YO

]
k2 = -[1 - (m - 1) Po] - -m m% ~x

(34b)

To ealculate the eumulants of higher order (R > 2) one ean use a general expression
reeentIy derived by Romanowicz et al. (1988):

kR[h(x,t)] =

[

~
]

R

[

Yo

]
R-I m-R [1 + (m - 1)P02]R[R/2] R i

{

m2P02

}
i 35

mvo Sox 1-P02 f;'( ,) [1 + (m -1)P02]2 ()

where the eoefficients ,(R, i) ean be expressed as:

. i r!(2R - 2i - 3)! . (1/2)R-2
,(R,l) = (-1) (R - i - 2)!(R - 2i)!1!

(36)

The general expression for Rth eumulant as given by equation (35) was found to
depend on the time taken for a kinematic wave to traverse the length of the ehannel
[x/(mvo)], the dimensionless ehannellength (Sox/yo)' the ratio of the kinematic wave
speed to the average velocity of flow (m), and the Froude number of flow at the
referenee eonditions (Po).
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4.2. Amplitude and phase eharaeteristies

In maDYother branches of geophysics, the properties of systems are discussed in
relation to their response to a harmonie rather than impulsive input. This caD be
dane either by means of wave number analysis (Kundzewicz and Dooge, 1989) or by
means of frequency analysis. In this paper the second approach is presented.

The amplitude and phase spectra are used as the basis of comparison of various
models and of the comparison of models with data. These spectra are also used to
gain insight into the characteristics of the model or of the system being simulated.

The amplitude and phase spectra caD be derived from the Fourier transform of
the system response. This transform is readily obtained by taking only the imaginary
part of the argument of the system function:

h(x . iw) = h(x,s)ls=iw = A(x,w) exp[i<p(x,w)] (37)

The quantities A(x, w) and <p(x,w) are called the amplitude characteristie
and the phase characteristic, respectively. The frequency characteristies of the
generalized downstream channel response are (Dooge et al., 1987b):

A(x,w) = exp [x! -xJ{ J[b2w2 + J(-aw2 + c)] - aw2 + e}/J2]

<p(x,w) = xew -xJ{ J[b2w2 + J(-aw2 + c)] + aw2 - e}/J2

(38a)

(38b)

where the parameters a, b, c, e and! are defined by equations (18).
It is instructive to examine the form of the amplitude and phase spectra for the

limiting values of the frequency w. For very law frequencies, Le. very long waves,
the upstream boundary condition in the form of a harmonie oscillation:

Au(t) =Ao cos(wt) (39)

results in a harmonie oscillation at the point x:

A(x,t) =Aocos(wt - wx/mvo) (40)

Note, that the phase velocity of the above wave Ck = mvo corresponds 10 the

kinematie wave speed.
At the other extreme ofvery high frequencies, Le. very short waves, the upstream

boundary condition (41) results in a harmonie oscillation:

A(x,t) =Ao exp(-a2x) cos(wt - WX/Cl) (41)

Clearly, the result corresponds to the head of the wave [see equations (24) and (31)]
traveling with the phase velocity CI = Vo + V(gyo) and attenuation exp(-a2x).
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5. Simplifiedforms of St.Venantequations

A number of models of simplified forms of the complete SloVenant equation given
by equation (11) have been proposed in the hydrological literature. If a11three of
the second-order terms on the left-hand side of that equation are neglected and the
dependent variable isA' we obtain:

'-I

gA
[
- asr oA' + as OA'

]
= o

o oA OX oQ Ot
(42)

which is equivalent to:

oA' oA'
Ck- + - = oox at (43)

where Ckis kinematic wave speed defined by equation (8). The solution of this linear
equation is:

A'(x,t) =f(t -X/Ck) (44)

which represents a pure translation. The system function of this solution is:

H(s) = exp(-sx/Ck) (45)

The first cumulant ki = X/Ckreproduces exactly the first cumulant of the complete
solution as is given by equation (34a) and a11the higher order cumulants are zero.
Equation (43) therefore represents an adequate first order approximation and caD
be used as the basis of a first order analysis of ftood waves.

A new-order approximation caD be obtained by using equation (44) to approx-
imate twa of the terms on the left hand side of equation (11) in terms of the
remaining third term. These approximation are:

02A' = 12f"()
Ox2 ck

02A' 1

oxot = ck!"( )
02A'
ot2 = fil ( ) (46)

If the second and third terms are expressed in terms of the first we have:

02A' 02A'
- = Ck-
oxot Ox2

02A' 02A'
- c2

ot2 - k ox2 (47)

Substitution from equation (47) into equation (11) gives diffusion analogy models:

02A' oA' oA'
D ox2 =a ox + Ot (48)

where the advcctive parameter a and the diffusion parameter D are given by:

D = 0.5[1 - (m - 1)2Fo2]v1°o
a = Ck (49)I

II
I

l ),
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The diffusion analogy model gives the correct value for the second cumulant for
any value of Po' Further comparison for higher cumulants reveals that the diffusion
analogy model is identicaI'to the complete solution for the special case of Po = O.A
number of forms of the diffusion analogy approximation to the linearized St. Venant
equation, the solution of the twa-point boundary problem wece discussed by Dooge
and Harley (1967b), Dooge and Napiórkowski (1984, 1987a, b), Dooge et al. (1983):

If the alternative approach is taken of expressing a11the second-order terms as
cross-derivatives, then we have the relationship:

D (PA' aA' aA'
--+a-+- =0
a axat ax at

where D and a have the same values as defined by equation (49). The solution
of this equation bas the system function which is identical in form to the system
function for thedistributed Muskingum model (Strupczewski et al., 1989).

(50)

6. Conclusions

The class of problems that can be termed Doogeology, is defined. Th6 results
of research concerning twa most important problems in Doogeology, namely, the
twa-point boundary problem and the downstream problem, are presented.
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