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Chapter 1

Linear theory of open channel flow

JAROSEAW J. NAPIORKOWSKI

Abstract

The linearized solution of the St. Venant equations is discussed for the general
case of any shape of channel and any friction law. The upstream and downstream
transfer functions are derived analytically for a channel reach of finite length. For
the limiting case of a semi-infinite channel the properties of the upstream transfer
function are studied using the cumulants, and amplitude and phase spectra. A
number of simplified forms of the St.Venant equations are presented.

1. Introduction

In the unsteady motion of water in canals and rivers, the strategy is followed of
proposing simplified models and comparing their performance with field data and
with the result of simulations by means of the St. Venant equations. The main aim
is to obtain convenient predictive models. Although non-linear systems modelling
is already extensively developed, it does not seem useful for stochastic hydrology
or for optimal control problems when flow routing in channels must be repeated
many times for different scenarios. When the starting point in such a strategy is the
linearization of a set of non-linear equations, and moreover the aim is to gain insight
into the nature of the complete non-linear problem, the problem then belongs to a
very special class. That class has been termed by Polish hydrologists Doogeology in
recognition of Prof. Dooge’s contribution to the linear theory of open channel flow.

The most important problems in the linear theory of open channel flow are:

(1) The two-point boundary problem in which both upstream and downstream
boundary conditions are taken into account.

(2) The downstream problem, i.e. the prediction of the flood characteristics at
a downstream section on the basis of a knowledge of the flow characteristics at an
upstream section and the hydraulic characteristics of the channel between the two
sections.

(3) The steady-state rating curve at a downstream control.

(4) The tributary problem which involves predicting the effect of tributary inflow
on conditions in the main channel both upstream and downstream of the point of
entry.
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(5) The lateral inflow problem in which there is a distributed inflow to the
channel reach. The above classification and description applies only to a tranquil
(subcritical) flow in which the Froude number is less than one. For rapid (supercrit-
ical) flow there is no upstream effect. The present paper concentrates on the first
two problems of Doogeology only.

2. Linearization of the St.Venant equations

When only one space dimension is taken into account, the equation of continuity
for the unsteady flow in an open channel in the absence of lateral inflow is given by:
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where Q(x,1) is the discharge, A(x,1) is the cross-sectional area, x is the distance
from the upstream boundary, and ¢ is the elapsed time.

If the assumption is made that only acceleration in the direction of motion needs
to be taken into account then the equation for the conservation of linear momentum
in this direction can be written in terms of the same variables (Dooge et al., 1982):
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where F is the Froude number, y is the hydraulic mean depth (the ratio of the area
of flow to the width of the channel at the water surface), S, is the bottom slope
and S; is the friction slope defined by the equilibrium condition for steady uniform
flow.

The friction slope depends on the type of friction law assumed, the shape and
roughness of the cross-section, the flow of the section and the area of flow. It can be
written in very general form as:

St = f(A, Q, shape, roughness) 3)

0 (1

= gA(S. — Si) (2

The problem of unsteady open channel flow involves the solution of the above
set of non-linear equations subject to given initial conditions and two appropriate
boundary conditions. No analytical solution is available and equations (1) and
(2) must be solved by some method of numerical approximation. To determine
analytically the solution, the St. Venant equations are simplified by considering the
first order (linear) variation from a steady-state trajectory.

To compute the linearized equations we make use of expansion of non-linear
terms in equation (2) in a Taylor series around the uniform steady state (Q,,A,)
and limitation of this expansion to the first order increments Q’(x,t), A’(x,t). The
resulting equations are (Dooge and Napiérkowski, 1984):
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where v, = Q,/A, is the average velocity of flow, and the derivatives of the friction
slope S¢(Q,A) with respect to discharge Q and the area 4 on the right-hand side of
the equation are evaluated at the reference conditions.

The variation of the friction slope with discharge at the reference condition for
all frictional formulae for rough turbulent flow could be taken as:
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To express the variation of the friction slope with flow area we define for conve-
nience a parameter m as the ratio of the kinematic wave speed to the average
velocity of flow:
Ck

L s @)

where cy is the kinematic wave speed (Dooge and Napiérkowski, 1984):
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When equations (6) and (7) are substituted in equation (8) we obtain:
0S¢ 8
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The parameter m is a function of the shape of channel and of area of flow. For
a wide rectangular channel with Chezy friction, m is always equal to 3/2 and with
Manning friction is always equal to 5/3. For shapes of channel other than rectangles,
m will take on different values.

Since equations (4) and (5) are linear first-order equations in two variables,
they are equivalent to a single second-order equation in one variable. The most
general form of this second-order equation is that obtained by using the unsteady
flow potential (Dooge, 1980). This potential can be defined as the function U’(x, )
whose partial derivatives with respect to distance gives minus the perturbation in
the area of flow, that is:

au’

Ox
and whose partial derivative with respect to time gives the perturbation from the
reference discharge:

ou’

P ity Q' (x,1) (10b)

= —A'(x,1) (10a)
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Consequently, the perturbation potential U’(x,r) automatically satisfies the conti-
nuity equation (4). When equations (10) are substituted in equation (5) we obtain
the dynamic equation for the unsteady flow potential U’(x, 1) in the form:
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Any linear function of the perturbation potential U'(x,) will also represent a
solution of equation (11). Since differentiation is a linear operation, both A'(x,t)
and Q'(x,r) will also be governed by an equation of the same form as equation (11).
Similarly, any linear combination of solutions is also a solution of the basic linear
equation, e.g. the perturbations of the velocity v/(x,r), the surface width of the
channel T’(x,) and the Froude number F'(x, ). The choice of dependent variable
in any given problem will be governed largely by the form in which the boundary
conditions are given.

3. Solution for finite channel reach

The basic equation (11) to be solved is hyperbolic in form. Accordingly there are
two real characteristics defined by:

dx

o =2 =%t V() )

along which the discontinuities in the derivatives of the solution will propagate.
We will consider the basic case of tranquil flow (Froude number less than one)
in which A’(x,) will be prescribed both at the upstream boundary x = 0 and at
the downstream boundary x = L. The use of other boundary conditions does not
introduce any new principle.
The problem is to solve equation (11) subject to the double initial condition:
0A'

A'(x,0)=0 =0 (13)

and subject to the boundary conditions:
A'0,1) = Au(t) A'(L,1) = Aa() (14)

The solution can be sought in terms of the Laplace transform. Equation (11) when
transformed to the Laplace transform domain becomes:

clzz as
—_— 2 v f
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where A(x,s) is the Laplace transform of A'(x,t). Equation (15) is a second-order
homogeneous ordinary equation, so the solution can be written in the general form:

[ +gA, i
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A(x,s5) = C1(s) exp[A1(s)x] + Ca(s) exp[A2(s)x] (16)

where A; and A, are the roots of the characteristic equation for equation (16) and
are given by:

A2 =es+f ++\/(as® +bs +c) (17)

Here the parameters a, b, c, e and f are given in terms of hydraulic variables by the
following relationships:

1

S (18a)
s % h;f?—l—%;)&z (18b)
a (nf )2 = =)
f =V (1)

Having determined the parameters Cy(s) and C»(s) from the boundary conditions,
one can write A(x,s) in terms of the h,(x,s) and hg(x,s) which may be defined
as the Laplace transforms of the responses of the channel reach to delta-function
inputs at the upstream and downstream ends respectively. Accordingly we can write:

A(x,s) = hy(x,5)Au(s) + ha(x,5)Aa(s) (19)

The linear channel responses to an upstream input A,(x,s) and to a downstream
input are given by (Dooge and Napidrkowski, 1987a):
sinh[\/(as? + bs + ¢)(L — x)]

sinh[/(as? + bs + ¢)L)

hu(x,s) = exp[(es +)x] (20)

sinh[v/(as? + bs + ¢)x]
sinh[\/(as? + bs + ¢)L]

ha(x,s) = exp[—(es + f)(L —x)] 1)

The original function in the time domain is determined from the corresponding
boundary condition through the relationship:
A'(x,8) = hy(x,2) ¥ Ay(t) + ha(x,1) * Ag(t) (22)

The explicit formulation for the transfer functions hy(x,t) and hg(x,) in the time
domain have been obtained by Dooge and Napi6rkowski (1987a). The transfer
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function due to an upstream input is found' to have two distinct parts so that we can
write:
!
ha(®,1) = hy(x,0) + hi(x,0) 23)
The first part of the solution, which may be termed the head of the wave, is given
by:

hy(x,0) = Y exp(—2nLay — axx) 6(t — nto — x/c1)
n=0

[ e]
e Z exp(=2nLa; + asx) 6(t — nt, — x/c3) (24)
n=1
The celerities ¢; and c, are defined in equation (12) and the parameters a;, a2, o3
and 1, (functions of the channel parameters) are given by:

a; = b/2+/(a) (25a)
az=a;—f (25b)
as=a +f (25¢)
to =L/cy — L/cy (25d)

[t can be seen that the head of the wave moves downstream at the dynamic speed
¢, in the form of a delta function of exponentially declining volume proportional
to exp(—azx). At x = L the delta function is reflected with an inversion of sign
and is propagated upstream at the speed ¢, and with a heavier damping factor
exp[—a3(L — x)]. Then it is reflected again at x = 0 to move in a downstream
direction etc.

The second part of the upstream response, which may be termed the body of the
wave, 1s:

h2(x,t) = iexp(—ﬁlr + Bax)(h/cy — hlc2)(2nL +x) -
n=0
L{2h/[(t — nty — x/c1)(t + nty — x/c2)]}
V][ — nty —xfcr)(t + nto — x/c2)]

Ult —nt, —x/ci]

— > exp(—fit + Bax)(hicy — hica)(2nL — x) -

n=1
L{2h\/[(t — nty —x/c2)(t + nt, —x/c1)]}
VI — nto — x/c2)(t + nty — x/cy)]

where I;{} is a modified Bessel function of the first kind, U[] is a unit step
function, and the remaining parameters are given by:

Ult — nt, —x/ca] (26)
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P =b/2a (27a)
B2 =f — bel2a (27b)
h = \/(b*/4 — ac)/2a (27¢)

As in the case of the head of the wave, the body of the wave is subject to
successive reflection at both the downstream and upstream boundaries but moves
and dissipates more slowly than the head of the wave.

For the downstream transfer function, the head of the wave is given by:

Ri(x,t) = > _exp[—2nLay — as(L — x)] 6]t — nto + (L —x)/ca]
n=0

o Z exp[—(2n + 1)Lay — fL — ax]6(t — nty + L/ca — x/cy) (28)

n=0

and is subject to reflection at the two ends of the reach as in the case of hl(x, 7).
The body of the wave is given by:

hi(x,1) = ) exp[—fut — Ba(L —x))(h/er — hlez) 2nL + (L —x)] -
n=0
L{2h\/[(t — nto + Licy —x/c2)(t + nt, + Licy —x/c1)]}
VIt = nto + L/ca — x/e2)(t + nt, + Licy — x/cy)]

Ult—nto—x/c1]

- Ze‘xp[(—ﬁ]r — Bo(L —x)](hlcy — hica) [2(n + DL +x] -

n=0

Li{2h/[(t + nto+ L/c; —x/ca)(t — nto+ Licy — x/c1)]}
V[t +nto+ Licy — x/cp)(t — nto+ Lic; — x/cy))

Ult—nt,—x/c1] (29)

Note that:

(1) For the case where there is both an upstream and a downstream boundary
condition the unsteady wave motion produced by each of the boundary conditions
will be successively reflected at each end of the channel reach and thus will require
representation by an infinite series.

(2) Allowance for a downstream boundary condition thus has a double effect,
since it produces the reflection of the movement due to the upstream input as well
as a direct effect on the channel reach of the downstream boundary condition.

(3) The reflection of the two sets of wave motion at opposite ends of the channel
from the point of generation, results in representing each of the linear channel
responses by two infinite series, one representing each direction of propagation.

Considering that the modified Bessel function is itself represented by an infinite
series, the solution is in the form of a double infinite series which seems too
complicated for practical application in river flow forecasting. However, due to
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heavy damping, only the first few terms of the transfer functions would be required,
and the polynomial approximation of the first order modified Bessel function is
sufficiently accurate and can be calculated easily (Napiérkowski and Dooge, 1988).
It was found moreover, that:

(1) The total volume of the contribution to the input response due to a delta
function input at the upstream boundary and a delta function input at the down-
stream boundary sum to unity for any point in the channel reach.

(2) The rate of convergence in the two infinite series characterizing the response
to an upstream input and the two infinite series characterizing the response to a
downstream input is the same in all four cases and is equal to exp(—2f L).

4. The generalized linear channel response

In the present paragraph we will concentrate on the downstream wave which is of
primary importance in flood routing. To filter out the downstream wave we can set
L — oo in equation (20) and deal with the limiting case of downstream flow for
a semi-infinite reach (i.e. the case where the downstream control is so distant from
the section of interest that the downstream boundary has no influence). In such a
case the upstream transfer function in Laplace transform domain and in the time
domain is given respectively by:

hy(x,s) = exp(exs + fx —x\/(as* + bs + ¢) (30)

hu(x,t) = exp(—azx) 6@ —x/c1) +

L{2h/[(t — x/e1)(t — x/c2)]}
VIt —x/e)(t = x/c2)]

which corresponds to use of only the first term in equations (24) and (26). The
above expressions are generalized forms (Dooge, 1980; Dooge et al., 1987a) of
those obtained by Dooge and Harley (1967a, b) for the special case of a wide
rectangular channel with Chezy friction.

exp(—pit + Bax)(h/ct — hicz) Ult —x/c1] (31)

4.1. Cumulants of generalized channel response

The use of cumulants (or moments) has been widely used both in unit hydrograph
analysis and in flood routing to study the properties of linear responses and to
compare the various models proposed for use in representing the linear channel
response or the unit hydrograph (Dooge, 1973). If the corresponding cumulants (or
moments) of the impulse responses are equal to each other, up to and including N,
then both systems respond identically to input signals which are at most Nth order
polynomial functions of time.

In establishing a theoretical relationship, it is more convenient to use the
cumulants, rather then the moments which are related to them. While the moments
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are generated by the Laplace transform, the cumulants are generated by the
logarithm of the Laplace transform. Accordingly they are given by: -

k[h(x,0)] = (-D" R{ln[h(x ) (32)

The first cumulant is identical with the first moment about the origin; the second
cumulant is identical to the second moment about the centre; the third cumulant
is identical to the third moment about the centre; but in the case of the higher
moments and cumulants this identity does not exist.

It is clear from the above that in case of the linear channel response it is possible
to derive the values of the moments or of the cumulants from the solution in the
Laplace transform domain given by equation (30) even if the explicit solution in the
time domain given by equation (31) is very complicated. Substituting from equation
(30) in equation (32) we obtain for the cumulants:

R
ke[h(x,0)] = (-1)“% {[=V/(@s® +bs +c) +es +f]x} (33)

s=0

where the parameters a, b, ¢, e and f have the values given by equation (18).
The first two cumulants are relatively easy to obtain from implicit equation (33):

X

b= (34a)
il 2p2y | X Jo_

k2 = —[1—(m ~ 1’F]] [ 31’0] [Sox] (34b)

To calculate the cumulants of higher order (R > 2) one can use a general expression
recently derived by Romanowicz et al. (1988):

kR[h(xﬂt)] =

R % ofiitn s 1)F21“‘“’2* mE |
] [ﬂ] " 2R e @

where the coeflicients (R, i) can be expressed as:

r'(2R s i A1

R-2
(R—i—2)(R—2i)i! W) (36)

Y(R,i) = (1)

The general expression for Rth cumulant as given by equation (35) was found to
depend on the time taken for a kinematic wave to traverse the length of the channel
[x/(mv,)], the dimensionless channel length (Sox/y,), the ratio of the kinematic wave
speed to the average velocity of flow (m), and the Froude number of flow at the
reference conditions (F,).
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4.2. Amplitude and phase characteristics

In many other branches of geophysics, the properties of systems are discussed in
relation to their response to a harmonic rather than impulsive input. This can be
done either by means of wave number analysis (Kundzewicz and Dooge, 1989) or by
means of frequency analysis. In this paper the second approach is presented.

The amplitude and phase spectra are used as the basis of comparison of various
models and of the comparison of models with data. These spectra are also used to
gain insight into the characteristics of the model or of the system being simulated.

The amplitude and phase spectra can be derived from the Fourier transform of
the system response. This transform is readily obtained by taking only the imaginary
part of the argument of the system function:

h(x - iw) = h(x,5)|s=iw = A(x,w) expliep(x,w)] 37
The quantities A(x,w) and @(x,w) are called the amplitude characteristic

and the phase characteristic, respectively. The frequency characteristics of the
generalized downstream channel response are (Dooge et al., 1987b):

A(x,w) = exp [tf —xv/{V/[p? + V(—aw? +0)] - aw” + Jiv2] @8

(x,w) = xew — x/{ VbR + V(—aw? + )] + aw® — Y2 (38b)
where the parameters a, b, c, e and f are defined by equations (18).
It is instructive to examine the form of the amplitude and phase spectra for the

limiting values of the frequency w. For very low frequencies, i.e. very long waves,
the upstream boundary condition in the form of a harmonic oscillation:

Ay (t) = A, cos(wi) (39)
results in a harmonic oscillation at the point x:

A(x,1) = Ay cos(wt — wx/my,) (40)
Note, that the phase velocity of the above wave ¢y = my, corresponds to the
kinematic wave speed.

At the other extreme of very high frequencies, i.e. very short waves, the upstream
boundary condition (41) results in a harmonic oscillation:

A(x,t) = A, exp(—azx) cos(wt — wx/cy) (41)

Clearly, the result corresponds to the head of the wave [see equations (24) and (31)]
traveling with the phase velocity ¢; = v, + 1/(g¥,) and attenuation exp(—azx).
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5. Simplified forms of St.Venant equations

A number of models of simplified forms of the complete St. Venant equation given
by equation (11) have been proposed in the hydrological literature. If all three of
the second-order terms on the left-hand side of that equation are neglected and the
dependent variable is4" we obtain:

0S;0A'  0S 04’

D e e L 2
8o |~ 54 ox T30 o e
which is equivalent to:
8/{’ 0A' 0 43
Ck at = ( )

where cy is kinematic wave speed defined by equation (8). The solution of this linear
equation is:

A'(x,r) =f(t —x/cy) (44)
which represents a pure translation. The system function of this solution is:
H(s) = exp(—sx/cy) (45)

The first cumulant k1 = x/cy reproduces exactly the first cumulant of the complete
solution as is given by equation (34a) and all the higher order cumulants are zero.
Equation (43) therefore represents an adequate first order approximation and can
be used as the basis of a first order analysis of flood waves.

A new-order approximation can be obtained by using equation (44) to approx-
imate two of the terms on the left hand side of equation (11) in terms of the
remaining third term. These approximation are:

2 4! 2 47 '
eiro Sm-iro GE-ro (46)
If the second and third terms are expressed in terms of the first we have:
i e 04 | 500
ik R Tl ¥ i

Substitution from equation (47) into equation (11) gives diffusion analogy models:

pra _ o4 oA ”
o Gl

where the advective parameter @ and the diffusion parameter D are given by:

VoY

a = cy D = 0.5[1 — (m — 1)°F2 S

(49)
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The diffusion analogy model gives the correct value for the second cumulant for
any value of F,. Further comparison for higher cumulants reveals that the diffusion
analogy model is identical to the complete solution for the special case of F, = 0. A
number of forms of the diffusion analogy approximation to the linearized St. Venant
equation, the solution of the two-point boundary problem were discussed by Dooge
and Harley (1967b), Dooge and Napi6rkowski (1984, 1987a, b), Dooge et al. (1983).

If the alternative approach is taken of expressing all the second-order terms as
cross-derivatives, then we have the relationship:

D §%4' 04’ 04’
e (50)

where D and a have the same values as defined by equation (49). The solution
of this equation has the system function which is identical in form to the system
function for the distributed Muskingum model (Strupczewski et al., 1989).

6. Conclusions

The class of problems that can be termed Doogeology, is defined. The results
of research concerning two most important problems in Doogeology, namely, the
two-point boundary problem and the downstream problem, are presented.
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