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Application of Volterra series to modeliing of 
rainfall-runoff systems and flow in open 
channels* 

JAROSKAW J, NAPIORKOWSKI 
Institute of Geophysics, Polish Academy of 
Sciences, Pasteura 3, 00973 Warsaw, Poland 

ABSTRACT The method presented combines a black box 
analysis with a conceptual model approach. To describe 
the nonlinear behaviour of the systems, a model in the 
form of a second-order approximation of a cascade of 
nonlinear reservoirs was used. Such a model is equivalent 
to the first two terms of the Volterra series. Applica­
tions of the Volterra model based on a nonlinear cascade 
to the modelling of flow in open channels and of surface 
runoff systems indicate that the proposed model can be 
used to represent systems with nonlinear dynamic and 
linear static behaviour. 

Application des séries de Volterra à la mise en modèle 
des systèmes pluies-dêbits ou de 1'écoulement en canaux 
découverts 
RESUME La méthode présentée combine une analyse type 
boîte noire avec une approche de modèle conceptuel. 
Pour décrire le comportement non linéaire des systèmes on 
a utilisé un modèle se présentant sous la forme d'une 
approximation du second ordre d'une cascade de réservoirs 
non linéaires. Un tel modèle est équivalent aux deux 
premiers termes des séries de Volterra. Les applications 
du modèle de Volterra basées sur une cascade non linéaire 
à la mise en modèle de l'écoulement dans les canaux 
découverts et des systèmes d'écoulement superficiel 
montrent que le modèle proposé peut être utilisé pour 
représenter les systèmes avec comportement dynamique non 
linéaire et comportement statique linéaire. 

INTRODUCTION 

Three general categories of approach have been employed to formulate 
nonlinear input-output relationships in hydrology: (1) methods of 
mathematical physics; (2) black box analysis; and (3) conceptual 
models. 

In the case of surface runoff from a natural catchment or flow in 
an open channel, an accurate application of the hydraulic approach 
would require a detailed topographical survey and determination of 
roughness parameters. In order to avoid these difficulties, 

*Paper presented at the Anglo-Polish Workshop held at JabXonna, 
Poland, September 1984, (See report in Hydrological Sciences 
Journal, vol.30, no.l, p.165.) 
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188 Jaros/aw J. Napiôrkowski 

modellers use an alternative approach e.g. via conceptual models or 
black box models. 

Nonlinear black box analysis is concerned with representing a 
system by a functional Volterra series in the form of a sum of 
convolution integrals. The conceptual model approach is to simulate 
the nature of the catchment response or the channel response by a 
relatively simple nonlinear model built up from simple nonlinear 
elements. 

The method discussed in this paper combines black box analysis 
with the conceptual model approach. To describe the nonlinear 
behaviour of systems, a model in the form of a second-order 
approximation of a cascade of nonlinear reservoirs is used. Such a 
model is equivalent to the first two terms of a Volterra series. 
The two equations for the kernels are linked through the use of 
parameters and an auxiliary function that are common to both 
functions. The equations fulfil a number of requirements formulated 
previously (Diskin & Boneh, 1972) for kernel functions of conserva­
tive systems. 

MATHEMATICAL DEFINITION OF THE PROBLEM 

The paper is concerned with the modelling of hydrological processes 
relating effective rainfall to runoff,or inflow to outflow in a 
river reach,by means of a nonlinear integral model: 

t t t 
y ( t ) = f h ( r ) x ( t - r ) d r + / / h „ ( r , , r ) x ( t - r > x ( t - r ) d r , d r 

o l o o 2 1 2 1 2 1 2 

+ / / / h „ ( r , r , r ) x ( t - r ) x ( t - r ) x ( t - r )d r dr dr + . . . o o o 3 1 2 3 1 2 3 1 2 3 

(1) 
In the above equation x(t) is the input to the system (effective 
rainfall or flow at the upstream end of the channel), y(t) is the 
output from the model (surface runoff or flow at the downstream end 
of the channel), h (r) is the first-order kernel which reflects the 
linear properties of the system, h (r ,r ) is the second-order 
kernel which reflects the quadratic properties, and so on. 

The functional power series of equation (1) was used for the 
first time in mathematics by Volterra in 1887 (Volterra, 1959). 
Since then it has been applied in many fields of science and 
engineering (Barrett, 1977). A Volterra series model was introduced 
to hydrological modelling by Amorocho (Amorocho, 1963). 

The subject of this paper is the identification of the kernels of 
the Volterra series. The use of a two-term series is discussed, but 
the approach presented can be applied in a similar way to a series 
with more terms, However for higher order terms, much more accurate 
data are required. 

The first difficulty associated with the determination of the 
kernels of a Volterra series using a finite length of input and 
output data is the determination of the system response due to the 
initial condition when the system is not initially relaxed. One 
possible way to overcome this difficulty is through the fulfilment 
of the assumption that the system considered has a finite memory, T . 
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Application of Volterra series 189 

The term memory is understood as the length of past input history 
that has an effect on the present operation of the system. It is 
associated with all the transient states whose influence is carried 
forward in time. 

The identification problem may be stated: find the best 
estimates of the first and second order kernels, hi(r), h2(rl>r2)> 
of the quadratic model with memory T : 

y(t) = f sh1(r)x(t - r)dr 
o 1 

+ fTsfs h (r r )x(t - r )x(t - r )dr dr 
O O A X. £J X Ci x. ct 

(2) 

which minimize the mean square residual output error using output 
records, z(t), observed in a finite interval, T: 

J(hi;h2) = fQ [z(t) y(t)]/dt (3) 

Note that the length of the output should be much greater than the 
memory of the system (the extra data are used for noise smoothing) 
and that the length of the input is [-TS,T]. The functions z(t), 
y(t), and x(t) might be considered as sequences of individual 
records in the case of many independent input-output pairs. 

EXISTENCE AND UNIQUENESS OF OF THE SOLUTION 

In order to simplify the notation, Y and H will be used to denote 
the observation space and the solution space respectively. Y is 
the square integrable function space in an interval [0,T], more 
precisely the Hilbert space L2[0,T]. The solution space, H, is a 
vector function space with elements of the form: 

,T 
H 3 h = [h1(r1),h2(r1,r2)] r, ,r„ E [0,T 

1 2 £ 
(4) 

H is the product of the square integrable function space of one 
variable in an interval [0,TS] (more precisely L

2[0,Ts]) and the 
square integrable function space of two variables L ([0,TS] x 
[0,TS]) with inner product: 

^ ' ^ H = ' o 8 V r ) S l ( r > d r + ^ S / o S h 2 ( V r 2 ) g 2 ( V r 2 ) d r i d r 2 <5) 

Using the model equation (2) one can define the linear bounded 
operator L mapping the space of solutions H into the space of 
observation Y (Hsieh, 1964): 

Lh = 
o 

T T 
x(t - r)dr, / s/ s 

o o 
x(t - r )x(t - rg)dr dr 

h1(r) 

hl ( ri' r2 ) 

(6) 
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190 Jaros/aw J. Napiôrkowski 

The adjoint operator to L which maps the space of observation Y into 
the space of solutions H satisfies: 

<z,Lh> = <L*z,h> 
— Y — H 

and is defined by 

(7) 

L*z r x(t - r )dt 

/ ... x(t - r.)x(t - r„)dt 
o 1 2 

z(t) (8) 

The objective function which now takes the form of the norm in Y 
can be expanded according to the definition of the norm and inner 
product: 

J(h) Lh - z 

= <Lh,Lh> - 2<Lh,z> + < z , z > 
- ' - Y - ' Y ' Y 

(9) 

Hence the problem of identification can be transformed from the 
space Y to H using the definition of the adjoint operator: 

J(h) = <L*Lh,h> - 2<L*z,h> + 
- - H - H 

(10) 

From the necessary condition for optimum (the gradient with respect 
to h must be equal to zero) we get the Wiener-Hopf type equation: 

L*Lh = L*z (11) 

so 

h = (L*L)_iJL*z (12) 

We need to ask whether: 
(a) the inverse of the operator L*L exists; and whether 
(b) the operator (L*L) is continuous. 

The properties of the operator L*L (discussed in detail by Napiôr­
kowski & Strupczewski (1984)) lead to the conclusion that even if 
the inverse of L*L exists, (L*L)-1 is not continuous. It follows 
from the above that one may observe large errors of the estimates 
hi(r), b.2(ri,r2> since the solutions do not change continuously 
with the data. So the identification of the kernels of the Volterra 
series is a typical example of an ill-posed problem in the sense of 
Tichonov (1963). 

The example presented below explains why small errors in measure­
ment may result in large errors in the solution. Let us consider a 
simple linear model: 

y(t) = I h(r)x(t - r)dr 
o 

(13) 

and let h 0 be the solution which gives J = 0 with perfect measure-
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Application of Volterra series 191 

ments z = y. Now perturb h as follows: 
o 

h(r) = h (r) + A sin(wr) (14) 
o 

Substituting in equation (13) we get: 

T 
z(t) = y(t) + A / s sin(wr)x(t - r)dr (15) 

o 

The measure of how z(t) differs from y(t) is given by: 

| I as - y M 2 = A2 / T [ / T s sin (wr)x(t - r)dr]2dt (16) 

One can see that, for any A, if w -> °° then | | z - y | j y ~> 0. The 
function in the square brackets in equation (16) approaches zero as 
w tends to infinity. 

On the other hand 

I Ih - h I I2 = /Ts[h(r) - h (r)]2dr = A2 J"Ts sin2(wr)dr 
' o H o o o 

= 0.5 A2 (T - sin(wT )cos(wT )/w) * 0.5 A2T (17) 
s s s s 

Hence the difference between h0(r) and h(r) can be made arbitrarily 
large. 

The essential conclusion from the above consideration is that 
very good fitting of the output from the model to the observed data 
may be completely misleading. 

PRACTICAL METHODS OF SOLUTION 

The problem of identification of the kernels of the Volterra series, 
as defined earlier, is ill-posed because of the class of functions 
within which the solution is sought is too wide. That class has to 
be reduced, on the basis of some mathematical and physical charac­
teristics, to such a sub-class for which the identification problem 
has a unique, stable solution in the case when the measurement 
values are contaminated with errors. More precisely the solution 
has to depend continuously on the measurement data and therefore: 

z - y -*• 0 implies h - h ->• 0 
o 

Physical constraints 

Some conditions which have to be fulfilled by the kernels of the 
Volterra series describing conservative systems (passive and 
lossless) were specified by Diskin & Boneh (1972). The properties 
of the first-order kernel were found to be identical with those of 
the instantaneous unit hydrograph (I1JH), which is the kernel for a 
strictly linear system: 
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192 Jaros/aw J. Napiôrkowskï 

CO 

/ h. ,(r) dr = 1 (18) 
o 1 

h 1 ( r ) * 0 

For the second-order kernel, a significant finding was that the 
surface integral of the kernel function over its plane of definition 
must be zero: 

CO OO 

Vo V r i ' V dridr2 = ° (19a) 

Further it was shown that the integral of the function along any line 
parallel to the main diagonal must be zero: 

/ h (r,r + C) dr = 0 for all C 5 0 (19b) 

This result means that the output from the second-order term is 
negative for some intervals of time. It follows that to avoid 
negative total output it must be assumed that the inputs to the 
system should have an upper bound, which corresponds to the con­
dition for convergence of the infinite series (Diskin & Boneh, 1972). 

The regularization method 

The regularization method (Tichonov, 1963; Tichonov & Arsenin, 
1974) leads to a stable approximate solution of the identification 
problem by the solution of the well-posed problem: 

Ja(h) = | |y - z| |2 + afi(h) (20) 

where a is a parameter and fi(h) is the so called regularizing 
functional. As a regularizing functional one can choose, for 
example: 

,(h) - ( £ { I Vr>]' + [f^lll^dr)- • (,*-,*- U b ^ . r ^ 

+ [3h2(rl'r2)-j2 + frtri.rz)^,,, d r ^-5 (21) 

9-1 3-2 X 2 

which includes the derivatives in such a way that any high frequency 
components in h contribute strongly to the objective function. 

The parameter a in equation (20) is determined empirically, 
The sequence oijj = cQ^

k (l > °) i s constructed. For any a^ one gets 
the corresponding solution, hak, and for the solution of the 
identification problem that element is chosen for which | jy - z|I is 
equal to the error of measurements. The regularization technique 
was applied recently by Bruen & Dooge (1984) to linear surface 
runoff systems. 
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Application of Volterra series 193 

Direct optimization of the ordinates 

The method based on direct optimization of the ordinates was applied 
by Diskin & Boneh (1973) to the modelling of nonlinear surface 
runoff systems. The discretization method adopted in their work is 
such that each function in equation (2) is represented by a series 
of pulses at regular grid-points at the same interval, At, along the 
time axis. The second-order kernel is represented by an array of 
pulses on a square grid at the same interval, At, as that used for 
the first-order function. With that discretization, the integrals 
are replaced by summations of products. The relationship between 
the pulses is given by: 

Y(i) = Zfs H (k)X(i - k) + if8., Zfs H (k,£)X(i - k)X(i - £) 
k=l l k—x K—x A 

(22) 
i = 1,2,...,NT; NT - T/At; Ng - Tg/At 

where Ns is the number representing the memory of the system. The 
discrete variables are derived from the corresponding continuous 
quantities by the following equations: 

X(i) = / J i ! 1 ) A t x ( t ) d t i = -Ng + 1 , . . . , N T (23a) 

Y(j) = / ( j ! 1 ) A t y ( t ) d t j = l , . . . , N T (23b) 

H1(k) = / ( k _ 1 ) A t h l ( r ) d r k = 1 , . . . , N (23c) 

„ ,. „. 1 rkAt ,£At 
V k ' ° = IÏ ;(k-l)At V l ) A t h 2 ( r i ' r 2 ) d r i d r 2 

k , £ = 1 , . . . , N 
s 

(23d) 

Note that in the case when the memory of the system is longer than the 
time base of the input (Tx) the second-order kernel H2(k,£) cannot 
be identified outside the region jk - £| < Tx/At, since the available 
records do not make use of H2(k,£) outside this region in the 
convolution defined by equation (22) (Diskin & Boneh, 1973). 

In the method based on direct optimization of the ordinates, 
the solution space is a product of two Euclidian spaces, 
H = RNs 8 RNs x RNS j a n (j t n e observation space is the Euclidian 
space Y = R T. One has to determine 0.5(NS + 3)NS parameters in the 
first-order kernel and the symmetric second-order kernel. The 
operator L*L in equation (11) is now a matrix. The solution is 
unique if the matrix L*L is positive definite, and the distribution 
of eigenvalues determines whether the discrete problem is well- or 
ill-conditioned. From the practical point of view, the length of 
the output should be much greater than the number of unknown para­
meters , since it reduces the condition number and the extra data 
are used for noise smoothing. Note that the additional physical 
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194 Jaros/aw J. Napiôrkowski 

constraints (equations 18 and 19): 

N 
Z,S

1 H..<k) = 1 (18) 
k=l 1 

N - I 1 I ii 
K S J H„(£,£ + k) = 0 k < N (19b) 
k=l 2 ' ' s 

reduce the dimensionality of the problem. 

Kernel expansion in orthonormal polynomials 

The most popular method of identification expands the kernels in 
orthonormal polynomials (Amorocho & Brandstetter, 1971; Kuchment, 
1972; Papazafiriou, 1976). The solution is searched for in a 
subset: 

h,(r) = E N , a <J). (r) (24a) 
1 i=l l l 

h f r . r ) = Z N E N a. . <(>.(*,> 4>.(ro) (24b) 
2 1 2 i=l j=l lj l 1 j 2 

where a^ and a^j are unknown parameters and {cf>i(r)} are orthonormal 
polynomials in [0,TS]. Any set of functions orthonormal over a 
finite interval may be used for the expansion. However, as advo­
cated by Dooge (1965), orthonormal polynomials with an exponentially 
decreasing weighting function lend themselves particularly well to 
hydrological applications. The coefficients of the polynomials are 
generated by the three-term recurrence relation (Davis & Rabinowitz, 
1975): 

p (t) = (t - a ) p (t) - b p (t) (25) 
n+1 n n n n-1 

where p ., = 0, p = 1 , 
-1 *o 

<tp ,p >„ 
n n g „ , 

a = _^± n = 0,l,... 
n <p ,p >Q n n P 

<tp ,p >„ 

b =^LZEZ11 n = 1 ) 2 ; . „ . 
n %-i'Vù 

and the inner product is defined as: 

<a,b>„ = f s a(t) b(t) exp(-6t)dt (26) 
p o 

The orthonormal form of these polynomials is obtained from the 
relation: 

Q (t) = p (t)/<p p > (27) 
n n n n 
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Application of Volterra series 195 

Hence the orthonormal functions used to approximate the kernels take 
the form: 

$ At) = Q.(t) exp(-3t/2) (28) 
i+1 l 

and meet the condition: 

0 if i ^ 3 
/ T s è (t) <tj (t) dt = 
o l j 

(29) 
1 if i = j 

For brevity of notation let 

q (t) = / T s (J) (r) x(t - r) dr (30) 
i o i 

Then for the symmetric second-order kernel the problem of identifi­
cation can be reduced to the minimization of the following expres­
sion: 

J(h) = / [z(t) - EN Ja.q.(t) + a..q2(t)] 
o i=l i i il i 

- 2ZN 2 1:* a. ,q.(t)q.(t)]2 dt (31) 
1=2 3=1 ij i nj 

The necessary condition for a minimum of equation (31) is the 
following set of requirements for the expansion coefficients 

a <a ,q > + a <q ,a > + . . . + a <q ,a a > = <a . z> 
1 ql'4l 2 H1'42 NN Hl'qNHN q l ' 

a <q ,q > + a <q ,q > + ... + a <q ,q q > = <q ,z> 
1 42 , H1 2 H2'H2 NN H 2 ' M N % H2 ' 

VSW + a2<qNqN'q2> + ••• + aNN < qN%' q
NV

 = <q
N%'

Z> (32) 

where the inner products are computed in Y, 
The algebraic set of equations (32) is well-conditioned in the 

case of rapidly varying input signals because such signals cause an 
increase in the diagonal elements and a decrease in the nondiagonal 
elements. For the idealized case of a Dirac delta input one gets 

I (j). (t) for t é T 
I i s 

<!,(*> = (33) 
0 for t > T 

s 

and thus: 
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196 Jaros/aw J. Napiôrkowski 

1 i f i = j 
< q . , q . > = (34) 

1 J ( 0 i f i t j 

On the other hand, slowly varying signals may lead to the ill-
conditioned set of equations. In the particular case of a constant 
input function, all columns of the matrix in equation (32) are 
linearly dependent and the solution of the problem is not unique. 

The physical constraints of equations (18) and (19) result in 
N + 1 additional equations, which reduce the dimensionality of the 
problem. The method presented in this section is characterized by 
a relatively small number of parameters but it arbitrarily assumes 
a particular structure for the kernels. 

The model based on a nonlinear cascade 

Napiôrkowski & Strupczewski (1979, 1981) analytically obtained the 
first two kernels of the Volterra series for the simplest quasi-
physical nonlinear model, namely a cascade of identical nonlinear 
reservoirs. The relationship between storage (S) and outflow (Q) 
for each such reservoir is specified by the following quadratic 
equation: 

Q = a S + b S2 (35) 

The parameters of this equation, a and b, together with the number 
(n) of reservoirs in the cascade specify the model. For that model, 
which combines linear static and nonlinear dynamic characteristics, 
the structure of the kernels was shown to be (Napiôrkowski & 
Strupczewski, 1979): 

h,(r) = a H (r) (36) 
1 n 

h_(r ,r ) = b{H (r ) X*1 H (r ) + H (r ) if H (r) 
2 1 2 n 1 k=l k 2 n 2 k=l k 1 

- Hn[max(rlfr2)]} (37) 

where 

H (r) = (ar)n~ exp(-ar)/(n - 1)! (38) 

The two equations are linked through the fact that two parameters, 
a and n, appear in the equations of both kernels. One can see that 
h^(r) given by equation (36) is the well known transfer function for 
a cascade of linear reservoirs. The second-order kernel described 
by equation (37) meets the conditions of equations (18) and (19) 
specified by Diskin & Boneh (1972) . The plot of the dimensionless 
second order kernel is given in Flg.l. Note that h2(ri,r2) does 
not possess derivatives along the main diagonal r^ = r2- Accor­
dingly, the method which expands the kernels in orthonormal poly­
nomials should be modified. For example, h^r-^,^) can be repre-
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Application of Volterra series 197 

Fig. 1 The dimensionless second-order kernel for n = 3. 

s e n t e d b y : 

h o < r i > r o) = E. -i ^ • -i a - • * . ( r ) <)) , ( r ) + E. c . cj). [max(r , r ) ] 2 1 2 i = l j = l 13 l 1 J 2 i = l 1 1 u 1 2 

(39) 

The previous equation (24b) results in damping which is twice as 
strong as that corresponding to equation (37) and gives good results 
in the case of systems with a nonlinear no-memory part. The main 
feature of the model described by equations (36) to (38) is the 
small number of parameters to be determined in comparison with the 
methods presented in the previous sections. 

The use of the two-term Volterra series model based on the 
cascade of nonlinear reservoirs is subject to certain restrictions 
on the parameters. These are needed to ensure copositivity of the 
model (a positive output response to a positive input). The 
sufficient copositivity condition: 

X = max x(t) < 0.5 a
2/b (40) 

is weaker than the sufficient convergence condition for the infinite 
Volterra series (Napiorkowski & Strupczewski, 1979): 

X = max x(t) £ 0.25 a2/b (41) 

APPLICATION OF THE MODEL BASED ON A NONLINEAR CASCADE 

The examples which illustrate the applicability of the second-order 
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198 Jaros/aw J. Napiôrkowski 

Volterra model based on the nonlinear cascade to the modelling of 
flow in open channels and surface runoff systems are presented 
below. In both cases the problem to be solved is to find the best 
estimates of the parameters n, a and b of the model given by 
equations (36) to (38). The optimization problem: 

J(n,a,b) = fT [z(t) - y(t)]2 dt (42) 
o 

where z(t) is the flow at the downstream end of the reach of the 
direct runoff, can be reduced to optimization with respect to one 
variable (a > 0) only. 

Let us denote by Oy(t) the linear response of the model, and by 
Ozy(t) the quadratic response for b = 1. Then due to linearity of 
the second term with respect to b the objective function takes the 
form: 

J(n,a,b) = f [z(t) - ay(t) - b a2y(t)]2 dt (43) 

Note that the functions Oy(t) and a2y(t) depend on the parameters 
n and a but do not depend on the parameter b. Hence b can be 
determinated from the necessary condition for an extremum, 8j/3b=0: 

/ T [z(t) - Gy(t)]cf2y(t)dt 
b = — (44) 

fT [a2y(t)]2dt 
o 

The following steps are therefore required in the overall optimi­
zation of the model: 

(1) assuming b = 0 compute the initial values of the parameters 
n* and a* as in linear analysis e.g.. by moment matching (Nash, 
1959; Dooge, 1973); 

(2) assuming an integral value of the parameter n close to n* 
and a suitable value of the scale parameter (a) compute the 
functions Oy(t) and a2y(t); 

(3) compute directly the optimum value of the parameter b from 
the necessary condition for the optimum (equation (44)); 

(4) maintaining the same value of the parameter n and varying 
the parameter a repeat the procedure of steps (2) and (3) to 
determine the optimal set of values of (a,b) for the assumed 
integral value of n; and 

(5) assuming a range of values of n repeat the procedure of 
steps (2) and (3) for each n to determine the optimal set of the 
three parameters (n,a,b). 

Flow in open channels 

The prototype flow was taken to be numerical solutions of the St 
Venant equations for the simple case of a rectangular prismatic 
channel. 

The two-term Volterra model was used to simulate the flow 
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deviation from the steady state of Q0 = 200 m
3s_1. The following 

parameter values were used: bottom slope I =0.000 248, Chezy 
coefficient C = 44.9, channel width B = 100 m, depth of flow in the 
steady state y0 = 2 m. Calculations were carried out for a reach of 
x = 40 km. In the numerical experiment, the parameters n, a and b 
were identified for an inflow increment in the form of a rectangular 
pulse function (AQ = 200 m3s-1 for t e [0,6000 s]). The optimal 
values of the parameters were found to be : 

n = 6 
a = 0.217 x 1 0 - 3 [ s - 1 ] 
b = 94 x 10~1 2 [ s _ 1 nT 3 ] 

The degree of f i t to the prototype by the optimized model i s shown 
in F i g . 2 . 

fin,-—- 6 0 

50 

40 

30 

20 

10 

0 

2 4 6 8 10 12 14 I6~ 
TIME IN HOURS 

Fig. 2 Identification of the Voiterra model at 40 km using a rectangular pulse 
function. 

The model thus obtained was tested by applying an input com­
pletely different from the input used for calibration. The input 
chosen was a smooth bimodal function with maximum amplitude 
AQ' = 250 m3s_1 (Napiorkowski et al., 1983). The resulting fit is 
shown in Fig.3 and can be considered good. 

Surface runoff systems 

The two-term Voiterra model was fitted to the records of eight 
storms whose quadratic response was previously determined by: 

(a) direct optimization of 74 values in the linear and quadratic 
kernels (Diskin & Boneh, 1973); and 

(b) applying the discrete version of the model based on a 
nonlinear cascade (Diskin et al., 1984), 

The catchment is that of the Cache River at Forman in southern 
Illinois covering 630 km , with gentle slopes and a well-developed 
drainage network. The optimal values of the model parameters were 
found to be: 
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70 i 

SIMULATION USING SMOOTH BIMOOAL TEST INPUT 

ST VENANT EQUATION 
FITTED MODEL 

70 

60 

50 

40 

30 

20 

8 12 16 20 24 28 32 
TIME IN HOURS 

Fig. 3 Simulation of St Venant model at 40 km using a smooth input. 

n = 3 
a = 0.75 [day - 1 ] 
b = 6.84 x 10" [day" 

Examples of the degree of fit to the observed runoff by the Volterra 
model are shown in Figs 4(a)-(g). 

The agreement between the observed and computed output for the 
case of the model based on direct optimization of 74 ordinates 
(objective function J = 53) is better than for the case based on 
the cascade (J = 238). However the latter case has only three 
parameters which ensures that the identification problem is well-
conditioned. 

The parameters determined by Diskin et al. (1984) (n = 3, 
a = 0.74 day-1, b = 6.35 x 10-3 day-1mm_1) were calculated for the 
discrete Volterra model. Hence they differ from these obtained for 
the continuous Volterra model. However, the objective function in 
both cases is the same. 

CONCLUSIONS 

The identification of kernels of the Volterra series is a typical 
example of an ill-posed problem. It follows from the above that 
one may find large errors of kernel estimates even if measurement 
errors are very small. 

In this paper a number of methods of solving that problem is 
presented. One of them (the method based on a nonlinear cascade) 
provides a relatively simple solution. According to this approach 
the kernels are sought in a subset defined in terms of quasi-
physical characteristics. 

Applications of the Volterra model based on a nonlinear cascade 
to the modelling of flow in open channels and of surface runoff 
systems indicate that the proposed model can indeed be used to 
represent systems with nonlinear dynamic and linear static behaviour. 
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Fig. 4 Comparison of observed runoff and that predicted by the Volterra model. 
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