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ABSTRACT The objective of the paper is to describe a 
method of representing the N-th order response of a 
surface runoff model by means of a conceptual model with 
(N + 1) parameters. The method is illustrated for the 
representation of the third order response by a four-
parameter conceptual model. The conceptual model used is 
a cascade of n equal nonlinear reservoirs with arbitrary 
storage-outflow relationship whose first N derivatives at 
a reference outflow define the remaining model parameters. 
The outflow is shown to be linear in the parameters 
representing the second and higher order derivatives so 
that these parameters can be rapidly optimized for any 
choice of the first two parameters (number of reservoirs 
and first derivative). The third-order state model 
(TOSM), which is shown to be equivalent to a three term 
Volterra series, is fitted to the records of eight storms 
whose quadratic response was previously determined by 
Diskin & Boneh (1973) by direct determination of the 74 
values in the linear and quadratic kernels. 

L'optimisation d'un modèle d'écoulement de surface du 
troisième ordre 
RESUME L'objectif de cette communication est la 
description d'une méthode pour représenter la réponse du 

n e ordre d'un modèle d'écoulement de surface au moyen 
d'un modèle conceptuel avec N + 1 paramètres. On illustre 
cette méthode par la représentation de la réponse du 
troisième ordre au moyen d'un modèle conceptuel à quatre 
paramètres. Le modèle conceptuel utilisé est une cascade 
de N réservoirs égaux non linéaires avec une relation 
volume du stock/écoulement arbitraire dont les N premières 
dérivées pour un écoulement de référence définissent les 
paramètres restants. On montre que l'écoulement est 
linéaire en ce qui concerne les paramètres représentant 
les dérivées du second ordre et de l'ordre plus élevé de 
sorte que ces paramètres peuvent être rapidement optimisés 
pour un choix donné des deux premiers paramètres (nombre de 
réservoirs et premières dérivées). Le modèle d'état du 
troisième ordre (TOSM) que l'on montre équivalent à des 
séries de Volterra a trois termes est ajusté aux 
enregistrement des crues correspondant à huit averses dont 
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la réponse quadratique a été calculée auparavant par Diskin 
& Boneh (1973) au moyen de la détermination directe de 74 
valeurs dans les kernels linéaires et quadratiques. 

INTRODUCTION 

In the case of runoff in a natural basin conditions are so complex 
that an accurate application of the hydraulic approach would require 
a topographical survey of great extent and complexity. Accordingly, 
two further types of approach to the rainfall-runoff problem have 
been developed in hydrology. These are the use of conceptual models 
and of black-box models. At first the representation of the 
catchment response by linear models was developed (Dooge, 1973) and 
more recently this was extended to representation by nonlinear 
conceptual models (Fleming, 1975) and nonlinear black-box analysis 
(Amorocho, 1973). 

Nonlinear black-box analysis is concerned with representing the 
surface runoff system by a functional Volterra series in the form of 
a sum of convolution integrals. The conceptual model approach is to 
simulate a nature of the catchment response by a relative simple 
nonlinear model built up from simple nonlinear conceptual elements. 

The method discussed in the paper combines the black-box model 
analysis with the conceptual model approach. To describe the 
nonlinear behaviour of the catchment a model in the form of 
third-order approximation of a cascade of nonlinear reservoirs is 
used. Such a model is called a Third-Order State Model (TOSM) and 
it can be shown to be equivalent to the three first terms of the 
Volterra series. The TOSM is derived from a somewhat more general 
state-space model, in order to show the general properties of the 
method proposed which can be applied to the higher order models. 

THE THIRD-ORDER STATE MODEL 

The surface runoff system is represented as a cascade of equal 
nonlinear reservoirs in which each nonlinear reservoir is responsible 
for part of the attenuation of the system response. This lumped 
dynamic model can be represented by a set of ordinary differential 
equations 

S1(t) = -f[S1(t)] + I(t) 

S2(t) = -f[S2(t)] + f[Sx(t)] 

(la) 

Sn(t) = -f[Sn(t)] + f[Sn_1(t)] 

y(t) = f[Sn(t)] (lb) 

where n is the number of reservoirs, I(t) is the effective rainfall, 
Si(t) is the storage of the i-th reservoir, f[.] represents the 
outflow-storage relation of the individual reservoir, y(t) is the 
output from the model, the dot over the S indicates a first-order 
derivative with respect to time. 
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The function ffSj^t)] is not prescribed. We assume only that it 
is differentiable for Si(t)>0 as many times as there are terms in 
the Volterra series. In this study we are concerned with initially 
relaxed systems, so the initial condition is ̂ 3(0) = 0. 

We may divide S^(t) and y(t) into linear, quadratic, cubic parts 
and a residual error, i.e. 

SiCt) = ôSi(t) + ô^SjCt) + ô'Sj^t) + e(S±) 

y(t) 5y(t) + 62y(t) + 63y(t) + e(y) 

(2) 

(3) 

In order to compute the linear (6), quadratic (6 ) and cubic (6 ) 
components of y(t) and S^(t) we make use of the Taylor expansion of 
the outflow-storage relation about steady state S^(t) = S 0 and 
y(t) = y0 = f(SQ). In our case SQ = 0 and y0 = 0. Thus the 
expansion is: 

f[Si(t)] = aSi(t) + btSiCt)]2 + c[Si(t)]3 + e(f) (4) 

where 

3f 
3S4 

1 3zf 
2 3S. 

A H i 
6 3S? 

(5) 

Substituting equations (2), (3), (4) and (5) into equation (1) and 
neglecting second and higher order terms gives the set of equations 
for the linear approximation as 

6Si(t) = ac|>ôS_(t) + [1,0,...,0] I(t) 

<5y(t) = aôSn(t) 

(6a) 

(6b) 

where 

-1, 0, 

1, -1, 

o, 0, 

When second-order increments are taken into account we get the 
additional equations 

ô 2 S ^ ( t ) = acj>ô2£i( t) + b c f > [ ô £ i ( t ) ] 2 

ô2y(t) = aô2Sn(t) + b[6Sn(t)]
2 

(7) 

(8a) 

(8b) 

which are linear in 6 j3(t) and 62y(t). When third-order increments 
are also taken into account we have the further equations 

6 3 j 3 ( t ) = ac|)<53_S(t) + 2 b ç ô J S ( t ) û 2
J S ( t ) + c<j>[ 6_S(t ) ] 3 (9a) 

63y(t) = aô3Sn( t ) + 2b6Sn( t )62Sn( t ) + c [ 6 S n ( t ) ] 3 (9b) 

which are l inear in 6 S(t) and 6 y ( t ) . 
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It should be noted that the argument of the forcing function for 
equation (8) is the solution of equation (6) and that the argument 
of the forcing functions for equation (9) are solutions of 
equations (6) and (8). It should also be noted that the input of 
effective precipitation I(t) occurs only in equation (6). 
Consequently the addition of the components 52y(t) and 6"y(t) effects 
only the distribution of the predicted runoff ordinates and the 
total value of each of these components is zero. A more detailed 
description of this approach can be found in Napiorkowski (1978), 
Napiorkowski & Stupczewski (1979, 1981) and in Napiorkowski & 
O'Kane (1984). 

The first, second and third-order components described by 
equations (6), (8) and (9) form the Third-Order State Model (TOSM) 
which is assumed to represent the catchment response. 

THE RELATION BETWEEN THE TOSM AND THE VOLTERRA SERIES 

The description of any dynamic system by a Volterra series is a 
generalization of the concept of the transfer function which is of 
great importance in the analysis, design and control of linear 
systems. The Volterra series represent an explicit input-output 
relation for nonlinear systems (Wiener, 1942) and consist of an 
infinite series composed of terms of the form of convolution 
integrals. 

y(t) = jfhiCr) K t - r)dr + f* f*^*!, r2) I(t - rx)I(t - r2)dridr2 

+ f0 f0 f0 h3(r1,r2,r3)I(t - r1)I(t - r2)I(t - r3)dr1dr2dr3 + ... 

(10) 

This type of series was applied for the first time by Volterra in 
1887 on functional equations (Volterra, 1930). 

The solution of the linear set of equations (6a) describing the 
linear part of the storage trajectory is 

6S(t) = /* exp(a<j>r) [1,0, . . . ,0]TI (t - r)dr (11) 

where exp(a(f>r) is the transition matrix for equation (6) . One can 
see that the linear component of the state of the cascade of 
nonlinear reservoirs can be described as the first term of the 
Volterra series 

<5S(t) = / ^ ( r ) I(t - r)dr (12a) 

where the vector of linear response kernels is given by 

Ki(r) = exp(acf>r)[l,0, . . .0] (13a) 

From equation (6b) one can see that the linear part of the outflow 
trajectory is 

ôy(t) = /0
th1(r) I (t - r)dr (12b) 
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with 

h-^r) = a K1)n(r) (13b) 

where K^ n is the linear state kernel for the n-th reservoir in the 
cascade. 

The solution of the linear set of equations (8a) describing the 
quadratic part of the storage trajectory is 

62_S(t) = f* exp(a(j>T) b<j>[<5SKt - x ) ] z d x (14) 

and the transition matrix for equation 8(a) is the same as for 
equation (6a). Having the solution for 6j3(t) from equation (12a) we 
can insert [6_S_(t - x)] in equation (14). The double change of the 
order of integration between x and r-|. , r2 results in the second term 
of the Volterra series 

<52j3(t) = f*f* K2(r1,r2) I(t - r1)I(t - r2)dr1dr2 (15a) 

where 

^2<rl'r2> = / o
m a x ( rl' r2 )

 b exp(acpx) è K_1<.rl - x)K1(r2 - x)dx (16a) 

is the vector of the second order state kernels. 
From equation (8b) one can see that the quadratic part of outflow 

trajectory is 

y(t) = f*f* h2(r1(r2) I(t - r1)I(t - r2)dridr2 (15b) 

with 

h2(
rl>r2> = aK2,n<rl.r2) + bKl,n<rl>Kl,n(r2> <16b> 

where K2 n^
rl> r2^ ^s tlle second-order state kernel for the n-th 

reservoir and K^ n(r) is the first-order kernel already found in the 
linear approximation. 

Finally, the solution of the linear set of equations (9a) 
describing the cubic part of the storage trajectory is 

<53_S(t) = /0
texp(a(J)x)<}.{2bô_S(t - x)ô2_S(t - x) + c[ÔS(t - x)]2}dx (17) 

where the transition matrix for equation (9a) is the same as for 
equations (6a,8a). Having the solutions for <5S_(t) from equation 
(12a) and for 6 Ŝ (t) from equation (15a) we can insert 
<5S(t - x)62_S(t - x) and [ô_S(t - x)] 3 in equation (17). The triple 
change of the order of integration between x and r^,r2,r3 results in 
the third term of the Volterra series 

63S_(t) = /o
t/0

t/o
tK3(r1,r2,r3)I(t - r ^ K t - r2)I(t - r3)dridr2dr3 

(18a) 

where 
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^3 ( rl' r2' r3 ) = /o
maX(ri'r2'r3)exp(ac|)T)q.[2bK1(r1 - x)K2(r2 - r, r3 - T ) 

+ cK1(r1 - T) Kx(r2 - T ) K1(r3 - T)]dT (19a) 

From equation (9b) one can see that the cubic part of outflow 
trajectory is 

53y(t) = /0
t/0

t/0
th3(r1,r2,r3) I(t - rx)I(t - r2)I(t - r3)dr1dr2dr3 

(18b) 

with 

h 3 < r l > r 2 ' r 3 > = a l 3 , n ( r l . r 2 ' r 3 ) + 2 b J i l , n< r l> i i2 , n< r 2 . r3> 

+ c J i l , n ( r l ) Kl ,n< r 2> * i > n ( r 3 ) (19b) 

where K3 n is the third-order kernel for the n-th reservoir. 
This proves that the TOSM as represented by equations (6,8,9) is 

equivalent to the sum of three first terms of the Volterra series 
given by equations (12b,15b,18b). 

THE IDENTIFICATION PROBLEM FOR THE TOSM 

The problem to be solved is to fit the TOSM to a given surface 
runoff system for which data are available. This fitting may be 
carried out for several records of storms by comparing the 
corresponding direct surface runoff with the output from the model 
and manipulating parameters of the TOSM until a best-match is found 
in the sense of least-squares. So, we are looking for the parameters 
minimizing the objective function 

M ^ i 0 q 0 

J(n,a,b,c) = E 1 = 1 /o [0i(t) - <5yi(t) - 6
2
yi(t) - Ô

3
yi(t)]

2dt (20) 

where M is the number of independent records, i is the number of 
storms, T-̂  is the length of the i-th outflow record, O^t) is the 
i-th direct surface runoff. 

From the computational point of view it is convenient to divide 
the cubic components ô3y(t) and 63_S(t) in equation (9) into two 
sub-components 

<53£>(t) = 63j3'(t) + 83S"(t) (21a) 

63y(t) = o3y'(t) + 63y"(t) (21b) 

based on the two parts of the forcing function. Since equation (9) 
is linear in ô J3(t), this decomposition and subsequent superposition 
involves no assumption or approximation. 

The term o3|T(t) is that part of the cubic component which 
results from the forcing by the cube of the linear storage 
component 6_S(t) and may be referred to as the cubic-linear 
sub-component. It is governed by the vector state transition 
equation : 
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<53S/(t) = a^ÊS'(t) + c<j>[<5.S(t)]3 (22a) 

The output due to the cubic-linear sub-component is given by 

63y'(t) = aô3S^(t) + c[ÔSn(t)]
3 (22b) 

The second sub-component of the cubic response results from the 
forcing by the product of the linear storage component and the 
quadratic storage component and may be referred to as the cubic-
quadratic sub-component. It is governed by the state transition 
equation 

ô3S"(t) = a<)>ô3_S"(t) + 2b<j>ôSKt)ôz;3(t) (23a) 

and the output for the cubic-quadratic sub-component is given by 

ô3y'*(t) = aô3S^(t) + 2b5Sn(t) <5
2Sn(t) (23b) 

Let us denote by y2(t) and y (t) the solution of equation (8) and 
of equation (23) respectively for b = 1 and by y4(t) the solution of 
equation (22) for c = 1. Then due to linearity of equation (8,22, 
23) the following relations are fulfilled 

<5y(t) = yx(t) (24a) 

ô2(t) = by2(t) (24b) 

63y(t) = b2y3(t) (24c) 

sVct) = cy'*(t) (24d) 

and the objective function takes the form 

J(n,a,b,c) = Z^=1/0
 1[0i(t) - yl(t) - by^(t) - b

2y?(t) - cy^(t)]2dt 

(25) 

Note that on the right-hand side of equation (25) the functions 
y (t), y (t), y (t) and y4(t) depend on the parameters a and n but 
do not depend on the parameters b and c. So, the problem of 
identification can be reduced to optimization with respect to two 
variables only, n and a. For given n and a two other parameters b 
and c result from the necessary condition for optimum 3J/3b = 0 and 
3J/3c = 0. 

The following steps are therefore required in the overall 
optimization of the model: 

(a) assuming b = 0 and c = 0 compute initial values of parameters 
n and a as in linear analysis of catchment response, e.g. by moment 
matching (Nash, 1959; Dooge, 1973); 

(b) assuming an integral value of the parameter n close to n and a 
suitable value of the scale parameter (a) compute the functions 
yx(t), y2(t), y3(t) and y'*(t) solving equations (6,8,22,23) for 
b = 1 and c = 1 ; 

(c) compute directly the optimal values of the parameters b and c 
from the necessary condition for optimum 3J/3b = 0, 3J/3c = 0; 
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(d) maintaining the same value of the parameter n and varying the 
parameter a repeat the procedure of steps (b) and (c) to determine 
the optimal set of values of (a,b,c) for the assumed integral value 
of n; 

(e) assuming a range of values of n, repeat the procedure of 
steps (b) and (c) for each of n to determine the optimal set of the 
four parameters (n,a,b,c,). 

THE RESULTS OF A NUMERICAL EXAMPLE 

An example which illustrates the applicability of the TOSM is 
presented below. The objective is to solve the problem of 
identifying the four parameters n,a,b and c of the model for a 
watershed previously described and used by Diskin & Boneh (1973) in 
identification of the first two kernels of the Volterra series by 
means of direct optimization of the ordinates of the kernels. The 
catchment is that of the Cache River at Forman in southern Illinois 
which is 630 km in extent with mild slopes and a well developed 
drainage network. The data of effective rainfall represented as 
rectangular pulses with time interval of one day and surface runoff 
for eight storms observed between 1935 and 1951 are given in Table 1 
and 2 respectively. The optimal values of the parameters (n,a,b,c) 
of the TOSM were found to be 

n = 3 

a = 0.677 (1/day) 

b = 5.58 x 10"3(day-1mm_1) 

c = 83.6 x 10_6(day~1mm~2) 

The outputs simulated by the TOSM for the optimal values of the 
parameters are given in Table 3. An example of the degree of fit to 
the real runoff by the TOSM is shown in Fig.l for one of eight 
storms (storm no. 1). The separate linear, quadratic and cubic 
components for this particular storm are plotted in Fig.2. 

In Table 4 a comparison is made between the optimal linear 
(b = c = 0), optimal quadratic (c = 0) and the cubic model based on 
cascade of equal nonlinear reservoirs. 

In Table 5 a comparison is made between the models based on a 

TABLE 1 Values of effective rainfall (mm day 1) 

Time Number of storm: 
(days) 1 2 3 4 5 6 7 8 

18, 
95. 

19 

0 

0 

.8 

.3 

.1 

.0 

.0 

2. 

3. 

17, 
78 . 

0, 

. 5 

.8 

. 5 

. 7 

. 0 

0.3 

0.3 

17.0 
56.1 
13.7 

0.3 

38.1 
19.1 

0.0 
0.0 

33, 

23. 
0. 
0. 

0. 

.0 

.1 

.0 

.0 

.0 

1. 

5 . 
49. 

0, 

0, 

.0 

.1 

.5 

.0 

.0 

69. 

8 . 
0. 

0. 
0. 

.9 

.6 

.0 

.0 

.0 

2. 
0. 

48. 

0. 
0. 

. 5 

.0 

.0 

.0 

.0 
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TABLE 2 Values of direct runoff (mm day*1) 

Time Number of storm: 
(days) 1 2 3 4 5 6 7 8 

1 
2 

3 

4 
5 
6 
7 
8 

9 
10 

11 
12 

13 

14 
15 

16 
17 

0,8 
4.8 

35.8 

40.6 

22.1 

12.2 

7.6 

3.6 
2.5 

1.5 

0.8 
0.5 

0.3 
0.0 

0.0 

0.0 
0.0 

0.0 
0.0 
0.0 

7.6 

30.0 

25.4 

16.3 

9.4 

5.3 
3.3 

1.8 
1.3 

1.0 
0.5 

0.5 

0.3 

0.0 

0.0 
0.0 
0.8 

5.1 

16.8 

21.1 
16.0 

10.7 
6.1 
3.8 

2.3 
1.8 
1.3 

0.8 

0.5 
0.3 

0.3 

0.0 
2.5 
9.1 

14.0 
11.2 

7.6 

4.8 

3.3 
2.0 
1 .3 

0.8 
0.5 

0.3 

0.0 
0.0 

0.0 
0.0 

2.3 
7 .6 

10.4 

12.7 

8.9 
5.6 

3.8 

2.0 
1.3 
0.8 

0.5 
0.3 

0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
1.8 
6 .4 

9.9 

11.7 
8.4 

6.1 

4.1 

3.0 
2 .0 

1.3 
0.8 

0.3 
0.0 

0.0 

0.0 
0.0 

3.6 

9.1 
18.5 

16.8 

11.7 
7.4 

4.6 

2.5 

1.8 
1.0 
0.8 

0.5 
0.3 

0.0 

0.0 

0.0 
0.0 

0.0 
0.5 
2.3 

6.4 
12.7 
10.9 

6.4 

4.3 
2.5 
1 .5 

1.0 
0.8 

0.5 
0.5 

0.3 

0.0 
0.0 

nonlinear cascade and linear and quadratic Volterra models based on 
direct optimization of the ordinates as presented by Diskin & 
Boneh (1973). 

Although the agreement between the observed and computed output 

TABLE 3 Outputs predicted by TOSM (mm day'1) 

Time Number of storm: 
(days) 1 2 3 4 5 6 7 8 

1 
2 

3 

4 
5 

6 

7 
8 
9 

10 

11 

12 
13 

14 
15 

16 
17 

0.6 

9.3 
34.6 

39.0 
24.2 

11.2 

5.0 
2.8 

1.9 

1.4 
1.0 

0.7 
0.4 

0.3 
0.2 

0.1 
0.1 

0.1 
0.4 

1.6 

9.0 
25.7 

25.5 
16.5 

9.3 
5.3 

3.3 
2.1 

1.4 
0.9 

0.6 
0.3 
0.2 

0.1 

0.0 
0.0 

0.7 
5.6 

17.0 

20.6 
15.9 

10.2 
6.3 
4.0 

2.6 

1.7 

1.1 
0.7 
0.4 

0.2 
0.1 

0.0 
1.5 

7 .3 
12.0 
11.4 

8.5 

5.9 

3.9 
2.6 

1.6 
1.0 

0.7 
0.4 
0.2 

0.1 

0.1 

0.0 

1.2 

6.5 
11.5 

11.3 
8.6 

6.0 

4.0 
2.6 
1.7 

1.1 
0.7 

0.4 
0.2 

0.1 
0.1 
0.1 

0.0 

0.0 

0.3 
3.0 

10.3 
12.2 

9.9 

7.0 
4.7 

3.1 
2.0 

1.3 
0.8 

0.5 
0.3 
0.2 

0.1 

0.1 

3.2 

14.9 

19.0 
14.9 

9.7 

6.1 
3.9 

2.5 
1.6 

1.0 
0.6 

0.4 
0.2 

0.1 
0.1 

0.0 

0.0 

0.1 

0.3 
2.4 

8.9 
10.8 

9.1 

6.5 
4.4 

2.9 

1.9 
1.2 
0.8 

0.5 
0.3 
0.2 

0.1 

0.1 
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FIG.l Comparison of observed runoff and that predicted 
by the TOSM for storm no. 1. 

for the case of quadratic Volterra model based on direct 
optimization of the ordinates of the kernels is better than for the 
case of cubic TOSM, the latter has one big advantage. It has only 
four parameters, which ensures that the identification problem is 
well-conditioned and ensures the robustness of the solution in the 
presence of error in the input-output measurements. The small 
number of parameters makes the model suitable as the basis of a 

H LINEAR TERM 

O QUADRATIC TERM 

a CUBIC TERM 

t ( d a y , 

FIG.2 The linear, quadratic and cubic terms predicted 
by the TOSM for storm no. 1. 
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TABLE 4 Optimal parameters and values of objective 
function for models based on nonlinear cascade 

Linear Quadratic Cubic 

n 
a -,-3 
b x 10 _ 
c x 10 6 

J 

4 
1.32 

0 

0 
445 

3 

0.75 
6.84 

0 
233 

3 
0.677 
5.58 
83.6 

154 

control system in the operation of a water resource system. 

TABLE 5 Comparison between models based on nonlinear 
cascade and ordinates 

Based on nonlinear Based on 
cascade: ordinates: 
Linear Quadratic Cubic Linear Quadratic 

Number of 
parameters 

Objective 
function 

2 

445 

3 

233 

4 

154 

14 

354 

74 

53 
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