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Abstract. The two-layer hierarchical technique with different prediction methods was applied to a part of the Wupper 
Reservoir System. The reservoir system consists of two reservoirs in series with additional inflow to the lower reservoir. 
The tasks of these reservoirs are flood control, recreation, hydropower and low flow augmentation with the aim of water 
quality improvement. Attention is focused on the implementation of anticipatory methods based on Deterministic Chaos 
and Artificial Neural Networks prediction of the inflows to the system that result in different operation rules. It is shown 
that the introduced optimisation concept improves considerably the system performance in comparison with the Standard 
Operation Rule. 
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INTRODUCTION 

A method for determining the yield of a multireservoir water supply system has been applied to a part of the 
Wupper Reservoir System in Germany. The major objectives of this particular system are flood control, recreation, 
hydropower and low flow augmentation. The proposed technique may be reduced to the following associated parts: 
the optimisation of a simplified quantitative model of the actual system and the multiobjective verification and/or 
comparison through simulation. The first part consists in constructing a relatively wide class of control schemes 
based on the two-level optimisation technique method. We focus our attention on the implementation of a number of 
prediction techniques of the system inflow (ARIMA, Deterministic Chaos, Artificial Neural Networks) that result in 
different operation rules. The second part is based on the simulation performed for historical data over a long time 
horizon (39 years). This simulation consists in testing the control rules for chosen scalar objectives. The diagrams of 
frequency (reliability) criteria, calculated on the basis of simulation for a number of scalar criteria are analysed to 
obtain the final comparison results. 
Several control schemes corresponding to the considered prediction models have been proposed in the form of 
computer programs. The simulations have been performed for a large number of years and for many objectives. To 
present advantages of the control schemes corresponding to the considered prediction systems, they are compared 
with so-called Standard Decision Rule (SDR). 

DESCRIPTIONS OF THE CASE SYSTEM MODEL 

The catchment of river Wupper is located in the southern part of North Rhine Westfalia. The hydrological 
features of this catchment are characterised by a massive rocky underground covered only by a small layer of soil 
and an average yearly precipitation of about 1300 mm per year. The absence of underground water storage leads to 
dangerous floods as well as to extreme droughts. To accommodate this problem several reservoirs were built. Here 
we are just interested in the management of the two reservoirs governing the discharges in the city of Wuppertal, 
which lies about 20 km downstream of reservoir No.2. Figure I shows the simplified Wupper Reservoir System. 
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It contains two reservoirs locatted in series, the control centre at reservoir No.2 and several runoff and rainfall 
gauges. The release of the reservoirs depends mainly on the runoff at the control gauge in Wuppertal. A runoff of 5 
m3/s at this gauge is sufficient for the required water quality, runoff less than 3.75 m3/s should be avoided and the 
runoff less than I m3/s has to be regarded as ecologically disastrous. The basic hydrological and reservoir 
characteristics are given in Table I. 
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FIGURE 1. Basic structure of reservoir system. 

The purpose of the model is to describe relationships between flow rates in the rivers over a long time horizon 
(one year) with the discretization period of 10 days. Therefore, only the dynamics of the storage reservoir are 
considered, while effects of flow dynamics in the river channels are neglected. 

For brevity, the following notation is used: j- number of lO-day intervals, Vj - state of the reservoir, Xj - natural 
inflow, Uj - flow in a given cross-section, Zj - water demand, OJ - outflow from the reservoir, 1,2 - denote the Bever 
and Wupper reservoirs, 3 - denotes the lateral inflow, W- cross-section at Wuppertal. 

According to the introduced notation, the state equations for the reservoir system and flow balance equation for 
the selected cross-section Ware: 

(I) 

(2) 

(3)B=[~ ~l c=L~ ~] 
(4) 

TABLE 1. The basic characteristics of the Wupper Reservoir System. 

Reservoir Bever Wupper 

Total storage Vmax (min m3 
) 23.70 25.90 

Dead storage Vmin (min m3 
) 0.70 2.10 

max. outflow (m3/s) 17.00 180.00 

min. outflow (m3/s) 0.10 1.00 

Annual average flow (m3/s) 0.94 3.51 

catchment area km2 25.7 212.00 

350 



THE OPTIMISATION PROBLEM
 

The objective function of the optimisation problem under consideration for any time instant k (for any 10-day 
period) and for annual time horizon TA can be written in the form of a penalty function [9]: 

k+lA 

- '" [ +1 (I I )2 +2 (2 3 W 2 I (I 'I )2 2 (2 '2 )2)Q(O• VI/- ~ Gi 0i-Zi +Gi Oi+Xi-Zi) +b i Vi-Vi +bi Vi-Vi (5) 
J"k 

In Equation 5, symbols a and b with respective subscripts denote weighting coefficients. The performance index 
Q is expressed explicitly on controls OJ and the state trajectory V

J 
(reservoir contents) as follows: 

k+1A 

Q(O,V) = L Q(Oi.v i ) (6) 
j~k 

The objective function during each 10-day period is subject to the constraints on the state of the system, controls 
and flows in given profiles: 

< Vi < ViV i - maxmin 
(7) 

Oi <01 <Oimin - - max 

It is assumed that the operation of the reservoir system is carried out on annual basis in the following way: 
- By late December, the reservoirs normally are returned to low level to prepare the system for the next flood 

season completing the annual cycle. 
- The storage reservation for flood control on January 1 is determined for controlling the maximum probable 

flood. During the normal filling period, January-April, the reservoirs should be filled up completely. 
- During the May-August period the first reservoir should be filled up to meet recreation requirements. 
- During the May-November period the water stored in and released from the reservoirs is used for low flow 

augmentation and hydropower. 
According to the general objective of the control problem, which is aimed at the rational protection against water 

deficits and at reaching the desired state at the end of April, the following values of weighting coefficients in the 
optimisation problem are used: at= I if demands are greater than supply and at=O.OI otherwise, for k=[1,36]. As far 
as the second coefficient is concerned, in order to avoid a good performance in one year followed by a very poor 
performance in the next year bj =0.01 for j=[1,12] (May-August), bj =0.001 for j=[1,30] (September- February), 
b

l
=0.004 for j=[31,33] (March) and bj=O.OI in April, for j=[34,36]. 

TWO-LEVEL OPTIMISATION TECHNIQUE 

To solve the aforementioned problem we adjoin the equality constraints in Equation 1 with the Lagrange 

multiplier sequence A (prices). The Lagrangian function has the form: 

k+lA 
1L(O'v',i) = ~)Q(Oj.vi) +,il (V 1+ - Vi + B* Oi - C * X i)] (8) 

i~k 

To include the state-variable and outflow constraints the above problem is solved by means of the two-level 
optimisation method and in a decentralised (co-ordinated) fashion. At this stage we make use of the additivity of the 
Lagrangian function (Equation 8) and the possibility of separation of the decision variables. 

The Lagrangian function has a saddle point which can be assigned by minimising L( A ,V,O) with respect to V 

and 0, and then maximising with respect to A. Finally, the optimisation problem can be expressed in the form: 
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A 
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FIGURE 2. Two-level optimisation method. 

max [min L(A, V,O)} (9) 

A V,O 

with inequality constraints on state and control and no constraints on Lagrange multipliers. Figure 2 illustrates how 
the two-layer optimal control method works. 

At the lower level for given values of the Lagrange multipliers we look for the minimum of the Lagrange 
function. The necessary condition is the zero value of the gradient with respect to V and O. The task of the upper 
level is to adjust the prices A. in such a way that the direct control of the reservoir, affected by A., results in the desired 
balance of the system (the mass balance Equation I is fulfilled satisfactorily). In the upper layer, in the maximisation 
of the Lagrange function with respect to A., the standard conjugate gradient technique is used. 

In the applied Two-Layer optimisation control method (TLM) illustrated in Figure 3 the solution of the two-level 
optimisation problem (Equation 9) is the essential "upper layer part". 

inflow 
prediction Upper-layer: long term 

... (two-level) optimisation 

~ planned de cis ions 

real inflow Lower-layer: short 
... term corrections 

reservoir state 

•real decisi on 

FIGURE 3. Two-layer control method. 

INFLOW PREDICTION MODELS 

Three inflow prediction techniques that were used for inflows predictions in the two-layer control method are 
briefly presented below. 

Box-Jenkins ARMA Model 

A classic multiplicative decomposition was applied to deseasonalise the observed data and then ARMA (Auto 
Regressive Moving Average) model was used in the prediction of inflows to the reservoir system. In the practical 
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calculations the set of appropriate procedures from Microsoft IMSL Library of Professional Edition of Microsoft 
Fortran Power Station v. 4.0. was adopted. These procedures enable to compute estimates of autoregressive and 
moving average parameters of ARMA(p,q) model and then calculate values of inflows estimates for specified 
number of points to be included in forecast of a fitted model. Calculations showed that the most effective model was 
ARMA(2,1). 

7' 1 2 I (10)XI = P X'_l + P xl_2+a, +q a'_1 

where p, q are unknown parameters and a is the white noise process.
 
It enables better forecasts than the model in the form of average historical values for values for 20-days time
 
horizon.
 

Artificial Neural Network Model 

Inflow predictions based on the neural network simulation were estimated with the help of the NeuroSolutions 
software package[ 11 ]. 

NeuroSolutions adheres to the so-called local additive model. A processing element (PE) simply multiplies an 
input by a set of weights, and nonlinearly transforms the result into an output value. The principles of computation 
at the PE level are deceptively simple. The power of neural computation comes from the massive interconnection 
among the PEs which share the load of the overall processing task, and from the adaptive nature of the parameters 
(weights) that interconnect the PEs. Under this model, each component can activate and learn using only its own 
weights and activations, and the activations of its neighbours. The used neural network architecture is the multilayer 
perceptron (MLP) [7]. The performance of an MLP is measured in terms of a desired signal and an error criterion. 
The output of the network is compared with a desired response to produce an error. NeuroSolutions uses an 
algorithm called backpropagation [14]. The network is trained by repeating this process many times. The goal of the 
training is to reach an optimal solution based on the performance measurement. 

The obtained simulation results justified 3 points as the maximum that can be included in forecast, with the 
following parameters of applied MLP: Hidden Layers = I, PEs =8, transfer function = TanhAxon (hyperbolic 
tangent -1/+1), Learning Rule = Momentum (Gradient and Weight Change, Momentum = 0.7), transfer function 
specified for output layer = LinearTanhAxon ( picewice linear -11+ 1 ). It should be noted that ANN model gives the 
best predictions of inflows to the system. 

Model Based On Deterministic Chaos Concept 

The concept of deterministic chaos has been recently developed to analyse many processes observed in the 
natural environment. In "deterministic chaos" one tries to unify two contradictory concepts: that of chaos and of 
determinism. In fact, a deterministic chaos phenomenon concerns actually deterministic dynamical processes. 
However, the evolution process in such a case has some special properties, combined one with another, which yield 
that the resulting observed outputs do not have an appearance of a "normal" deterministic phenomenon. Let us 
precise the mentioned characteristic features. 

The fundamental notion and an object occurring in any deterministic chaos process, is attractor. Let us consider 

a dynamical process defined by a function qJ : T x X x T ---+ X and such that: 

(1 I) 

where X is a (metric) space of state values, T = 2 in discrete case or Rn in continuous case (2 means the set of 

positive integer numbers). X is a trajectory (evolution curve) i.e. a function X: T ---+ X, X is a set of trajectories. 

If X satisfies (11), then X is called deterministic set. 

If the state space X includes a minimal subset 5l1, 511 eX, being a compact smooth differential manifold, 
such that: 
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511 is invariant, i.e. if X(to) E 511 for some X E X and some tn, then X(t) E 511 for t ~ to; 

511 is attractive for X, Le. VX E X, X(t) converges to 511 (in the metric p of space X) as t ~ 00 , 

then 511 is called attractor of dynamic process rp or of the set X. 

The phenomenon of attractor occurs in many areas and in many known real cases [2, 3, 4, 10, 13, 16, 17, 19]. An 
attractor has usually lower dimension (e.g. Hausdorff dimension D) than the topological dimension of the state space 
X. In many cases we deal with strange attractors of the Jractal structure [5], with a non-integer dimension. 

The fact that M is attractive and invariant has many important practical implications. Such a process can be 
considered as limited to M only, thus, to a lower dimension space. All other features characteristic to a deterministic 
chaos are strongly related to the existence of attractor. These are: unstability and non-linearity, as well as an 
apparent "chaotic" behaviour of the considered dynamic system. Moreover, every trajectory of the dynamic process 
attains, after a respective time, any point of M. The mentioned features occur always together in every known 
realisation/example of deterministic chaos. 

As far as practical, quantitative recognition of the process is concerned, many difficult problems/tasks still arise. 
The first one is the determination of dimension of M; the final one is the exact form of function rp. In fact, we are 

rarely keen of obtaining a whole, precise description of the process, it is usually enough to determine good 
approximation of rp . Moreover, we are usually not interested in the whole vector K(t), but in its few components. 

The classical situation is the following. A sequence {x;}, xjER1
, i = I, , N, of observed/measured values is 

given, where Xj is an element of the state vector K(t), i.e.: Xci) = Xi =( , Xi' ... ) . In order to find a (partial) 

approximation of the deterministic relationship rp of eq.1 (for an autonomous/stationary process), one considers the 
function F defined by the following relationship: 

(12)y;,;D. = F(y;,,) = F(x i , Xi_I"'" Xi-(m-l)) 

with a properly adjusted number m, called embedding dimension and a given time delay ~. Hence, the so called 

pseudo-phase space c:Pcomposed of m-element sub-sequences y;" of {x;} is considered: 

(13) 

The function F in Equation 12 is a dynamical process in the space Rm, which - according to the embedding 

approach [19] forms an attractor 5l1' in Rm, if the original process is a deterministic chaos. It results from the 

Takens theorem [19] that 5l1' has the same topological properties as the original attractor 511 of the dynamic 

process rp in the space X. Takens theorem states also that m can be put as: m = 2n + 1, where n is the topological 
dimension ofX, thus the number of elements of vector K(t). 

However, the second practical problem arises now: how to determine, disposing only of a sequence {x;}, the 
embedding dimension m, if we do not know the topological dimension n of X . This problem has been considered 
and solved by several authors [I, 3,4]. 

The proposed approach is as follows. We measure the spatial correlation of the points that evolve on the attractor 
in c:Pwith the correlation integral 

CN(l,m) =1/ N 2 LO(l-rim)) (14) 

i,j=l, ... ,N 

defined for sequences y;" in c:P = Rm, determined by the given sequence {x;}, where r!l = Ily;" - y/" II, I is the 

radius of the sphere centred in y;", () is Heaviside's function, II-II is the Euclidean norm, and N is the number of 

elements of {x;}. Hence, CN (l, m) determines the averaged relative number of points y,;, whose distance from 

y;" is less than I. 
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Then correlation dimension v is determined as the slope of function In( eN (l, m) ) with respect to In(l), in a 

respective range of sufficiently small I, such that the function behaves as a linear one. The value m is taken as the 
smallest one for which the above occurs. The value v determined in this way is a good approximation and a lower 

bound of Hausdorff dimension 0 of the considered attractor :M', [4] and hence of :M [19]. Finally, taking into 

account that n =min {k E Z : k ~ v} determines the topological dimension n of the space including attractor :M , 

and using Takens theorem, one put: m = 2n + 1 as the searched embedding dimension. 
One can proceed then to the stage of determining the prediction model for the relationship F in Equation 12. It 

occurs that this is possible for deterministic chaos case: as the process is really deterministic and due to existence of 
an attractor (thus of a bounded set). On the other hand however, the unstability contradicts the possibility of making 
good (precise) prediction on a long time horizon, but for a short horizon it is quite possible. 

The considered prediction model has the form of a function, belonging to a given class F. such that it 
approximates the function F, or even less - a "component" ofF, being prediction of a future value of state {xi+T}: 

(15) 

where T is a prediction horizon. Such a function is denoted here by i~, since it depends on the time instant i of 
i 1making prediction, and on the horizon T of this prediction. Thus, we search for a function iT :P ~ R : 

(16) 

that would determine a good approximation of the value Xi+T of the given sequence {xJ. 

Applying the local model concept, [I, 13], we proceed as follows: for a given point YII/
i

E P and a number K 

one determines the K-element set of nearest neighbours of y;" (in the Rm norm), denoted by K(i). Then, the 

function i~ E P is adjusted as being solution of the approximation problem: 

(17) 

The class F may be taken as the set of quadratic functions, thus: 

f ' (x x x ) - (yi )J .C· (y,',',)+ < a_, y,',', > +b (18)T i' ,-1''''' '-(11/-1) - 11/ 

or as a set of linear functions (C = Q in Equation 18). 
In the above formulae, ~ is m-element vector, b E R' and C is m x m matrix; <', > denotes scalar product in 

Rm
• The number K, adjusted experimentally, should satisfy some conditions to assure the uniqueness of, the 

approximation problem (17) solution. 
Numerous computations for inflows in the Wupper Reservoir System were performed, in order to verify the 

hypothesis of deterministic chaos and to find the embedding dimension m. It has been shown, that the data represent 
the chaotic dynamics of dimension m = 7. Then, two prediction models (18) have been built. The best quality of 
forecast (the minimum error between forecasts and the original data) was obtained with m = 4 and m = 5; thus, less 
than m=7 [18][. The linear approximation model (with prediction horizon T=l, 2, 3) showed better results than the 
quadratic model and the model in the form of average historical values. 
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COMPARISON OF CONTROL METHODS BY SIMULATION
 

The simulation of some of the chosen control methods were carried out over the long time horizon of 39 years, 
with the real, historical data of natural inflows to the system. The methods under investigation have been partially 
discussed in the previous sections. Let us mention here once again those, which - after an initial stage of synthesis 
consisting of adjusting their parameter values - have been thoroughly compared by simulation. 
I) TLM - Two-layer optimisation method with: 

a) the complex, long-term planning aiming at the optimisation of all the particular goals in a compromising 
manner. 

b) the realisation of the planned decisions (water supplies and discharges) in the real, current conditions. 
2) SOR -The standard decision rule was developed by simulation techniques on the basis of a historical record of 39 
years and ten synthetical records of 50 years [I5]. 

In the first method, requiring solution of the optimisation problem (9), the long-term prediction of inflows (for 
36 lO-day periods) consists of two parts. For IO-day periods j = [I,3] the results of one of the discussed inflow 
prediction models were used and for j = [4,36] the average values of historical data were applied. Furthermore, to 
compare and investigate the 'power' of optimising methods, the variants denoted OPT and AVR have been 
considered, which differs from the optimising methods only in the fact that real/average values of inflows are put in 
place of predicted values. 

In order to compare in a clear, well-ordered manner the results of different controls and the results of the other 
control techniques, we introduce the following scalar criteria goals [8]: 

-global deficit time TO: 

TD = Card({ j : ufv < zfv }) (19) 

- average relative deficit AvO: 

36 (zw - uw ) 1 
AvD= 2:-----'±- (20) 

1=1 z/v 36 

- maximum relative deficit MxD; 

MxD = max( {zfv -ufv )+ : j = 1, .... 36}) (21)
J

ZW 

- average losses in recreation area in the summer period for Bever Reservoir: 
IJ . 

REIJAv=t REmax-!v(Vh) l- (22) 
,~I REmax 12 

where REmax corresponds to maximum possible water area. 
As a result, we obtain a sequence of 4 numbers, characterising system performance in a synthetic way. This 

could be sufficient to evaluate and compare the different functions for one year, e.g. with the aid of any 
multiobjective optimisation method. However, it is more complicated, because we have to compare the control 
effects not for a particular year, but for a long historical record. 

To solve such a problem it is necessary to use a specific approach, which is arbitrary to some extent and makes 
use of intuition. To obtain the final comparison results we analyse the diagrams of so-called frequency (reliability) 
criteria calculated on the basis of simulation for 4 scalar criteria (19-22). 

Those frequency criteria are also functions, but defined over the set of values of respective scalar criteria. Their 
values represent the number of years, for which the respective scalar criterion has its values in a given range. 
Formally, e.g. for MxD we have: 

F MxJJ(X) = Card({ 1 : MxD I 
~ x}) (23) 
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where MxD1 denotes the value of criterion MxD (Equation 21) for the year 1. As it is seen, FMxlJ corresponds to the 

notion of cumulative distribution function of the "random variable" MxD1
, when I is treated as representing the 

elementary events. 

RESULTS AND CONCLUSIONS 

Some of the simulation results for the considered control methods, namely SDR, TLM, and OPT are presented 
below by means of the reliability criteria F, similar to Equation 23. Fig.(4-7) show the diagrams of distributions F 
corresponding to the criteria (19-22). 
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FIGURE 4. Maximum relative deficit at W cross-section. 

The advantage of TLM, for all considered inflow prediction models (AVR, DCH, ARMA, ANN), but especially for 
ANN (the best forecast) and DCH, is evident in the sense of MxD criterion (Fig. 4). It results from the fact, that 
TLM takes into account the co-operation of the whole system and better co-ordinates the partial decisions. 
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FIGURE 5. Global deficit time at the W cross-section. 

For TD criterion (Fig. 5) the plot of OPT is below the plots of ANN, DCH, ARMA and AVR models. It reflects the 
fact that "system" prefers longer and small deficits rather than short and deep ones and, of course, the knowledge of 
future inflows guarantees the lowest maximum deficit. 
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FIGURE 6. Average relative deficit at W cross-section. 

For the criterion AvD (Fig. 6) the differences between diagrams corresponding to 4 prediction models are smaller, 
but the method TLM shows still to be better than SDR. Moreover, these diagrams are then closer to the "optimal" 
ones (those for OPT). 
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FIGURE 7. Losses in recreation area for Bever reservoir. 

SDR gives the worst results for all but recreation losses criterion (Fig. 7). 
Recapitulating, the method called TLM proofed to be the best for reservoir system simulation with short time 

prediction obtained by means of ANN. 
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