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ABSTRACT The transformation of white noise and Markov processes through the
simplified St. Venant flood routing model is examined. This model has been derived from the
linearized St. Venant equation for the case of a wide uniform open channel flow with arbitrary
cross-section shape and friction law. The only simplification results in filtering out the
downstream boundary condition. The cross-correlation and normalized autocorrelation

functions are determined in analytical way:,

INTRODUCTION

The development of water resources research has created the
need for an extension of mathematical analysis of hydrologi-
caldata. An awareness of the stochastic structure of hydrolo-
gic processes is necessary for modelling water resources
systems. The aim of the paper is to investigate the physical
structure of the process of outflow from a river reach.

The widely accepted assumption about a structure of an
inflow process is that it can be considered as a sum of
deterministic and random components. Itis assumed that the
input signal is weekly stationary (stationarity of the first two
moments).

It is assumed that the system behaves linearly. This is the
crude simplification granting the compromise between sim-
plicity and accuracy. The structure of the random compo-
nent transformed by some conceptual linear flood routing
models (linear reservoir, Nash, Muskingum) was examined
by Strupczewski er al. (1975a.b). Some of their results are
easily available (e.g. Singh. 1988. p. 240). In the present paper
the structure of the random component transformed by the
flood routing model based on the St.Venant equations will be
analyzed.

The rigorous hydrodynamic description of open channel
flow (St. Venant model). requires two boundary conditions
and in the case of a tranguil flow one of these is at the
downstream end of the channel. In practical flood routing
tne nfluence of downstream controls is typically neglected
and the routing takes part onlv 1n @ downstream direction.
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The hydrodynamic model used in this paper, called the
rapid flow model (RFM ), was developed by filtering out the
downstream boundary condition to approximate the diffu-
sion term in the St. Venant equations.

DERIVATION OF THE RAPID FLOW
MODEL (RFM) FROM THE LINEARIZED
ST. VENANT EQUATION

The findings presented in this paragraph borrow heavily
from Strupczewski & Napiorkowski (1990). The linearized
St. Venant equation for one-dimensional unsteady flow in
uniform channel with arbitrary cross-section shape and
either of the common friction laws may be written as (Dooge
et al., 1987a):
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where Q is the perturbation of flow about an initial condition
of steady uniform flow Q,, A4, is the cross-sectional area
corresponding to this flow, Fis the Froude number, S;is the
friction slope, 7, is the hydraulic mean depth, v, is the mean
velocity, S, is the bottom slope, x is the distance from the
upstream boundary, ¢ is the elapsed time and derivatives of
the friction slope S, are evaluated at the reference conditions.
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“55ES
The variation of the friction slope with discharge at the or by the linear combination ot ihe second and third terms:
reference condition for either of the common frictional 50 | [ o0
formulas for rough turbulent flow could be expressed as: —=-0C, —+C,— :{? (9)
cx Ck Cp @I
0S; . . s : 5
—=125,/0, (2) where C, and G, are coefficient to pe determined.
aQ Note. that:
Define an auxilliary parameter mas the ratio of thekinematic  y  ¢qyqi0n (7) is a special case of equation (9) for ¢, = | and

wave speed to the average velocity of flow

m=c, /(Qy/A4y)

where the kinematic wave speed ¢, is as given by Lighthill &
Whitham (1955)

(3)

do 45404

= = 4
d4 08y/0Q

Ck

The parameter m is a function of the shape of channel and
of a friction law parameter.

Substituting equations (2)—~(4) into equation (1) one
obtains

- -2 _ a2 v A2
(- 30 @ 2 Jo 00 gy ™ 00
2mS, ox* Sy 0x0t 2cl8, or
0 1é .
-2, 1% (%)

0x ¢ 0t

The linear equation (5) is a hyperbolic one, i.e. it has two
real characteristics. The direction of these characteristics
gives the celerity of both the primary and secondary waves.
For Froude numbers less than 1, the celerity of secondary
wave is in an upstream direction. In order to filter out the
downstream boundary condition the small convective term
(the first term in equation 5) can be neglected entirely. It
provides the exact solution for Froude number equal to one.
However, in order to increase the accuracy for the value of
the Froude number close to one, one can represent the
convective term in equation (5) on the basis of lower order
approximation to the solution of the equation. This low
order approximation is given by neglecting all terms on the
left-hand side of equation (5) to obtain kinematic wave
equation

20__10g o
éx ¢ Ot

This lower order solution can be used to approximate the
first term on the left-hand side of equation (7) in terms of:
the second term:

0 1d%

- = —— (7
ox* ¢ 0xét
the third term:
9’0 18*Q
= (8)

o YD
dx* ot

=0

(if) equation (8) is a special case of equation (9) for ¢, =0 and
C.=1;

(iii) the approximation based on entirely neglecting the diffu-
sion term is for C,=0and C.=0.

Substitution of approximations (9) into equation (3) gives
the Rapid Flow Model (RFM ) in the form

o _ 0’0 20, 170

or* ox

(10)

Cxct ¢, €t

On general grounds one could expect that the models
based on the approximation of the diffusion term through
the kinematic wave approximation would be preferable to
the one in which this term is neglected. These general
considerations are reinforced by comparing some properties
of equation (10) with other known results in open channel
hydraulics (Strupczewski & Napiorkowski, 1990). All forms
of the RFM discussed will exactly predict the first moment or
lag of the Linear Channel Response (LCR), i.e. the solution
of the equation (1) for semi-infinite channel and for F< 1. To
get equivalence of second moments of the RFM and the LCR
the coefficients C, and C, should fulfill the relation C,+ C,
=1, while for the additional equivalence of third moments
C, =2 Itis suggested that any discussion of the applicability
of the RFM should be confined to this form that preserves all
three moments of the complete linear equation. Therefore
the final values of the parameters z and f in equation (10) are:

1 . Yo
a=— [1+ (m—DF] 2 (11)
me, Sy
1 ) 2, Yo
f=——=[+(m - DF] (12)

2mey Sy

Since the downstream boundary condition was filtered out
from the St. Venant equation only upstream boundary
condition Q,(1)=Q(0,1) is required to solve equation (10).
Hence, all transfer properties of the hydrodynamic model
described by equations (10)—(12) can be described by the
impulse response given in the Fourier transform domain as:

A
HYM(x joy=exp [ — djo— i+ . (13)
1+ ajen
where
1= (m—1)"F S

2 [1+(m—=1DF y, o
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1+ (m*=1)F?
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[+ (m—1F* Cx (12)

The RFM impulse response in the time domain has a clear
conceptual interpretation being the total of the products of
the Poisson distribution

A‘.k

Pk(i)=g exp(—4) (16)
and the impulse response of cascade of A-linear reservoirs
(CLR) with a time constant & (equation 11)

HEEEG =

- (t/a) " exp(— /) (17)

a(k—1
shifted in time by a time delay 4 given in equation (15). This
impulse response is thus given by (cf. Strupczewski &
Napiorkowski, 1990):

PR (= A) (T~ 4)

1

AR (x. )= P (A)d(1— 4)+ Z
k=

(18)

The upstream boundary condition is delayed by a linear
channel with time lag 4, divided according to the Poisson
distribution with the mean 2, and then transformed by
parallel cascades of equal linear reservoirs (with time con-
stant o) of varving lengths.

The Rapid Flow Model can be considered as both, a
conceptual and a physical one. On one hand it is a conceptual
model with physically derived parameters. On the otheritisa
rigorous simplification of the linearized St. Venant equa-
tions. This simplification results in reducing the number of
model parameters and filtering out the downstream bound-
ary condition. The RFM can be applied to any length of
channel reach. However. the quality of the Linear Channel
Response approximation by the RFM depends on the type of
motion. as discussed in Strupczewski & Napidrkowski
(1990).

TRANSFORMATION OF STOCHASTIC
PROCESSES IN THE RFM

In this section the transformation of stationary random
processes in the RFM will be analyzed. This class of pro-
cesses is important because stationarity provides the possibi-
lity of learning the statistical properties under various ergo-
dicity hypotheses. Also the amount of information required
to statistically describe stationary processes is greatly
reduced. Finally. frequencyv-domain methods can be used in
the analvsis of the RFM with stationary input processes.
White noise and Markovian noise are the processes assumed

as the mput stochastic processes 1n the analvsis. They are

commonly used in stochastic hydrology due to their simpli-
city and existing relationship to real processes.

If the stationary random process X () is fed to a linear
shift-invariant system with the impulse response A(r), then
the output random process can be expressed as the convolu-
tion integral

+o

Y= J X —1)de

— o

(19)

Computing the cross-correlation function between the
input process and the output process one finds:
+ o
Ry ()= J‘ h(2)Ry(z—a)da=h(z)* R, (1) (20)
Taking the Fourier transforms of both sides of equation
(20) one obtains the frequency domain representation of the
cross-correlation function

Syy(@)=H(w)S,(w) (21

Finally, the autocorrelation function of the output is
expressed as

R,(1)= J Ryy(t+a)h(e)da= Ry, (1)*h(—1) (22)

while in the spectral domain via Fourier transformation it
becomes

Sy(w)= 8,y (w)H* (w) (23)

Combining the preceding results, one obtains a fundamen-
tal equation relating the autocorrelation function of the
output to the autocorrelation function of the input

Ry (t)=h(r)* R\(1)*h(~1) (24)
which in the spectral domain takes the form:
Sy(w)=H(w)"S,(w) (25)

TRANSFORMATION OF WHITE NOISE IN
THE RFM

Consider the RFM with a white noise input (X,). The
correlation function of the white noise process contains the

Dirac delta impulse. i.e.:
Ry (1)=0%(1) (26)

so that its power spectral density defined as its Fourier
transform is a constant
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Fig. 1 Cross-correlation function of the cascade of linear reser- Fig. 2 Normalized auto-correlaton function of the cascade of
voirs with white noise input. linear reservoirs with white noise input.
Sy@=0¢?, -—w<w<+w 27)

For the RFM transfer function (transform of the impulse
response in the Fourier domain) given by equation (13) one
gets the following cross- and output-power spectral densities

A
1 +ojw

SEM(x, w) = [H*™ (x, )|’ Sy (w) =0 e"exp(

RFM

Syy, (x,w)= HRFM(X,ED)SXI((;))

=azexp(—Ajw—i+ (28)
24
[ +a’w?
(29
It is shown in Appendix A that:
(1)

the inverse Fourier transform of equation (28) yields the
cross-correlation function

Py(Ap(t—A)+ Z P (AR (t—4) 124

0 <4
(30)

REEM (x,1)= {

where hff'R(t), given by equation (17) and plotted in Fig. 1,
is the impulse response of the CLR, that is cross-correlation
function of the CLR with white noise input;

the inverse Fourier transform of equation (29) yields the
output correlation function

(i)

RF™M(x,1)=0*P (2003 (1) + Z P,(24) RS (k,a,7) (31)

where P, (24) is a Poisson distribution (equation 16) and

k=1

2 &

(k+ i—=1)!
— 12

ITlfe
N2

cxp(

(rlfayf !
(32)

CLR(k %1 )

is the autocorrelation function of the output from the CLR -

with the white noise input (see Fig. 2).

It is interesting that the RFM cross-correlation function
given by equation (30) is 0 for 1< 4. This means that the
output Y'in time instant ¢ is orthogonal to values of the input
X, for re(—4, + ), which is a white noise. This occurs
because of three reasons: The part of the model responsible
for the modulatory performance is causal, another part of
the model can be interpreted as a time shift ( pure delay) and
the input is a white noise. The system causalty requires that
the output does not depend directly on future inputs but only
depend directly on present and past inputs. The whiteness of
the input X, guarantees that the past and present inputs will
be uncorrelated with future inputs. Combining three con-
ditions we see that there will be no cross-correlation between
the present output and the inputs in time interval (— 4, + =0).
If we assume additionally that the input is Gaussian, then the
input process is an independent process and the output
becomes independent of all future inputs and those in time
interval (— 4,0). So, the causality of the system prevents the
direct dependence of the present output on future inputs, and
the independent process input prevents any indirect depen-
dence. These ideas are important to the theory of Markov
process in next section.

It is convenient to illustrate the results in terms of dimen-
sionless independent variables defined with the help of
bottom slope S, the depth y,, and the velocity v, for the
steady uniform reference conditions about which pertur-
bation are taken. Thus we can write:

s,

x'=x = (33)
Yo
S,

pr=g 20 (34)
Yo

Hence, the dimensionless parameters of transfer function
are given respectively by:
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Cross—correlation function

0.8 The RFM
x'=1
with white noise input
0.8
'
0.4 -
x'=20
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(-4

Fig. 3 Cross-correlation function of the Rapid Flow Model with
white noise input.

1 R
a'=—[1+(m—1)F*

(35)
m
,=i’_’“*(’”—“””\ (36)
A1+ (m—=1)F)?
1+ (m*= )F*
= D G7)

=2m[1 + (m—1F

For illustration the flow in a broad rectangular channel
with Manning friction (m=5/3) and the Froude number
F=0.3 («"=0.381) will be considered. Figs. 3 and 4 show the
cross- and output-correlation functions of the Rapid Flow
Model described by eqs.30 and 32 for wide rectangular chan-
nel of dimensionless lengths: x'=1 (short channel), x'=5
(intermediate channel). and x'=20 (long channel). Both

[N

figures are drawn in function of dimensionless time 7"/a’.

TRANSFORMATION OF MARKOVIAN
NOISE IN THE RFM

In this section the RFM with Markovian noise input is
considered. The correlation function of normal Markovian
noise (X,) is given by:

R"-:(T)=D2€Xp(—(’f ) —wm<t< 4o

(38)

where D is the variance of the input process. so its power
spectral density is described by

2D
() =——. -

A VI

5

v et 3 O o

(39)

Accordingly. we have the roliowing cross- and output-power
spectral densiues

Output auto—correlation function

The RFM
with white noise input

1.2

0.8 -
04

oe]

Fig. 4 Normalized auto-correlaton function of the Rapid Flow
Model with white noise input.

S?Ei (x, )= H"M(x, )8y, ()

=exp(—Ajw—)+ 2 ) ?_D:ck
1+ojw/ *+w’
(40)
SEM(x, )= H™M(x, 0) S, (w)
~e Yexp (4) LaH (a1
I+aw /) c+w”

It is shown in Appendix B that:

(a) the inverse Fourier transform of equation 40 vields the
cross-correlation function

P (ARG k.2 1— 4)

.
Ryy,(e,5) = Po(NDe ™44 5

(42)
where
Ry (koo 1) =
D™ N k-t (t/e)! ] 1
+ e 1y ( R m 120
(1—xc)* S i | U+ae) T (—ae)t !
Diezt
<0 (43)

(1+xc)*’

is the cross-correlation function for the cascade of linear
reservoirs with Markovian noise input and is plotted in
Eig..5;

(b} the inverse Fourier transform of equation (41) vields the
output correlation function

REFM(x 1= Py(200D% ™" + Y P,(27) RSR (k.. 1)
: z :

(44)

where P.(24) is a Poisson distribution and
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Cross—correlation function

Cascade of linear reservoirs f
with Markovian noise |
input |
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Fig. 5 Cross-correlation function of the cascade of linear reser-
voirs with Markovian noise input.

Qutput auto-correlation function

Cascade of linear reservoirs
with Markovian noise
input
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Fig. 6 Normalized auto-correlation function of the cascade of
linear reservoirs with Markovian noise input.

Dle—l 4
{1 = e}l +ae)®

+1D1e"“*-' 1 B 1
(k=10 ,;, (I+axe)™" (=)

(k= D (T

Ry (k1) =

(45)
Jj=0

is the output-correlation function of the cascade of linear

reservoirs with Markovian noise input (see Fig. 6).

Figs. 7 and 8 show the cross- and output-correlation
functions of the Rapid Flow Model described by equations
(42) and (44) for wide rectangular channel of dimensionless
lengths: x"=1 (short channel), x'=35 (intermediate chan-
nel), and x'=20 (long channel) with the Manning friction
m=75/3, Froude number F=0.3, and dimensionless para-

Cross—correlation function
1 .
| AlllAr At The RFM with
Markovian noise
input

0.8

0.4

0.2

o i
-20 -15 -10 -5 0 5 10 15 20 25 30

35 40 45 50
T/
Fig. 7 Cross-correlation function of the Rapid Flow Model with

Markovian noise input.

Qutput auto—correlation function
1

0.8

0.8

0.4

0.2

T/a
Fig. 8 Normalized auto-correlaton function of the Rapid Flow

Model with Markovian noise input.

meter of Markovian noise ¢’ =0.3. Both figures are drawn in
function of dimensionless time 7'/ ".

CONCLUSIONS

The cross- and auto-correlation functions are derived in the
analytical way for the simplified linearized St. Venant model
with upstream control only, i.e. for the Rapid Flow Model.
with white noise and Markovian inputs. Obtained functions
are much more complicated than those of the cascade of
linear reservoirs. It is also possible to obtain time averaged
results in an analytical way.

In the case of the white noise input one can see that the
output autocorrelation function is considerably weaker than
the one observed in nature (Fig. 4). Consider a wide rectan-
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gular channel with depth y,= 1.4 m. the Manning friction
coefficient #=0.03 and the Froude number F=0.3, i.e. the
dimensionless o parameter equal to 0.381. Then the mean
velocity and the bottom slope are respectively equal to
vo=1.1m/s, and §,=0.0007. Accordingly, independent vari-
ables x and ¢ are related to the dimensionless variables as
follows

x=2000 x'[m]
1=12 ¢'[min]

(33a)
(34b)

Hence the values of the dimensionless lengths: x'=1,
x'=5and x"=201in Fig.4 correspond to 2 km, 10 km and 40
km respectively, and the unit of dimensionless time t'/a'=
t/a corresponds to 12 min.

For example. for hourly observations and 40 km length of
a reach (above values correspond approximately to x"=20
and t'/a’ = 5) the value of the output auto-correlation func-
tion is less than 0.7. while in a real system it is generally
greater than 0.99. For the analyzed Markovian noise input
and the same flow conditions the value of normalized
autocorrelation function is 0.9. It proves. that channel
impact on autocorrelation function of river process is
strongly limited to a short time. Therefore the long term
auto-correlation observed in the river processes must be
caused by other contributing processes like watershed ali-
mentation, surface and subsurface runoff.

Streamflow data used in the time series analysis are usually
pulse data. In order to make theoretical and empirical results
comparable Strupczewski er al. (1975b) working on concep-
tual flood routing models covered also such case. At the cost
of additional algebra it is possible to account it also for the
RFM with white noise and Markovian inputs and to obtain
the cross- and auto-correlation functions for any length of
the discretization interval.

More realistically. one can consider a stream network
rather than a single river reach with multidimensional input,
. correlated in space or both in space and time, or alternatively
the RFM by complete linear St.Venant equation solved for
semiinfinite channel or one can try to tackle with a complex
system having rainfall as input. It is obvious that any attempt
to an extension of generalization of the presented model
would lead to further complication of analytical solution.

Responding to the question. whether the aspiration to
establish the physical structure of the stochastic process of
river flow isjuSlliﬁed_ is left to the reader.
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APPENDIX A. DERIVATION OF CROSS-
AND OUTPUT-CORRELATION FUNCTION
FOR THE RFM WITH WHITE NOISE
INPUT

Cross-correlation function

For the case of the RFM with white noise input X, the following
equation for the cross-power spectral density (equation 28)
holds:

RFM k2 z 5 /
Shil(v.w)=cexp| —djw—i+ - (A1)
! 1+ ajw
Expanding equation (Al)into a convergent series and operat-
ing on it term by term one obtains
. = I 1
SEM(yv.w)==g%e g™ W — (A2)
A o k(1 + ajw)t
Recalling the definition of the Poisson distribution (equation
16) and the system function of the cascade of k-linear reservoirs,
namely

1

H M o)=——— A3

ks (@) (1 + jwa)* (ad)
equation (A2) may be rewritten in the form

St (w)=a Py(d)e™ ¥ o’ Pu(2) e " HM @) (Ad)

k=1

Applving the translation theorem one gets the cross-correla-
tion function

P (e =N+ Y o PR (= 4) 124
(=1

0 <A

Rf-f:‘“ (x.7)= l

(AS5)
where the impulse response of the cascade of k-linear reservoirs
hCLR

K2

(7) is given by equation (17).
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Output-correlation function

For the case of the RFM with white noise input the following
equation for the power spectral density of the output signal
(equation 29) holds:

2
SyM(x.w)=0’" exp( A ) (A6)
1 +a w-
Expanding equation (A6) into a series one gets
TR
SRFM x,w)=g’ * R T (AT)
- @) k; Ko (1+2%wh*

Since the spectral density of the output signal for the cascade
of linear reservoirs with white noise input is given by

3

SCLR(k aw)=¢ |H M (w)* = (A8B)

(1+a%w?)*

equation (A7) may be rewritten in a way similar to cross-
correlation function as

Sy @)=07Py2A)+ ¥ P(27) ST (k.2 0)
k=

(A9)

and the RFM with white noise input has the autocorrelation
function of the output signal given by

REM(x,1)= 0Py (24) (1) + Z P(27) RS (k, 2,7)

(A10)

Hence, it remains to invert equation (A8) from the Fourier-
transform domain to original domain.

Applying the residue method to evaluate the inverse Fourier
transformation (Stark & Woods, 1986), rewrite the right hand
side of equation (A8) in terms of complex variable jo to obtain

O’

CLR ER R e R
VR [1 =2 jw)*]*

(ALD

Replacing jw by s one extends the function S( je) to the entire
complex plane (two-sided Laplace transform of the correlation
function)

g

CLR
k —
(otad] (1+m*(1—m*

(A12)

Evaluating the residues for positive 1 (kth order pole, counter-
clockwise traversal of the contour), one gets

R%LR (k,2,7)= RES[SCLRU{, 2,5)e" 5= — 1/a]

ldi 1
W [SYLR(k x,5)e" (s + l/a)]sz “ix
e
T k-2 & h—i-nyrza

(Al3)
while for negative t (clockwise traversal of the contour) one gets

R':LR (k,a,1)= — Res[ST R (k, o, 5)e™; 5= 1/a]

ld‘
= - — SER (k. 2t s = La ],
(k=1 )’di { ' F de=ia
, exp(r/z) (K"'l‘l)' ]
=qg- SEPAS N — (—Tizy" "
whk—D12Y = (k== 217
(A4

combining the results into a single formula, one gets

exp( — r,x)‘; (k+i—1)

Ry (k.x.t)=0’ E ) :
T e D e

(‘f:,‘li)‘:vf-i

(A1)

APPENDIX B. DERIVATION OF CROSS-

AND OUTPUT-CORRELATION FUNCTION
FOR THE RFM WITH MARKOVIAN NOISE
INPUT

Cross-correlation function

For the RFM with Markovian noise input X, one gets the
following cross-power spectral density (equation 40)

2D%
Sy, w)= e\{p( djo— i+ - ) - (B1)
L+ %jw | * +w?
Expanding equation (B1) into a series one gets
g3 1 2D%
RF\{(\ &))_84467 Ayew e (B:J

=0 k! (1 + gjw)* (c+jw)(c—jw)

Since the cross-power spectral density for the cascade of linear

reservoirs with Markovian noise input is given by
1 2D%

(1+ 2jw)* (e+jw)(c— jow)

SCLR(k.x.w)= (B3)

equation (B3) may be rewritten as

St (x.0)=Py(A)e” Sy (@) + Z Pi(4) e”Y"SHR (k,x.00)

(B4)

Applying the translation theorem one gets the cross-correla-
tion function for the RFM with Markovian noise input

R¥EV(x,1)=Py(A)D%e "4 + Z P (%) REPY (k2T — 4)
(B3)

It remains to invert equation (B3) from the Fourier-transform
domain to original domain. Applying the residue method to
evaluate the inverse Fourier transformation, we replace jo by s
to extend the function S( jw) to entire complex plane

1 2D%
(1+as)* (c+s)(c—s)

SR (k. 2.5)= (B6)

Evaluating the residues for positive t (one first order pole, one
kth order pole, counterclockwise traversal of the contour), one
gets
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R (k, o, 7) = Res[STIR (k, a4, 5)e™; s= — 1/a]

+Res[STR(k,a,5)e™; 5= - ] (B7)
Evaluating the residue for s= — ¢, one gets
D?
Res[SCLR(k,n:,s)e"; R e (B8)
(1—ac)

while for s= ~ 1/x one has

Res[STLR (k, a,5)e™; 5= — 1/a]
k=1
(k-l)' ds k=1 l

2D%  dF! '\ 1t
:(k—l)f k gk 1{(C+S) (c=9)"~ }s——la

CLR(k a, S) e"(s+l,m:) }

s==lja

a2 (e 1 1
=DZ T/ o -
= ;0 il (I+xe)*"" (1 —:zc)*"] (B2 .

Evaluating the residue for negative t (one first order pole,
clockwise traversal of the contour), one gets

RE R (k,o,1)= — Res ST ks s=¢ el B10
A k2.0 = - ReslSH e’ s=d = (BI0)
Combining equations (B7)~(B9) one gets the cross-correla-
tion function of the cascade of linear reservoirs with Markovian
noise input as

Rﬂf(k,a. )=

De R - (gfa)' 1 1
—+ D%t ¥ - e | 250
(1 —ze) e (I+a20)""" (1—ac)*™!

Dler'.
G TS0 (BI1)

Output-correlation function

For the case of the RFM with Markovian noise input the
following output spectral density is obtained (equation 41):

i = 2 2D
s?,“'(r.w)=e-*-exp( . ) —— (B12)
= 1+ w”

c-+tw-

Expanding equation (B12) into a series one gets
2 (q/)»\ 1

x
RFM
Sl: g—g() k! ]"‘:(:{1):)A

(.\'.(u):‘ (B13)
e

Since the output-power spectral density for the cascade of
linear reservoirs with Markovian noise input is given by

1 2D?

1 5 i
ST (k.xow)= HER (@) Sy (w) = s (Bl14)

(+2°w) 4w

equation (B13) may be rewritten as
SEFM(x w)= Py(24)Sy (w)+ Z P (24) SR (k,a,w)  (B15)

and the RFM with Markovian noise input has the correlation
function of output given by

RE™M(x,1)= Po(20)D% ™"+ ¥ P (24) RYMSR(k,o,1)  (BI6)
k=1

It remains to invert equation (B14) from the Fourier-trans-
form domain to original domain. Applying the residue method
to evaluate the inverse Fourier transformation, one can replace
Jw by s to extend the function S( jw) to entire complex plane

2D% 1
(ct8)(c—s) (14 as)*(1 —as)*

SYR (k, 2, 5)= (B17)

Evaluating the residues for positive 7 (one first order pole, one
kth order pole, counterclockwise traversal of the contour), one
gets

RY R (k,2,1)= Res[STR (k.. 5)e™; 5= —1/4]

* Res[S%LR(k.a,s)e”; §s=—c] (B18)
Evaluating the residue for s= — ¢, one gets
Res[STiR (k, 2, 5)e™; 5= -C}=(TTI:)S(TW (B19)
while for s= — 1/u
Res[STIR (k, o, 5)e™; 5= — 1/a]
= (k—l = ik_ll {S)Q:LR(A-. a,s)e’ (5 + ;)A}m y
2D%  d*! i
=mm1((+v) (e=)7' (1 ~as)Fe™} __ .
DR 1 1 Lok j= D ()
k=1 & [(1 +ac) (1 wc)*'lﬂ, =t 284

(B20)

Evaluating the residues for negative z (one first order pole, one
kth order pole. clockwise traversal of the contour). and combin-
ing equations (B19) and (B20) one can find the output-correla-
tion function of the cascade of linear reservoirs with Markovian
noise input as

Dlefrr D:E_J iz k-1
oo
(1—a)(+ac)* k-1 5

! ! L et D™
= - 1
l:(] o)t {1~ mc)k] ,;) (i—j)t 28 (B21)

Ry (k1) =
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