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on the basis of solution for the linear and quadratic parts of a state trajec-
tory increment one can derive the increments of higher orders until the re-
quired accuracy of the solution is reached. The complete proGi that series
(1) corresponds to series (9) can be found in Napiórkowski (1978).

The kernels of the Volterra series for the inflow-outflow relations

The outflow from a channel being modelled is a function of a retention of
the last reach only. Substituting eqs. 18 and 22 for 8Bn(t), 82Bn(tj, . . . in
eq. 11 for i = n and substituting the results obtained into eq. 12 yields, after
reordering the derived expression according to the order of integration, the
following equation:

t t t

y(t) = Yo + f alkdT)8x(t-r)dr+ f f [alk2(Tl,r2)+a2kdrdkdr2)]
o o o

X 8x(t-rd8x(t-r2)dTldr2 +... (23)
t t t

- Yo+ f hl(r)8x(t-r)dT+ f f h2(Tbr2)8x(t-rd8x(t-r2)drldr2 +...
o o o

The right-hand side of eq. 23 is the Volterra series deseribing the inflow-
outflow relation. The kern eIs of this operator are determined on the basis of
the known kerneIs of the Volterra operator deseribing the inflow---storage
relation for the last reach of a channel. It results directly from eq. 23 that
the first twa kerneIs are as follows:

( t)n-lh (t ) = a al e-alt
l l (n-l)!

(24)

[(

t )n -1 n-l
(

k n-l

)
h2(tl,t2) = a2e-al(tl+t,) al 1 L alt2) + (alt2t-l I (altdk

(n-l)! k=O k! (n-l)! k=O k!

- a2 e -almax(t" t,) [al max (t 1,t2)] n-l
(n -l)!

(25)

Eqs. 24 and 25 describe the first twa kerneIs of the conceptual nonlinear
model. Its structure corresponds to the Volterra structure. RelatiQn (24)
describes the transfer function (lUR) for the cascade of linear reservoirs. The
properties of the latter are not discussed here, as they were analyzed in many
publications.

The properties of the second kernel of the Volterra series

It was proved by Napiórkowski (1978) that the second kernel of the Vol-
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Fig. 1. The second-order kernel of the Volterra series describing the single reach of a
channel.
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Fig. 2. The second-order kernel of the Volterra series describing five reaches of a channel.
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terra series deseribing the flow in an open ehannel determined analytieally
and defined by eq. 25 meets the following eonditions:

(a)h2(tl,t2) - O foreithertl <O or t2 <O

(b)h2(tl,t2) = O for tl = O or t2 = O

(e) Ih2(t 1,t2) I< M for all t1 and t2, M > Oeonstan t repre-
senting the upper bound

(d)h2(tl,t2) = h2(t2,td

(e)h2(tl,t2)~0

for all t 1 and t2

for either tl ~ 00 or t2 ~ 00

00,00

(f) f f h2 (tl ,t2 )dtl dt2 = O
o o

(g) f h2 (t,t + C)dt = O
o

for all C ;;;.O

The above eonditions were speeified by Diskin and Boneh (1972) in terms
of physicallaws for a eonservative inflow-outflow system deseribed by the
Volterra series.

A eontour diagram representing the surfaee h2(tl ,t2) are given in Figs. 1,
and 2 for one and five reaehes of a ehanI}el respeetively.

Both diagrams are plotted in termsof dimensionless variabIes al 71' al 72,
h2(7l,72)a;:1

THE EFFECT OF THE INFLOW MAGNITUDE ON THE CONVERGENCE OF THE
VOLTERRA SERIES DESCRIBING THE FLOW DEVIATION FROM A STEADY
STATE IN AN OPEN CHANNEL

The eonvergenee of the Volterra series implies that the error of approxi-
mation of the aetual system deereases with inerease in number of the terms
in the integral series. This aspeet of the modelling of hydrologie systems has
not so far attraeted the attention of marlY investigators. It was mentioned
by Kuehment (1972) who identified the limits of the inflow magnitude
x(t) < +00 with the sufficient eondition for the eonvergenee of the series (1).
On the other hand, Diskin and Boneh (1972) formulated the eondition from
physieal eonsiderations for the model eonsisting of the twa first terms of the
sedes. Fulfillment of the eondition ensures positive outflows provided for
positive inflows. However, this eondition allows us to model the dynamies of
the system by means of the Volterra series in the ease of inflows for whieh
the nonlinear model offers a worse approximation than the linear one.

The determination of the set of inflows sueh that eaeh of them ensures
the eonvergenee solution eonstitutes the basic eondition under whieh the
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integraI series ean be used in order to model hydrologie systems. Generally,
this problem is extremely eomplieated. For that reagan we will investigate
here whether there exists an inflow magnitude limit as a eondition for the
eonvergenee of the integral series (1). The latter deseribes the flow deviations
from a steady state represented by the set of differential equations (7).

Consider first a single reaeh of a ehannel. The following nonlinear first-
order differential equation applies:

S(t) = - aBm (t) + x(t) and B(O) = Bo " (26)

with a > O.
The solution ean be expressed as an infinite integral series following the

method presented in this paper. The first iwo term s are derived by substi-
tuting i = n in eqs. 18 and 22.

t tt

l ]B(t) = Bo + f e-a,Tox(t-r)dr + J J :Ze-a,(T,+T,) -e-a,maX(T"T,)
o o o 1

X ox(t-rdox(t-rz)drldrz +... (27)

Consider the new steady state after the eonstant inerement with a magni-
tude x appeared in t = O. We eonclude from eqs. 26 that the equation de-
seribing the steady state is of the form:

o = -aBm + (xo + DX)

The obvious solution of this equation is:

B = a-l/m (xo + Ox)l/m

(28)

(29)

or the series expansion:"

x l/m X (l-m)/m (1- m)x (l-Zm)/m
B = ol/m + ol/m OX + 2al/:: Z (OX)Za a m m

+ (1 - m)(l- 2m)XJI-3m)/m(OX)3+ . . .
6al/m m3

(30)

It stems from the determination of the eoefficient ai (eq. 12) and from
equation Bo = a-11m Xo 11m that relation (30) ean be expressed as follows:

B = Bo +lox_a~(OX)Z +
(
~z_a~

)
(OX)3+...

al al al al
(31)

The above series is eonvergent, if:

lox I < Xo (32)
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Every term of series (27) will converge, under DX(t) = DX,t E [O,+ 00) and
t -+ 00to the corresponding term of eq. 31. For example:

t

f e-a,T DXdr = 1 Dx(l - e-a,t) -+ l DX
O al al

t t

f f :2 [e-a,(T,+T2) - e-a,max(Tl'T2)] (DX)2 drl dr2
o O l

= (Dx)2a2
{[

(l - e-a,t)1
]

2- ~ [1- e-a,t(l + al t)]
}al al al

a2 2
-+ - - (DX)

af

80, for t -+ 00series (27) will converge if the inequality (32) is met.
It can easily be shown that for any t~ O if IDX(t) I< IDXI every term of

serie s (27) is, in absolute magnitude, less than an absolute value of the corre-
sponding term in serie s (31). This implies the limits to the storage increment
D.S in eq. 12; it belongs to the interval (~So, (211m - 1) So).

We conclude that inequality (32) is the sufficient condition for conver-
gence of the Volterra serie s describing the relation between the inflow into
ith reach of a channel and its storage.

The modelling af the storage of the last reach in a channel by the conver-
gent Volterra series implies that D.S, for m > 1, meets the condition for
convergence of the serie s (12) that equals to y(t). 80 we come to the con-
clusion that the convergence of the series describing the inflow--storage
relation implies the convergence of the serie s describing the inflow-outflow
relation.

Condition (32) for the convergence of the Volterra series is a sufficient
one and formulated for the most unfavourable case. The inflows can exist
such that the condition of maximum amplitude is not met, but the time
interval when condition (32) is not fulfilled must be sufficiently short in
order to have the finite sum oi all terms of the series at any moment t. This
conclusion is supported by the results of numerical experiments.

THE RESULTS OF NUMERlCAL EXPERIMENTS

The results presented in this paper are illustrated in Figs. 3--5. They show
the effect of the type of input signal on the accuracy of approximation of
the nonlinear state equation (7), that describes the flow deviations from a
steady state by me ans of the integral Volterra series.

A rectangular channel with width B = 100 m, bottom slope I = 0.000248,



Fig, 3. Comparison of the results of simulation of the outflow by the first oy(t) and the
first two terms oy(t) + 02y(t) of the Volterra series provided condition (32) is met.
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Fig. 4. Comparison of the results of simulation of the outflow by the first oy(t) and the
first two terms oy(t) + 02y(t) of the Volterra series in the case when condition (32) is
not met.

Chezy coefficient C = 44.9 was considered and the outf1ow equation (6) for
a "characteristic reach" was approximated according to the Chezy formula.

The following initial conditions were assumed: inflow' Xo = 200 m3 Is,
depth ho = 2 m. The length of the "characteristic reach" was derived ac-
cording to the formula L = ~(holI) proposed by Kalinin and Miljukov
(1957).

The simulation of the inflow deviations from a steady state was carried
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Fig. 5. Comparison of the results of simulation of the outflow by the first 8y(t) and the
first two terms 8y(t) + 82y(t) of the Volterra series in the case when condition (32) is
not met but the series converges.

out for a channel with the length five times longer than the "characteristic
reach". The complete nonlinear set of differential equations was solved
numerically by the Runge-Kutta method. The standard IBM@ procedure
was used, according to which the step of integration is chosen automatically
for an imposed computational accuracy. Inflows of the form of rectangular
pulses with different duration and amplitud e were taken as input signals. The
linear and quadratic approximation for the analyzed inflows were deter-
mined analytically.

Fig. 3 presents the results of transformation for the case when the inflow
amplitude fulfills the convergence condition (32). Fig. 4 shows the results of
transformation for the inflow that does not meet the convergence condition.
Fig. 5 reflects the case when the sufficient condition (32) is not fulfilled, but
the Volterra series converges.
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