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ABSTRACT

Napiorkowski, J.J. and Strupczewski, W.G., 1981. The properties of the kernels of the
Volterra series describing flow deviations from a steady state in an open channel. J.
Hydrol., 52: 185—198.

The deviation of the flow from a steady state in an open channel is described by a non-
linear state equation. This model is used to derive analytically the kernels of the Volterra
series. The properties and the structure of the two first kernels are examined. The con-
dition of convergence of the Volterra series depending on the magnitude of the inflow
increase is also discussed.

INTRODUCTION

Solution of the equations of unsteady flow in open channels requires the
geometric and hydraulic characteristics of the channel together with the
initial and boundary conditions. The difficulties in meeting these require-
ments and the desire to use a computationally simple, but fairly accurate
method, explains why conceptual models and models of the ‘“black box?”’
type have been developed.

In the 1960’ the class of linear models was developed, whereas lately the
problem of nonlinear models was undertaken. This paper deals just with the
nonlinear models and specifically with the modelling of the deviations of the
flow from the steady state in an open channel by the Volterra series:
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Modelling by the Volterra series has become very popular and has devel-
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oped independently of other methods by which the dynamic systems can be
described. The problem of series identification was attempted only on the
basis of the input and corresponding output records. The method used was
to expand the kernels in orthogonal functions (see Jacoby, 1966; Amorocho
and Brandstetter, 1971; Kuchment, 1972; Papazafiriou, 1976). It was shown
by Napiorkowski (1978) that this procedure can lead to searching for the
kernels within a class of functions which is significantly different from the
class to which they really belong. Thus the possibility can not be excluded
that the derived solution hardly reflects the reality.

The analytical derivation of the kernels of the Volterra series is in our
opinion not just another methodological approach. The determination of the
structure of the kernels in such a way that the convergence can be examined
may be a decisive factor in further application of the Volterra series to
modelling and identification of hydrological systems.

THE MODELLING OF THE FLOW DEVIATION FROM A STEADY STATE IN AN
OPEN CHANNEL BY MEANS OF STATE EQUATION

Consider the uniform channel of width B and bed slope I, divided in
length into n equal reaches. The length L of the reaches is determined ac-
cording to the method of Kalinin and Miljukov (1957), who introduced the
concept of the “characteristic reach’. The retention (S) of such a reach and
outflow (y) from it, are the functions of the water depth (k) in its center:

¥ = () and Sii=s LBl (2), (3)

Kalinin and Miljukov derived the length of the reach from the listed prop-
erties, under the assumption of a linear change of the water table height
along the channel length. So the length of the characteristic reach is such
that the linear increase in the slope of the water level is compensated by the
linear increase of the water depth and as a result the flow remains unchanged.

The nonlinear relationship (2) can be derived in an experimental way. We
assume here it is of the form:

y = ahm (4)

Eq. 4 becomes the Chézy equation for m = 1.5, « = CI°* B and the Manning
equation for m = 5/3, a = ny! I°5 B, where C is Chézy’s coefficient and ny,
is Manning’s coefficient.

Let x;(t) be the inflow, and y;(t) the outflow for the ith reach. Then the
changes in retention can be derived by solving simultaneously the continuity
equation:

Si) = ai(t) — yi(t) (5)
and the outflow equation resulting from eqs. 3 and 4:

yi(t) = aS™ (t) and @ = aL"mB™ (6)
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under the initial condition S, = LBh, corresponding to the retention of the
channel reach in a steady state.

Substituting eq. 6 for y;(t) in eq. 5 and putting x;(t) = y; 1 (), i = 2,.. .,
n; x, (t) = x(t), y. (t) = y(t) gives the model of flow deviations from a steady
state in an open channel. This model is of the form of state equation:

Sp(t): = rraSE (t)+ x@)

S, (t) “‘132 (£) +aS7* (t)
e (7)
S, (1) —aS”‘(t) + aS™, (t)

W(E) =HaSTHE)s | TBH0) =S ali= T, A0

]

THE ANALYTICAL DETERMINATION OF THE KERNELS OF THE VOLTERRA
SERIES DESCRIBING THE FLOW DEVIATIONS FROM A STEADY STATE

We proceed now to determine analytically the kernels of the Volterra
series (1) on the basis of a nonlinear state equation (7). As a result we obtain
the model of deviation from a steady state flow in an open channel. The
model is in the form of an integral series.

Vector state equation (7) can be considered as a definition of some non-
linear operator P which maps the space of inflows into the space of corre-
sponding retentions. In order to determine how P operates for a given inflow
x(t), t €[0,+20) it is necessary to solve the set of eqs. 7 under the initial
condition S, . Egs. 7 can be written symbolically as follows:

5(t) = [Ps,x1(t) (8)

Denote by 8°(t) = constant = S,, the trajectory of retentions corresponding
to the inflow x(t) = constant = x, in a steady state and by S(t) the trajec-
tory corresponding to the inflow x(t) = xo + 8x(t); [6x(t) represents the
inflow deviation from a steady state]. The change of state trajectory from
S°(t) to S(t) can be determined by means of Taylor formula for operators
(Findeisen et al., 1977).

[Ps, x1(t)— 8o = [Ps, xo=5x](t) +$[Ps, x0,0x21(t)
i [PS o 0 W) T (9)
where
[Pg,x0,0x1(t) = 85(1)
which is the linear part of a state trajectory increment.
1[Ps, x0,0x%](t) = 828(t)

which is the quadratic part of a state trajectory increment. So the change in
the inflow hydrograph from x, into x(t) implies the trajectory change from
S, into:
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S(t) = Sp + AS(¥) (10)
where
AS(t) = 8S(t) + 828(t) + 638(t) +. .. (11)

It will be proved below, by computing 8S(t), §28(t), in this order, that the
linear part of the increment of the retention trajectory is represented by the
first term of the Volterra series (1), and the quadratic part by its second
term. -

In order to compute the linear and quadratic increments we will make use
of:

(1) The expansion of the retention—outflow relation (2) in Taylor series
around the trajectory of a steady state S;, for the increase AS;(t),i=1,...,n
yi(t) = alSip + AS;(1)]™ =
aSiy + maSjy T AS;(t) + m(m — 1)aSE 2 [AS;(t)]?

+ dm(m — 1)(m — 2)aSE 2 [AS;(H)]3 + . ..

= yo + GIAS,- + az(ASi)z = a3(AS,-)3 1 S (12)
where
g =umimendlimies ). e wenke Ll a8t (U iandl s il % s

The above expansion converges if | AS; | <S;,
(2) The expansion in Taylor series of the time derivative of the retention
around the trajectory S;,, viz.:

S;(t) = 88;(t) + 828;(t) + 838;(¢) + . . . (13)

The function 6S(t) — the linear approximation

Substitution of egs. 12 and 13 limited to the first-order increments only
in egs. 7 yields the set of equation from which the linear part of an increment
of the state trajectory can be determined:

88:(t) = —a,88,(t) + x(t)
8S,(t) = —a,88,(t) +a,85,(t)
= (14)
6Sp(t) = —a;8S,(t) +a,88,-,(t)
55(0)..= O

The zero initial condition is implied by the lack of changes in the initial
condition S, of eqgs. 7.
In a matrix notation eqs. 14 can be written as follows:

S() = 488(t) + [1,0, . .. ,0] T 8x(2) (15)
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where
’-_al O P
a; —ay
A =
0 0 e _al

The above linear stationary set of ordinary differential equations has the
solution:

85(t) = j ®(r) x [1,0, . .. ,0]1 T dx(t —1)dr (16)
0

where ®(t) is the state-transition matrix for eq. 15 (Athans and Falb, 1968).
In order to obtain the matrix ®(t) it is necessary to obtain the inverse
Laplace transform of the matrix (pI — A)™!. Matrix 4 is defined in eq. 15,
is an identity matrix and p is a complex number.
Following these directions we obtain the following state-transition matrix
for the set of equations (15):

. L e
(ei)e™ut | gadit alaronie 10
: : : = 2% = O@F) (17)
(g, t)"! —agt (@pt)2 2 Bt L g
(= 1) i =) : :
5 : : : -

Having the solution for the state-transition matrix we conclude that the linear
increment of a retention in ith reach of a channel can be determined accord-
ing to the formula:

t
e 8x(t —1)dr = | ky(r)8x(t —7)dr (18)
0

t

L
=" Hg (i—1)!

Eq. 18 is of the form of the first term of the Volterra series (1).
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The function §28(t) — the quadratic approximation
Substitution of eqgs. 12 and 13 limited to the second-order increments in

egs. 7 and subtracting both sides of egs. 14 from egs. 7 gives a relation de-
scribing the quadratic part of the increment of the storage trajectory:

828,(t) = —a,8%8, (1) —a,[88,(1)]*
528, (t) = —a,828,(t) + 4,878, (t) —a,[88:(0)]1* +a,[88,(1)]°
s G (19)
525':1(” = —a,8°8,(1) +a,8%8,-1(t) _az[asn(t)P +a, [6S,.-1 ()17
a0 -
In a matrix notation set (19) can be expressed as
528(t) = Ax828(t) +B[8S(1)]*> and  8%8(0) = 0 (20)
where :
=aia 0
a5 - 0 0
B =
0 0 —a-

Matrix A in eq. 20a is the same as in eq. 15, so the state-transition matrix for
eq. 20 is also given by eq. 17. We conclude that the quadratic increment of a
state trajectory can be described by

828(t) = | e"2¢PB[6S(E)]2dE (21)
0

Substitution of eq. 18 for §S;(£¢) into eq. 21 and double change of the
order of integration leads to the conclusion that eq. 21 can be expressed as a
second term of the Volterra series. For the ith reach of a channel we get:

T jo .

. -1 i1 i-1i72 k

J {‘i&e—al(fﬁm [(‘1171)’ > (@y7y)" i (ay75) (@17,)
ay

0

t
828,(t) =
:(t) ai. (1—1)1 B (I —1}' w=0 Lk

_ 9% s max(r,, [almaX(Tl,Tz)liﬁl o 4
ale PG 1) ey dx(t—1,)0x(t—7,)dr,dr,
[ZE
= [ | By 72082t —71)82(t — 7,)dr, dr, (22)
0:20
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on the basis of solution for the linear and quadratic parts of a state trajec-
tory increment one can derive the increments of higher orders until the re-
quired accuracy of the solution is reached. The complete proof that series
(1) corresponds to series (9) can be found in Napiérkowski (1978).

The kernels of the Volterra series for the inflow—outflow relations

The outflow from a channel being modelled is a function of a retention of
the last reach only. Substituting eqs. 18 and 22 for 8S,(t), 628, (¢), ... in
eq. 11 for i = n and substituting the results obtained into eq. 12 yields, after
reordering the derived expression according to the order of integration, the
following equation:

t £l
Y(t) = yo + [ ayky(M8x(t —7)dr + [ [ [ayka(71,72) + agley (7)), (72)]
] 00 :
X9l =7, Joxll— 73 )drdry + . . (23)
t ;o
= yo + [ hy(n)dxt —r)dr + [ [ hy(ry,75)8(—7,)(t —75)dr, dr, +
0 00

The right-hand side of eq. 23 is the Volterra series describing the inflow—
outflow relation. The kernels of this operator are determined on the basis of
the known kernels of the Volterra operator describing the inflow—storage
relation for the last reach of a channel. It results directly from eq. 23 that
the first two kernels are as follows:

(al t)n_l —alf

s (24)
e n—1n- 1
- a, (t,+t,) (@, ty) 1% (G1f2) (ﬂltz) 18l 4, )
hy(ty,t3) ae” (=1 kzo B! (n_].)' kzo
i aze_almax(tvt:) [a; max(t,,t;)] n-1 -

(n —1)!

Egs. 24 and 25 describe the first two kernels of the conceptual nonlinear
model. Its structure corresponds to the Volterra structure. Relation (24)
describes the transfer function (IUH) for the cascade of linear reservoirs. The
properties of the latter are not discussed here, as they were analyzed in many
publications.

The properties of the second kernel of the Volterra series

It was proved by Napiorkowski (1978) that the second kernel of the Vol-
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Fig. 1. The second-order kernel of the Volterra series describing the single reach of a
channel.

Fig. 2. The second-order kernel of the Volterra series describing five reaches of a channel.
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terra series describing the flow in an open channel determined analytically
and defined by eq. 25 meets the following conditions:

(@) hy(t ,t;) = O for either ¢t; <0 or H <0

(b)h,y(t;,t;) = 0 for t; =0 or tp =0

(©) |hy(t; 82) I<M for all £, and t,, M > 0 constant repre-
senting the upper bound

(A)hy(t,t) = hy(ty,t) for all t; and ¢,

(e) hy(t,,t2) >0 for either t; > oo or t, - oo

00 oo

@ | | hatt ta)dt dt, =0
00

@ [ ha(tt +C)dt = 0 forall 0> 0
0

The above conditions were specified by Diskin and Boneh (1972) in terms
of physical laws for a conservative inflow—outflow system described by the
Volterra series.

A contour diagram representing the surface h,(t,,t,) are given in Figs. 1,
and 2 for one and five reaches of a channel respectively.

Both diagrams are plotted in terms of dimensionless variables a;7,,a;7,,
ha (71,72 )a;!

THE EFFECT OF THE INFLOW MAGNITUDE ON THE CONVERGENCE OF THE
VOLTERRA SERIES DESCRIBING THE FLOW DEVIATION FROM A STEADY
STATE IN AN OPEN CHANNEL

The convergence of the Volterra series implies that the error of approxi-
mation of the actual system decreases with increase in number of the terms
in the integral series. This aspect of the modelling of hydrologic systems has
not so far attracted the attention of many investigators. It was mentioned
by Kuchment (1972) who identified the limits of the inflow magnitude
x(t) < +oo with the sufficient condition for the convergence of the series (1).
On the other hand, Diskin and Boneh (1972) formulated the condition from
physical considerations for the model consisting of the two first terms of the
series. Fulfillment of the condition ensures positive outflows provided for
positive inflows. However, this condition allows us to model the dynamics of
the system by means of the Volterra series in the case of inflows for which
the nonlinear model offers a worse approximation than the linear one.

The determination of the set of inflows such that each of them ensures
the convergence solution constitutes the basic condition under which the
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integral series can be used in order to model hydrologic systems. Generally,
this problem is extremely complicated. For that reason we will investigate
here whether there exists an inflow magnitude limit as a condition for the
convergence of the integral series (1). The latter describes the flow deviations
from a steady state represented by the set of differential equations (7).

Consider first a single reach of a channel. The following nonlinear first-
order differential equation applies:

S(t) = —aS™ (t) + x(t) and 8(0) =.8, (26)

with a > 0.

The solution can be expressed as an infinite integral series following the
method presented in this paper. The first two terms are derived by substi-
tuting i = n in eqgs. 18 and 22.

t

t t i
S(t) =8, + [e @7 bx(t—r)dr + | [—?e_“l“l”z’ — g-amax(r,7;)
0 g0 L1

% 02 (t = re)Oxlt = raddnsdtsick o (27)

Consider the new steady state after the constant increment with a magni-
tude x appeared in ¢t = 0. We conclude from eqs. 26 that the equation de-
scribing the steady state is of the form:

0 = —aS™ + (xg + 6x) (28)
The obvious solution of this equation is:
S = g Vm(x, + Sx)ti™ (29)

or the series expansion:

1fm (1-m)m
Xp Xp
S = =k OX:
t.‘llafm alfm m

(1 — m)xo(l—Zm)fm
zal,-‘m mZ

(8x)?

L A= m)A = 2m)xfl73m0m (53 4
6a'/™ m3

(30)

It stems from the determination of the coefficient q; (eq. 12) and from
equation S, = a VY™ x, ™ that relation (30) can be expressed as follows:

= l _a_g, 2 zﬂ_a_a) 3
S =5, +al<5x ﬂggl,(6:%:) = (a§ at (o)t (31)

The above series is convergent, if:
[6x | <xo (32)
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Every term of series (27) will converge, under éx(t) = ox,t € [0,+ ) and
t = oo to the corresponding term of eq. 31. For example:

] i 1 =5 1
s i dedr = SRl e Vi) —fr
. a, a;

it
J‘ ‘~ ‘3_2_[6_‘71(7!"'7?) - e—almax(‘r],f,’)] (Sx)z dTl de
00

=1

5x)? > L =
= {82) “?1 L “(1_e a )&—1] —gll—e (1 +a,0)]

== 0y 2
& (6x)
So, for t — oo series (27) will converge if the inequality (32) is met.

It can easily be shown that for any t= 0 if | 8x(¢) | <|bx | every term of
series (27) is, in absolute magnitude, less than an absolute value of the corre-
sponding term in series (31). This implies the limits to the storage increment
AS in eq. 12; it belongs to the interval (— Sy, (2™ — 1) Sp).

We conclude that inequality (32) is the sufficient condition for conver-
gence of the Volterra series describing the relation between the inflow into
ith reach of a channel and its storage.

The modelling of the storage of the last reach in a channel by the conver-
gent Volterra series implies that AS, for m > 1, meets the condition for
convergence of the series (12) that equals to y(¢). So we come to the con-
clusion that the convergence of the series describing the inflow—storage
relation implies the convergence of the series describing the inflow—outflow
relation. -

Condition (32) for the convergence of the Volterra series is a sufficient
one and formulated for the most unfavourable case. The inflows can exist
such that the condition of maximum amplitude is not met, but the time
interval when condition (32) is not fulfilled must be sufficiently short in
order to have the finite sum of all terms of the series at any moment ¢. This
conclusion is supported by the results of numerical experiments.

THE RESULTS OF NUMERICAL EXPERIMENTS

The results presented in this paper are illustrated in Figs. 3-—5. They show
the effect of the type of input signal on the accuracy of approximation of
the nonlinear state equation (7), that describes the flow deviations from a
steady state by means of the integral Volterra series.

A rectangular channel with width B = 100 m, bottom slope I = 0.000248,
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3. Comparison of the results of simulation of the outflow by the first §y(¢) and the

first two terms 8y(#) + 82 y(t) of the Volterra series provided condition (32) is met.
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Fig. 4. Comparison of the results of simulation of the outflow by the first 6y(¢) and the
first two terms 6y(¢) + 6“vy(t) of the Volterra series in the case when condition (32) is

not met.

Chézy coefficient C = 44.9 was considered and the outflow equation (6) for
a “‘characteristic reach” was approximated according to the Chézy formula.

The following initial conditions were assumed: inflow x, = 200 m?3/s,

depth hy = 2m. The length of the ‘‘characteristic reach’ was derived ac-
cording to the formula L = %(h,/I) proposed by Kalinin and Miljukov
(1957).

The simulation of the inflow deviations from a steady state was carried
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Fig. 5. Comparison of the results of simulation of the outflow by the first §y(t) and the
first two terms Sy(t) + 52 y(t) of the Volterra series in the case when condition (32) is
not met but the series converges.

out for a channel with the length five times longer than the ‘“‘characteristic
reach”. The complete nonlinear set of differential equations was solved
numerically by the Runge—Kutta method. The standard IBM® procedure
was used, according to which the step of integration is chosen automatically
for an imposed computational accuracy. Inflows of the form of rectangular
pulses with different duration and amplitude were taken as input signals. The
linear and quadratic approximation for the analyzed inflows were deter-
mined analytically.

Fig. 3 presents the results of transformation for the case when the inflow
amplitude fulfills the convergence condition (32). Fig. 4 shows the results of
transformation for the inflow that does not meet the convergence condition.
Fig. b reflects the case when the sufficient condition (32) is not fulfilled, but
the Volterra series converges.
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