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1. INTRODUCTION

The mathematieal deseription of the relationships between the input and output
of a hydrologie system is one of the most important tasks of eontemporary hydro-
logy. The eurrent knowledge of hydrologie processes as well as the quality ofmeasur-
ement teehniques do not allow the eomplete solution of the above problem in terms
of physieal interpretation of the proeesses in a watershed or a river, e.g. by momen-
tum, mass and energy equations. This is why the eoneeptual or "blaek box" models
are beeoming more and more popular. They are simpler and can be more easily ap-
plied. They are based not upon a physical interpretation of dynamie proeesses but
upon the precisely determined relationships between input and output quantities
or proeesses. The linear models were developed in the sixties, whereas the nonlinear
ones have not often been diseussed in the literature until reeent1y.

This paper deals only with a noclinear model. In partieular onr point of interest
is the modelIing of hydrologie processes (like "effeetive rainfall-runoff", flood routing)
by means of the eoneeptual model of easeade of nonlinear reservoirs deseribed by the
Volterra series. The kemel's strueture and eonvergenee of the series is analysed as
well as the kemel's dependenee on physical parameters.

The modelIing of hydrologie proeesses by means of the Volterra series bas
so far been developed independent1y of other methods of deseription of dynamie
systems in particular by a stale equation formulation. The problem of series identi-
fication (determination of its kemels) bas been solved by numerical methods applied
to an input reeord and a eorresponding output by means ofkemels expanding (under
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an arbitrary assumption as to their strueture) in orthogonal polynomials, set Amo-
rocha and Brandstetter (1971), Jaeoby (1966), Kuehment (1972), Papazafiriou
(1976). As it was pointed out by Napiórkowski (1978), the faet that the strueture of
kernels is not known may imply thcir searehing within the class of funetions that is
significantly different from the class they aetuaUy belong to. This in turn may lead
to a solution of the identification problem that bas nothing to do with a true one.
For that reagan, the analysis of the eonneetions between the deseription by stale
equation and integral series in relation to a eascade of nonlinear reservoirs is, in aur
opinion, of great importanee. This approaeh makes possible the analytie determina-
tion of the kernels strueture and for that reagan we eonsider it to be a signifkant
eontribution to the theory of nonlinear hydrologie models.

2. DESCRIPTION OF A CASCADE OF RESERVOIRS BY NONLINEAR
OPERATORS

It was assumed in models diseussed until reeently in the hydrologie literature that
an output is a superposition of signals eorresponding to individual input signals.
However, in ease of maDYpraetieaUy important systems the hypothesis of linearity
holds only within same range of input signais variation or it musi be rejeeted alto-
gether. In soch eascs we have to apply the theory of nonlinear systems in order to
deseribe proecsses in question with an aeeuraey required. The nonlinear operations
that art most frequently used for a hydrologie system's deseription will be given
below. These systems art eonsidered to be dynamie ones with lumped parameters.
The easeade of nonlint:ar reservoirs wiU be used as an example.

Description of one reservoir - Nemycki's operator. The ehanges in retention Set)
of a hydrologie system in time depend on inflow x(t) and outflow y{t). The relation
between these three funetions caD bt: expressed by the following eontinuity equation

S(t) = x{t)-y(t), (1)

where the doi over S represents d/dr.
In order to solve effeetively the above equation it is neecssary to introduee an

additional relation between outflow and retention. This relation

y{t) = f[S{t), t] (2)

is known as Nemyeki's operator. The parametrie dependenee on time refleets a non-
stationarity of outflow in a retention funetion. Equations (1) and (2) give the eomplete
deseription.

Nonlinear stale equation. The deseription of dynamie systems by stale equation
is one of the basie approaehes (Athans and Falb, 1969). Then the lumped dynamie
model caDbe represented by a set of ordinary differential equations. The stale veetor
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input-output re1ation for nonlinear dynamie systems and eonsists of an infinite
series eomposed of terms of the form of eonvolution integraIs. The first term is the
convolution integral of the first order kerne1 and the input funetion, the nth order
term is an n-fold eonvolution integral eontaining the nth order keme1 multiplied by
an nth order produet of the input funetion

t t t

y(t) = jh1(T)X(t-T)dT+ jjhz(T1,Tz)X(t-T1)X(t-7:z)dT1dTz+ ...
Q QQ

t t

... + j "0 j hn(Tl, ..., TJX(t-Tl) '" x(t-TJdTl"o dTn +..0
Q o

(4)

This type of series was applied for the first time by VoIterra and Freehet in 1910
on funetional equations. Nowadays it was used by Wiener (1958), Flake (1963), and,
in hydrology, to model rainfall-runoff relation or flood routing, by Amoroeho and
Brandstetter (1971), Diskin and Boneh (1972), Kuehment (1972), Zand and Harder
(1973), Papazafiriou (1978) and others. This type of serits in partieular caD be used
to deseribe a nonlinear dynamie system, sueh as the cascade of nonlinear reservoirs.

Lichtenstein-Lapunov seriesoThe Volterra series (4) caD be used only for the deserip-
lian of stationary systems. The maTe promising deseription (although maTe diffieult
in terms of applications) whieh eould algo include the nonstationarity of modelled
proeesses seems to be one making use of Lichtenstein-Lapunov series (Kudrewicz,
1976). Jts kemels depend direetly on time

t t t

y(t) = jh1(t,T)X(-t)dT+ jjhz(t,Tl,Tz)X(Tl)X(Tz)dT1d'l'2+'"
o o Q

t t

... + j... j hn(t, T1, ..., TJX(T1)'" x(-rn)dTl ... dTn+ ...
o o

(5)

If the kemds of ibis series depend on the differenees t-T; between arguments
it describes the stationary model. Thcn the relation (5) is equivalent to the relation
(4). (To see that it is enough to perform same elementary operations).

3. METHOD OF DETERMINATION OF THE KERNELS OF INTEGRAL
SERIES DESCRIBING THE CASCADE OF NONLINEAR RESERVOIRS

The determination of the kemeIs of nonlinear integral series is of great importance
in an application of the theory of modelIing of hydrologie processes. The kemeIs are
usually determined for a given real system by optimization methods. The latter are
based on a finite input and eorresponding output reeords. However, what is lacking
in the literature is putting togethei the description by stale equations and the descrip-
tion by integral series. This would make possible the determination of the structure





126 J. J. NAPIÓRKOWSKI, W. G. STRUPCZEWSKI

So the change in the inflow hydrograph from zero level juto xer) implies the tra-
jectory's change from SO(t) juto

Set) = SO(t)+LI Set), (8)
where

LlS(t) = bS(t)+b2S(t)+(PS(t)+... (9)

We will prove below, by computing functions SO(t), bS(t), b2S(t) (in ibis order)
that the linear part of the increment of the storage function is represented by the first
term of the Lichtenstein-Lapunov series (5), whereas the quadratic part - by the
second term.

Function S°(t). Function SO(t) is a solution of a hómogeneous set of equations (3)
which corresponds to the zero inflow in the entire time interval and the initial con-
dition So

s~(t) = -fi [S~(t), t],

sg(t) = -f2 [S~(t), t]+fl [S~(t), t],

(lO)

S~(t) = -fn[S~(t), t]+fn-l [S~-l (t), tJ,

SO(O)= So.

The above homogeneous set of equations bas unique solution under the im-
posed assumptions. This solution depends on the initial condition. The~latter descri-
beg th~ proces s of emptying of the cascade of reservoir provided there is no inflow
juto the first reservoir. In order to compute the linear and quadratic increments we
make use of:

(a) the expansioll ofthe retention - outflow rclation (2) in Taylor series around
the inflow trajectory S?(t) for the increase LISi(t), i= l,...,n, .

a+. [s?(t) t]

y/t) = J;[S?(t), t]+ - Ji ~s.' LlS;(t)+I -

1 aZj
'

[So (t) t] 1 03 I' [SO (t) t ]
+ - ~-~ ' [LlS.(tW+ - ~~'-- [LlS.(tW+ 000

2 os? I 6 aSi3 I

(11)

(b) the expansion in Taylor series the time derivative of the retention around .

the trajectory S?(t)

Si(t) = S?(t)+bSi(t)+b2Si(t)+b3Si(t)+ ... (12)

FunctionbS(t). Substitution of (11), (12) and (9) (limited to the first-order increments
only) juto (3) yields following set of equations
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.. aj
S~(t)+15S1(t) = -fI [S~(t),tJ- ~ 15S1(t)+x(t),

aSI

.' ~ ~
S~(t)+bS2(t) + = -f2 [S~(t), t]- ~bS2(t)+fdS~(t), t]+ ~ bSI(t),

US2 aSI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)

S~(t)+15Sn(t)= -!,,[S~(t), tJ- ~~n bSn(t)+!,,-I [S~-l (t), t]+ ~~n-I bSn-I(t)n n-l

with the initial eondition

8°(0) = 80, b8(0) = O,

as there is a zero inerement in the initial eondition. The arguments of the partial deri-
vatives are omitted in order to shorten the notation.

By subtraeting the set of equations (10) (eorresponding to 8°(t) solution) erom
(13) we get th.. relation representing the linear part of the storage trajeetory's inere-
melit

. afI
bS1(t) = - - bSI(t)+x(t),

aSI

. bf2 afl
bS2(t) = - - bS2(t)+- aSI(t),

bS2 aSI

(14)

. aj, aj,bS (t) = - !!...bS (t)+ ~ aS (t)
n aS n aS n-l'n n-l

b8(0) = O.

Equation (14) cali be expressed in a matrix notation as follows

~S(t) ~ A(t, S,)x~S(tH r!] x(t),
. b 8 (O)= O.

(15)

-

The elements of matrix A(t, 80) are thc funetions of time and the initial eon-
dition. So we goi the linear nonstationary set of differentiaI equations with the zero
initial eondition. It bas the following solution

t

b8(t) = JKI (t, 80, -r)x(-r)dr,
o

(16)
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where

K,(t, S., T) ~ <p...(t, S., T)X [!]
and <Pis a state-transition matrix for (14) (Athans and Falb, 1968).

Il caDbe concluded that the linear part of the increment of the storage trajectory
in Taylor expansion (7) caD be put down as the first term of the Lichtenstein-Lapu-
nov senes.

FunctionbzS (t). Substitution of (11), (12) and (9) juto (3) (limited to the second-order
increments) and in tum substraction (13) from the both sides, make use to arrive
to a relation describing the quadratic part of the increment of the storage trajectory

z . fJfl Z 1 fJzfl Z
b Sl(t) = -~ b Sl(t)-- ~ [bSl(t)] ,

USl 2 uSl

z . fJfz Z fJfl Z 1 fJzfz Z
b Sz(t) = - ~ b Sz(t)+- b Sl(t)-- ~ [Mz(t)] +

uSz fJSl 2 fJSl

1 fJzft z
+ 2 fJSZ [bSl (t)] ,1 (17)

.. . . .
" ~ ~ 1 fJ~bzS (t) = - --~ bzS (t)+ -~ bzS (t) - - ~ [bS (t)]z+
n fJS n fJS n-l 2 fJSz nn n-l n .

1 fJZ/"-l [bSn-l (t)]2+- z
2 fJSn-l

with the zero initial condition, exactly as it was in case of function b8(t).
The set of equations (17) caD be cxpressed in a matrix notation as follows.

bZ8(t) = A(t, 80)x bZ8(t)+B(t, 80) x [b8(t)]z. (18)

The matrix A(t, 80) in (18) is the same as in (15), the e1ements ofmatrix B(t, 80)
are functions of time and the initial condition. Having the solution for b8(t) from
equation (16) we caD insert [b8(t)F in equation (18)

t t

[b8(t)F = JJKl(t, 80, Al) Kl (t, 80, AZ)X(Al)X(AZ)dAl dAz "
00

(19)

Denote by ,,(t, 80, Al' Az) the product

B(t, 8Q)X [Kl (t, 80, Al) Kl (t, 8Q, Az)].
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Substitution of (19) luto (18) yields the nonstationary linear set of ordinary
differential equations corresponding to the quadratic increment of the stale trajec-
tory:

t t

fJ2 S(t) = A(t, 80) X fJ28(t)+ JJrp(t, 80, Al' A2)X(Al) X(A2)dAl dA2
00

(20)

with the zero initial condition. The solution of ibis set 1Sdefined by the following

equation
t ~ ~

fJ28(t) = Jc])(t,80, ;)x JJrp(;, 80, Al' A2)X(Al)X(A2)dAldA2d;,
o 00

(21)

where c])(t, 80, ;) is the state-transition matrix for (20). This matrix is the same as
for equation (15).

The double change of the order of integration results in
t t t

fJ2 8(t) = JJ[Jc])(t, 80, ;) X rp(;, 80, Al> A2)1(;-A2) d;] X(Al) X(A2)dAl dA2, (22)
o o Al

where 1(t) is the unit step function.

Substitution
t

K2(t, 80, Al' A2)= Jc])(t, 80, ;)xrp(;, 80, Al' A2)1(;-A2)d~
Al

gives us the solution for the quadratic part of the increment of the stale trajectory
in formula (7). This solution is of a form of the second term in the Lichtenstein-
Lapunov series (5)

t t

fJ28(t) = JJK2 (t, 80, Al' A2)X(Al) X(A2)dAl dA2'
00

(23)

Having determined functions 8°(t), fJ8 (t), fJ28 (t) one caD obtain the 3rd-order
increment of the storage trajectory by expansions of the set (3) up to 3rd-order incre-
ments. This increment of the storage is represented by the third term in the Lichten-
st~in-Lapunov series, etc. The complete proof of the equ1valency between series (7)
and (5) caD be found in Napiórkowski (1978).

The kerneIsof the inftow-outftowoperator.The outf1owfrom the cascade of reservoirs
is a function of the retention of the last reservoir anty. Substitution of the lasi rows
in formulas (16), (23),... for SnCt), fJ2Sn(t),... in (11) for i = n gives us

t

o a/n !y(t) = /n[Sn (t), tJ+ ~ Kln(t, 80, A)x(A)d?+
aSn Q
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aj, t t+ -~ fI K2n(t, 80, Ai, ,12)X().i) x(A2)dA i dA2+
asn o o

1 a21n t t

+ '2 as;; f f KinU, 80, Ai)Kin(t, 80, ,12)X(Ai)x(A2)dAi dA2+ ...
O O

(24)

The right-hand sicie of (24) is the Lichtenstein-Lapunov operator describing the
inflow-outflow relation. The kerne!s of this operator are determined by means of
the known kerne1s of the Lichtenstein-Lapunov operator describing the inflow-
-retention re!ation for the last reservoir. We conclude from (24) that the first twa
kerne1s are as follows

8 aln
hi (t, o, A)= -a KinU, 80, A),

Sn
(25a)

aln -
h2(t, 80, Ai, ,12)= - K2n(t, 80, Ai, ,12)

asn

1 a21n

+ '2 as2 KinU, 80, Ai)Kin(t, 80, )'2)'n .
(25b)

The application of the analytical method of the determination of thc integral
series' kernels by means of the stale equation will be shown in the next paragraph.
As an example the cascade of the identical stationarynonlinear reservoirs modelIing
the flow in an open channe1 will be used.

4. THE RELATIONSHIP BETWEEN THE VOLTERRA SERIES AND NON-

LINEAR STATE EQUATIONS IN THE CASE OF THE CASCADE OF RESER-
VOIRS MODELLING THE FLOW IN AN OPEN CHANNEL

Consider the prismatic chamIe! with a rectangular cross-section characterized by the
following parameters: B - width ofthe channe1, 1- bottom slope, n* - Manning's
roughness coefficient, h - average depth (equals aproximatly to the hydraulic fading)
divided juto n reaches of the length L. The retention of the reach with length L cali
be described by the following equation.

v = BhL. (26)

The outflow from the reach cali be aproximately expressed (using Manning's
formula) as follows

Q = 1)Bh= aV5/3, (27)



CASCADE OF NONLlNEAR RESERVOIRS 131

where v - average flow's velocity at the downstream cross-scction, Q - flow at
the downstream cross-section,

1
a = ---;- /l!ZB-Z!3L-5!3.n

The deviation of the outflow from, the steady-state o4tflow

. y(t) = Q(t)-Qo(t)

as a function of the retention changes

Set) = V(t)- Vo(t)

caD be aproximately determined by the expansion of (27) in Taylor senes

f)Q

I

l f)zQ
Iy(t) = ;:;-- S(t)+ - z Sz(t)+ ... = ~l S(t)+az SZ(t)+ ..., (28)

u V V=Vo 2 f)V \v=vo

where Vo is the retention of the reach in the steady state.
The following are the fint twa coefficients in thi::fórmula (28) aproximating the

increment of outflows from the reach in a retention increment functlon

5
al = - aV2!33 o'

(29)

5
az = - aV;;-l!3.

9

According to (28), the deviation from the steady-stateflow in an open channel
will be modE:lledby means of the cascade of nonlinear reservoirs and each of them
is described by the following set of equations

(30)

S/t) = x/t)-y;(t),

y;(t) = al S;(t)+az Sz (t)+ '"

with the zero initial condition (see formulas (1), (2)).
At ibis point, we caD derive the relation between the deviation from the steady

state in the open channel. This relation bas a form of the integral series (Fig. 2).
The results obtained in the third paragraph will be used herc.

(31)

(32)

Qo+x(t)

Fig. 2. The conceptual model simulating the flow's deviation [rom the steady state in open channels

Qo + t>Q x (t). I Cascade of y (t)
reservolrs

Volterra
I 6y(t)+62y(t)

senes
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Vector S2(t). Recall that we analyze the deviation from the steady state. Under
this assumption the initial condition with respect to th~ cascade of reservoirs will
algo be zero and the solution for set (3) under x(t) = Ois a vectorequals to zero wit-
hill the interval [O,+00). So

SO(t) = O.

Vector oSet) - the linear aproximation. Substitution of equation (32)for fJS;(t), t]
yields from (14) the stationary set of differential equations. This in tum enables us
to determine the linear part of the increment of the storag<::trajectory. .

OSI (t) = -al CJSl(t)+x(t),

CJS2(t) = -al CJS2(t)+al OSl(t),
.. . (33)

CJs/t) = -al CJSn(t)+aloSn-l (t),

CJS(O) = O.

In order to solve (33) one has to derive its state-transition matrix. The easiest
way to achieve that in case of stationary systems is by Laplace transform. As far as
equations (33) are concemed it is necessary to obtain the inverse transform of matrix
(pl - A)-l (matrix A is defined by (15), lis identity matrix, p is a complex variable).
The state-transition matrix derived this way for equations (33) is of the form

-e-al~- ___mnm__nuL~__u___mmm_m_' =u_mL~_m -

(a~-t-)e-alt i e-alt ! - i O um

<P (t) ~ ," ~ 1;~t=~C~-==~;--'-~~:~==-r===r~===( l ) -a l t: ( l ) -a l t i : -a l t
o.' e: o e ,-: e

(n-l)! I (n-l)! I i

(34)

Taking the above juto account as well as the formula (16) we conclude that the
linear part of the storage increment in the ith reservoir of the cascade cali be deter-
mined according to the formula

t

[a (t A)]
;-l

oS. ( t ) = r l-' e-al{tuA)X (A) dA.
l . (i-l)!o

(35)

Inasmuch as the kernel of the operator (35) depends only on the difference
t-A we get (after the substitution) that

t (a TY-l
oS;(t) = f .1 e-alTx(t-T)dT.

(z-l)!o

(36)

Sa, in the case of the cascade with stationary parameters and the zero initial con-
dition the first term in the Lichtenstein-Lapunov series is of the form of the first term
in the Volterra series.
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Vector 02S(t) - the quadratic aproximation. We tan get from the reIation (17)
the set of differentiaI :.quations flam which the quadratic part af the increment of
the storage trajectory tan be derived

02S1 (t) = -alozSl (t)-az [OSl(t)F,

OZSz(t) = -al oZSZ(t)+a1 (PSl (t)-az [oSz(tW+az [OSl (t)F,

(37)

ozSn(t) = -al oZSn(t)+a1 OzSn-1(t)-az [oSn(tW+az [oSn-1 (t)?,

OZS(O)= O.

The state-transition matrix for cquatian (37) is the same as for equation (33) so the
quadratic part of the increment of the stale trajectory is determined by the folIowing
reIation

t

OZS(t) = f e-A(t-~)xB[oSmFd$,
o

(38)

whcre matrix B is dcfined by (18).
The anaIyticaI determination of thC-'sccond kerneI of the operator entaiIs tedious

computations. For that reagan we wiII not present detaiIs of how the quadratic part
of the trajectory's increment was derived. So we onIy note hele that substitution
into (38) of formula (35) for [oSim? and doubIe change of the ord::r of integration
according to formula (22) and the variabies substitution Iead to the conclusion that
equation (38) tan be expressed as the second term in the VoIterra series

(FSi(t)= f

t

f

t

{

~e-a1(t'1+t'Z)

[
(a1T1Y-1 ~(a1Tzt (al TzY-1 ~_(a1T1)k

]
-

al (i-I)! L.J kI + (i-l)! L.J k!o o k=O k~O

a [a1max(T1, TZW-1

}
( ) ( )d dz -a1max(t'j,t'z) X t-T 1 X t-Tz T1 TZ'

---;;;e (i-l)!
(39)

AlI transformations caD be found in Napiórkowski (1978). One tan naw deter-
mine, using the soIutions for the linear and quadratic parts of the increment of the
stale trajectory, the higher order increments up to the point the required accuracy
is achieved.

The kerneIs of the VoIterra series for the in8ow-out6ow relation. The kerneis of the

VoIterra series describing the infl.ow-outflow relation tan be derived flam (25), by
which they are expressed in terms of the kernels of the series deseribing the inflow-
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storage reIation. The simple algebraic transformation give us the folI?wing solution

)
n-l

(al t -alt-e ,
hl (t) = al (n-l)!

(40)

[
( )

1 n- 1

hz (tl, tz) = az e-al (tl +tz) al tl n- \., (al tz)k
(n-l)! L.; kl-+k~O

n-l
(altz)n-l

2;
(altl)k

]

- (t t ) [a1m .aX(t1,tzW-1+ -- -ale almax l' Z-.
(n-l)! k! (n-l)!k=O

(41)

The equations (40) and (41) describe the twa first kerne1s of the conceptual
nonlinear model. lts structure corresponds to the structure of the Volterra series.
Relation (40) describes the transfer function (lUH) for the cascade of.linear reser-
voirs. The latter properties are notdiscussed here, as they were analyzed in maDY
publications.

The properties of the second kernel of the Volterra series. It was proved (see Napiór-
kowski, 1978) that the second kernel ofthe Volterra series describing thecascade of
nonlinear reservoirs determined analytically and defined by (41) fulfils the folIowing
conditions;

1. hZ(tl' tz) = O for either tl < O or tz < O,

2. hZ(tl,tZ) =0 for tl =0 ar tz=O,

3. Ihz(tl' tz)1 < M for all tl and tz,

4. hZ(t1, tz) = hz(tz, tl) for alI tl and tz,

5. hz(t1>tz)~O for either tl~oo ar tz~oo,
00 00

6. f f hZ(tl' tZ)dtldtz = o,o o
00

7. f hz(t, t+c)dt = O for all c;? O.
o

The above conditions were specified by Diskin and Boneh 0972) in terms of phy-
sicallaws for the in:tlow-outflow systems without lass expressed by the twa first terms
of the Volterra series!

A contour diagrams representing (41) for one, three and five nonlinear reser-
voirs are given in Figs. 3, 4, 5 respectively.

AlI three diagrams are plotted in terms of dimensionless variabies al "tl, al "tz,
hZ("tl' "tz)'a;l.
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Fig. 5. The second-order kerner of the Volterra series for five nonlinear reservoirs

5. THE EFFECT OF THE INFLOW'S MAGNITUDE ON THE CON-'
VERGENCE OF THE VOLTERRA SERIES DESCRIBING THE CASCADE
OF NONLINEAR RESERVOIRS

The eonvergenee of the Volterra series implies that the erraT of the aproximation

of dynamics of the aetual system deereases. w!th the inerease of the number of terms
in the integral series. This aspeet of the modelIing of the hydrologie systems bas not
so far foeused attention of the investigators. It was mentioned by Kuehment (1972)
who identifies the limits of the inflow's magnitude x(t) < +00 with the suffieient
condition for the convergenee ofthe series (4). On the other band Diskin and Boneh
(1972) formulated the condition in terms of physics for the model consisting of the
twa first terms of the series. Its fulfilment ensures the positive outflow, provided
there is a positive inflow. However, this eondition allows us to model the dynamies
by means of the Volterra series in case of the inflows for whieh the non1inear model
offers a worse aproximation than the linear one.

The determination of the set of inflows sueh that eaeh of lbem ensures the con-

vergence solution constitutes the basic condition under which the integral series cali
be used in order to model hydrol~gic systems. This problem, expressed in general
terms, is extremly complicated. For that reagan we will investigate whether there
exists an inflow's magnitude limit implying the convergenee of the integral series (4).
The latter describes the cascade of identical nonlinear reservoirs and the outflow in

the retention function is expressed by

Yi(t) - al Si(t)+a2 S; (t), i~l,...,n.' (42)
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Consider first the individual non1inear reservoir (Fig. 6). Its dynamics is descri.

bed by the folIowi~g nonlinear first-order differential equation

S(O) = O,

Set) = -al S(t)-az SZ(t)+x(t),

al >0, az >0.
(43)

x(t)

~~ t~~~=,S:
S

Fig. 6. The individual nonlinear reservoir

The solution of the above equation cali be expressed as an infinite integral series
folIowing the method presented in this paper. Two first terms are daived by substi-
tuting i = 1 in (36) and (39)

t t t

Set) = f e-alTx(t-r)dr+ f f :z [e-al(Tl +TZ)-e-almaX(TlTZ)] X
o o o 1

xx(t-r1)x(t-rz)dr1drz+ ... (44)

Consider the steady state of the reservoir with inflow with amplitude X. We conc1ude
from (43) that the steady state is described by the folIowing equation

0= -a1S-azSz+X. (45)

The obvious solution of this equation under S > O,X> O is

S = -al +Vaf+4az
2az

or the series expansion

(46)

1 az z 2a~ 3
S=-X-3X +---sX -...

al al al
(47)

The above series is convergent provided the folIowing inequalities are met

4azX ~ 1-""

af
or afX ~-.

"" 4az
(48)
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Every term of (44) will aproximate, under x(t) = X, t;:? O and t -+ 00 the cor-
responding term of (47). For example

t

~
l l

e-alTXdr = - X(l-e-al) -~- X,
a 1-+00 a

o l l

1 1

~~ :: [e-al(Tl+T2)-~-almaX(TI.T2)]X2drldT2o o

X2a2

{[
1 l ]2 2 1

}

a2 2= - (l-e-al )-
.

' -- [l-e-al (I+alt)] -~-- X .
al tlI a~ 1-+00 a~

Sa, for t -+ 00 series (44) will converge if the inequality (48) is met.
It caDeasily be shown that every term of series (44) is in absolute magnitude less

than, or equal to, the corresponding term in series (47) if

max x(t) ~ X.
I~O

This implies

maxS(t) < S.
I~O

We conclude that the sufficient condition for convergence of the Volterra series des-
cribing the individual nonlinear reservoir defined by equation (42) is

a2
.X = max x(t) ~ ~.

4a2

It should .be noted that the differentiaI equation

S(t)+al S(t)+a2 S2(t) = x(t) = X = const

bas a finite solution for t -+ 00 and O < X < + 00 but the Volterra series yields
a finite soIution when X < ~/4a2'

The derived condition for the convergence of Volterra series in case of one reser-
voir caD be generalized on the entire cascade. Equation (43) is reIevant to describe
the retention state in each reservoir at steady state. In particular it refers to the Iast
reservoir. Thisimplies the conclusion that (48) will algObe the condition for the con-
vergence of the series describing the cascade of nonlinear reservoirs. In modelIing
of the retention of the Iast reservoir by means of the convergent Volterra series,
(Sn(t) bas a finite value for aIl t E [O,+00)) and this implies the convergence of the
series al Sn(t)+a2 S; (t). The latter equals to y(t). So we come to the conclusion that
the convergence of the series describing the. inflow-retention relation implies the con-
vergence ofthe series describing the inflow-outflow relation. The condition (48) refer-
ring to the convergence of the Volterra series is a sufficient condition determined for
the most unfavourable casco However, despite the condition of maximum amplitude
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is not met, the inflows' hydrographs caD exist such that the corresponding series
converge. The above remains valid, provided the time in which the input is not met
(48) is short enough. This condusion is confirmed by the results of the numerical
experiments. In order to complete onr discussion we will tfY to evaluate the value
of inflows ensuring the convergence of the Volterra series in case of the conceptual
model (42) simulating the flow's deviation from the steady stale in open channels.
We condude from (29), (30) that the condition in question is tbat tbe maximum ampli-
tude fulfills- tbe inequalities

5
max(Q(t)-Qo) ~ - Qo.
1;;>0 4

6 THE RESULTS OF NUMERICAL EXPERIMENTS

Onr considerations in tbis paper are illustrated in Figs. 7 and 8. They show the effect
of the type of input signal and of the model's parameters on the accuracy of the solu-
lian. The cascade of three nonlinear reservoirs was investigated. The aproximation
of the outflow in retention function for each of lbem was of form (42) under the
assumption of the zero initial conditions. The nonline.ar set of differential equations
was solved numerically by the fourth-order Runge-Kutta method. The standard
IBM procedure was used, according to which the step of integration is chosen auto-
matically for an imposed computational accuracy. The inflows oftbe type ofa rectan-
gular pulse function with an unit amplitude and different duration were taken as
input signals. The linear and quadratic aproximations for the analyzed inflows were
determined analytically. Fig. 7 presents the results of transformation if the para-
meters al' a2 and the inflow's amplitude fulfil the convergence condition (48). The
deser is the inflow x(t) to the steady stale the higher is the accuracy of the aproxi-
mation of the cascade's outflow. That is why the aproximation in Fig. 7a is signifi-
cantly better than that in Fig. 7b. Fig. 8 shows the rusults of transformation for twa
inflow cases for which condition (48) is not met. The Volterra series does not con-
verge (Fig. 8a) if the inflow lasts for a long time, but otherwise it does (Fig. 8b).
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JlpocAa8 HamopK08cKU, BumoAbo CmpynIJe8cKu

AHAJII1TI1aECKOE OllPE)J;EJIEHI1E 5I)J;POB P5I)J;A BOJIbTEPPbI
OllHCYIO~ErO KACKA)J;Y HEJIHHEMHbIX PE3EPBY APOB

PE3IOME

B CTaTbR IIpe,[(CTaBJIeHa KOlu~e~ CBH3aIDIH ,[(BYX OCHOBHblX MaTeMaTWIecKIIX TeXJrnK HCIIOJIh30-

BaHHblX K Mo,[(eJIRpOBaIDUO HemIHeHRbIX rMpOJIOrRqeCKRX CRCTeM. IIepBblit MeTO,[( IIOJIb3yeTcH

HeJIRHeHJn,IM ,[(RcPiPepeHqHJIbHhIMR ypOBHeIDIHMH, BTOpOit MHOrOJIRHeHRbIM HHTerpaJIbHbIM PAAOM.

):l:m\ KaCKa,[(a HemmeHRbIX pe3epByapoB Mo,[(eJIHpyrormrx CTOK B OTKPhlTOM pYCJIe onpe,[(eJIeHO

aHamnHqeCKlJ H,[(pa «HTerpaJIbHOrO pH,[(a BOJIbTCpphl Ha oCHoBe HeJIlJHeitHblx ,[(uiPiPep~HUHHJIbHbIX

YPoBHeHUH. 06Cy;K,IJ:eHO CBOitCTlla Il cTpYKrypbI ,[(BYX IIepBblx H,[(pOB. J1cCJIe,[(oBaHO IIpo6JIeMY

CXo,[(RMocrn pH,[(a BOJIbTeppbl B 3aBRCHMoCTH OT BeJIHqHHbI BXO,[(HOit iPYHKl.\HH H cBoficTBa HeJIU-

HeitHocTH CHCTeMhI. .

Jaroslaw J. Napiórkowski, Witold G. Strupczewski

ANALITYCZNE WYZNACZENIE JADER SZEREGU VOLTERRY
OPISUJACEGO KASKADE ZBIORNIKÓW NIELINIOWYCH

STRESZCZENIE

Prezentowana jest koncepcja powiazania dwóch podstawowych aparatów matematycznych wyko-
rzystywanych do modelowania nieliniowych systemów hydrologicznych, opisu za pomoca równan
stanu i wieloliniowego azeregu calkowego. Dla kaskady ziborników nieliniowych modelujacych
przeplyw w korycie otwartym wyznaczono analitycznie jadra szeregu calkowego Volterry w oparciu
o nieliniowe równanie stanu. Dyskutowane sa wlasnosci i struktura dwóch pierwszych jader. Badany
est problem zbieznosci szeregu Volterry w zaleznosci od wielkosci sygnalu wejsciowego i charakteru
jnieliniowosci obiektu.


