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1. INTRODUCTION

The mathematical description of the relationships between the input and output
of a hydrologic system is one of the most important tasks of contemporary hydro-
logy. The current knowledge of hydrologic processes as well as the quality of measur-
ement techniques do not allow the complete solution of the above problem in terms
of physical interpretation of the processes in a watershed or a river, e.g. by momen-
tum, mass and energy equations. This is why the conceptual or “black box” models
are becoming more and more popular. They are simpler and can be more easily ap-
plied. They are based not upon a physical interpretation of dynamic processes but
upon the precisely determined relationships between input and output quantities
or processes. The linear models were developed in the sixties, whereas the nonlinear
ones have not often been discussed in the literature until recently.

This paper deals only with a nonlinear model. In particular our point of interest
is the modelling of hydrologic processes (like “effective rainfall-runoff”, flood routing)
by means of the conceptual model of cascade of nonlinear reservoirs described by the
Volterra series. The kernel’s structure and convergence of the series is analysed as
well as the kernel’s dependence on physical parameters.

The modelling of hydrologic processes by means of the Volterra series has
so far been developed independently of other methods of description of dynamic
systems in particular by a state equation formulation. The problem of series identi-
fication (determination of its kernels) has been solved by numerical methods applied
to an input record and a corresponding output by means of kernels expanding (under
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an arbitrary assumption as to their structure) in orthogonal polynomials, see Amo-
rocho and Brandstetter (1971), Jacoby (1966), Kuchment (1972), Papazafiriou
(1976). As it was pointed out by Napiorkowski (1978), the fact that the structure of
kernels is not known may imply their searching within the class of functions that is
significantly different from the class they actually belong to. This in turn may lead
to a solution of the identification problem that has nothing to do with a true one.
For that reason, the analysis of the connections between the description by state
equation and integral series in relation to a cascade of nonlinear reservoirs is, in our
opinion, of great importance. This approach makes possible the analytic determina-
tion of the kernels structure and for that reason we consider it to be a significant
contribution to the thcory of nonlinear hydrologic models.

2. DESCRIPTION OF A CASCADE OF RESERVOIRS BY NONLINEAR
OPERATORS

It was assumed in models discussed until recently in the hydrologic literature that
an output is a superposition of signals corresponding to individual input signals.
However, in case of many practically important systems the hypothesis of linearity
holds only within some range of input signals variation or it must be rejected alto-
gether. In such cases we have to apply the theory of nonlinear systems in order to
describe processes in question with an accuracy required. The nonlinear operations
that are most frequently used for a hydrologic system’s description will be given
below. These systems are considered to be dynamic ones with lumped parameters,
The cascade of nonlinear reservoirs will be used as an example.

Description of one reservoir e Nemycki’s operator. The changes in refention S(¢)
of a hydrologic system in time depend on inflow x(¢) and outflow y(#). The relation
between these three functions can be expressed by the following continuity equation

S(t) = x())—y (1), (1)

where the dot over S represents d/dt.
In order to solve effectively the above equation it is necessary to introduce an
additional relation between outflow and retention. This relation

y(t) =f18(), 1] (2

is known as Nemycki’s operator. The parametric dependence on time reflects a non-
stationarity of outflow in a retention function. Equations (1) and (2) give the complete
description.

Nonlinear state equation. The description of dynamic systems by state equation
is one of the basic approaches (Athans and Falb, 1969). Then the lumped dynamic
model can be represented by a set of ordinary differential equations. The state vector
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for the given dynamic system can be determined in different ways. The set of compo-
nents of the state vector, e.g. state variables, is the mininum set of numbers that
must be known in 7 = 0 in order to give a complete description of the states of the
system for any ¢ = 0 and for any input signals from the given input signals’ set.
A state vector’s dimension does not depend on how the state variables are determi-
ned and it equals to the number of system’s energy accumulators. The above conclu-
sions will now be used in order to describe the classical conceptual model, namely
the cascade of reservoirs (Fig. 1) given by equations (1), (2). These conclusions are:

Fig. 1. The cascade of nonlinear reservoirs

(i) The dimension of a state vector describing the cascade cquals to the num-
ber of reservoirs.

(ii) The simplest approach is to assume that storages of individual reservoirs
are the components of the state vector. :

(iif) The cascade has one input x(z) = x,(z) and one output y(¢) = p,().

Substituting (2) for y(¢) into (1) and putting x,(t) = f,_, [S;—, (), 1], i=2,...,n

we get a set of equations that describe changes in storages of the cascade’s reservoirs

5,(0) = —£18:(0), 11+x(2),

S,(6) = —=£.[8:(8), t]+-£,[S: (1), 1),
3

5,0 = —£,18,(0), 1147, [S,-, (1), 11,
P&y =£IS,0). 1) 5O = S,.

Volterra series. The description of dynamic systems by the Volterra series is a genera-
lization of the concept of the transfer function, which is of a great importance in
the analysis and design of linear systems. The Volterra series represents an explicit
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input-output relation for nonlinear dynamic systems and consists of an infinite
series composed of terms of the form of convolution integrals. The first term is the
convolution integral of the first order kernel and the input function, the nth order
term is an n-fold convolution integral containing the nth order kernel multiplied by
an nth order product of the input function

y.(‘) = fhl (@) x(t—7)dv+ ff hy (7, 12)x(t—7)x(t—7)dr, dry+- ...

t
1]

This type of series was applied for the first time by Volterra and Frechet in 1910
on functional equations. Nowadays it was used by Wiener (1958), Flake (1963), and,
in hydrology, to model rainfall-runoff relation or flood routing, by Amorocho and
Brandstetter (1971), Diskin and Boneh (1972), Kuchment (1972), Zand and Harder
(1973), Papazafiriou (1978) and others. This type of serics in particular can be used
to describe a nonlinear dynamic system, such as the cascade of nonlinear reservoirs.

h(ty,. ..., )x(t—7y)...x((—7)dey ...de, + ... (4)

Ct—

Lichtenstein—Lapunov series. The Volterra series (4) can be used only for the descrip-
tion of stationary systems. The more promising description (although more difficult
in terms of applications) which could also include the nonstationarity of modelled
processes seems to be one making use of Lichtenstein—Lapunov series (Kudrewicz,
1976). Its kernels depend directly on time

y©) = [t Dx@det [ [ ho(t, 70, ) x () x(ra)dry dra+ ...

s f fhn(t, S DR ) B o () O o I | e e (5)
0 0

If the kernels of this series depend on the differences 1—7, between arguments
it describes the stationary model. Then the relation (5) is equivalent to the relation
(4). (To see that it is enough to perform some elementary operations).

3. METHOD OF DETERMINATION OF THE KERNELS OF INTEGRAL
SERIES DESCRIBING THE CASCADE OF NONLINEAR RESERVOIRS

The determination of the kernels of nonlinear integral series is of great importance
in an application of the theory of modelling of hydrologic processes. The kernels are
usually determined for a given real system by optimization methods. The latter are
based on a finite input and corresponding output records. However, what is lacking
in the literature is putting together the description by state equations and the descrip-
tion by integral series. This would make possible the determination of the structure
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of the kernels. As it was already mentioned, the fact that the structure of the kernels
of the integral series is known enables the correct formulation of their identification.
Then the identification problem resolves itself in to the estimation of a small number
of parameters in the state equations.

The kernels of a series deseribing the relation: inflow-storage of reservoirs. The idea
presented here as to how to determine the kernels of Lichtenstein-Lapunov series (5)
which describes the cascade of nonlinear reservoirs stems from the following. The
vector differential equation (3) can be considered as a definition of some nonlinear
operator P mapping a space of inflows in a space of corresponding storages. In order
to determine how P operates for a given inflow’s hydrograph x(#), ¢ € [0, 4-00) it is
necessary to solve the set of equations (3) under the initial condition S,. It can be
symbolically expressed as follows
S(t) = [Ps, x](1). (©)

We postulate here that the assumptions of Picard’s theorem are met, so we make
sure that the solution of the set of ordinary differential equations exists and is unique
(Matveev, 1972). In further discussions it is assumed that the functions on right hand
sides of an equality sign in (3) are diffcrentiable so many times as required as to
their arguments.

Let us denote by

S°(t) = [Ps, 01(1)
the solution of a set (3) corresponding to a zero inflow in the entire time interval and
the initial condition S,. Let
' S(1) = [Ps, 1(1)

be a solution corresponding to a given inflow’s hydrograph x(¢) and the same initial
condition. The change of state trajectory from S°(¢) into S(¢) can be determined by
means of Taylor series for operators (Findeisen, 1977):

[Ps, X1(0)—[Ps, 61(r)
1 1 .
= [P5, 0, X1+ 5 [P, 0 XU+ ..+ = [P, 6, X1+ o, (D)

where
[Ps, 0, x1(1) = 85(1)

is the linear part of the state trajectory’s increment, the first order Frechet differential
of operator P,

1
= [Ps, 0, X71(0) = 9S(1)

is the quadratic part of the state trajectory’s increment, the second order Frechet
differential of operator P, etc. :
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So the change in the inflow hydrograph from zero level into x(¢) implies the tra-
jectory’s change from S°(¢) into

S(1) = S°(1)+4S(), ©)
where
AS(t) = 68(t)+0*S () +0°S(t)+ ... Q)

We will prove below, by computing functions S°(), S(¢), 62S(¢) (in this order)
that the linear part of the increment of the storage function is represented by the first
term of the Lichtenstein—Lapunov series (5), whereas the quadratic part — by the
second term.

Function S°(¢). Function 8°(¢) is a solution of a homogeneous set of equations (3)
which corresponds to the zero inflow in the entire time interval and the initial con-
dition S,

S1() = —£1[S7(0), 1],

S3(t) = —£[S3(0), 1141, [S2(2), 11,
; (10)
$2() = —£,IS20), t1+£,-1 1S9, (0, 1),
S°(0) = S,.

The above homogeneous set of equations has unique solution under the im-
posed assumptions. This solution depends on the initial condition. The latter descri-
bes the process of emptying of the cascade of reservoir provided there is no inflow
into the first reservoir. In order to compute the linear and quadratic increments we
make use of:

(a) the expansion of the retention — outflow rclation (2) in Taylor series around

the inflow trajectory S7(z) for the increase AS,(1), i =1,...,n,
0
vy = fiso@, 1+ IR g5
0,
1 0*[S)(0), 1] ,, L LISt ), 1] ;
g — e (4801 + 73 s [45P+ ... (1)

1

(b) the expansion in Taylor series the time derivative of the reteniion around
the trajectory SP (1)

S,(t) = S2(1)+8S,(t)+62S,(t)+03S,(H)+ ... (12)

Function 48 (¢). Substitution of (11), (12) and (9) (limited to the first-order increments
only) into (3) yields following set of equations
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0f

SO(O)+08,(£) = —£,[S2(0), t]— S 881(0+x(1),
. ; af, af,
$20)+08: () + = —[S2(0), 11— dg S5 OH1 IO, 1120 55, (),
. (13)
a0 | . it el 0 e df 0 Uf;,_l
$20-+05,0 = A IS0, (1= 5 08,0, [SE-, 0,0+ = 85, )

with the initial condition
S§°0) = S,, 0S(0) =0,

as there is a zero increment in the initial condition. The arguments of the partial deri-
vatives are omitted in order to shorten the notation.

By subtracting the set of equations (10) (corresponding to S°(7) solution) from
(13) we get the relation representing the linear part of the storage trajectory’s incre-
ment

i af
85,(0) = — sll 08, (1)+x(1),
5 'afz afl :
bs) = — 2 0
S2(0) 55, 08, (1) 3s, 98, (1), |
(14)
; aof, Oy~
3Bt — 2 8 = ,
S, (1) as, S, (0)+ a5, 0S,_,(1)
8S(0) = 0.
Equation (14) can be expressed in a matrix notation as follows
1
88(t) = A(t, So)x0S(1)+ ? x(1), (15)
0

. 85(0) = 0.

The elements of matrix A(z, S,) are the functions of time and the initial con-
dition. So we got the linear nonstationary set of differential equations with the zero
initial condition. It has the following solution

08(1) = f K, (t, S,, V) x(v)dv, (16)
(]
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where

Kl(ts SOY T):@uxn(r: SO’T)X .
0
and @ is a state-transition matrix for (14) (Athans and Falb, 1968).
It can be concluded that the linear part of the increment of the storage trajectory

in Taylor expansion (7) can be put down as the first term of the Lichtenstein-Lapu-
nov series.

Function 6°S(¢). Substitution of (11), (12) and (9) into (3) (limited to the second-order
increments) and in turn substraction (13) from the both sides, make use to arrive
to a relation describing the quadratic part of the increment of the storage trajectory

ok & afy 5 e I Lo2]; e
20 . fz fl 52 ot zfz 2
S, (1) = a5, 0S8, (t )‘f’ 428, (2) E 92 [0S, ()]*+
. 1 @4 .
t 2957 [0S, ()%, an
9 _— )frx 2 f;; 1 3 2
PLO= 5= OSSO~ 63-2 S, (OF+
-y de_l [(5 (P

with the zero initial condition, exactly as it was in case of function 4S(z).
The set of equations (17) can be cxpressed in a matrix notation as follows.

828(t) = A(t, So)x 0*S()+B(t, So)x [8S(1)]?. (18)

The matrix A(t, S,)in (18)is the same as in (15), the elements of matrix B(z, S,)
are functions of time and the initial condition. Having the solution for §S(¢) from
equation (16) we can insert [6.5(¢)]* in equation (18)

PSOF = [[ Kyt So, 1) Ky (t, So, 42) X () x(Rs) diy iy (19)
00
Denote by (1, S,, 4, 4,) the product
B(t, So) < [K,(t, So, 41) K, (¢, So, 4,)].
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Substitution of (19) into (18) yields the nonstationary linear set of ordinary
differential equations corresponding to the quadratic increment of the state trajec-
tory:

23() = A, SYx SO+ [ [ o0t So, 11, 12) x(1) x()dhdls  (20)

with the zero initial condition. The solution of this set is defined by the following
equation

t (£
02S(t) = [ @, So, % [[ @& So, s, 22) x(hy) xQA)dhy dhzdE,  (21)
o 00

where @(z, S,, &) is the state-transition matrix for (20). This matrix is the same as

for equation (15).
The double change of the order of integration results in

6?28(1) = jf[ f¢(t, Sy, )X (&, So, 415 Z;)I(E—-Az)df]x(ﬁ,) x(A)dAydhy, (22)

where 1(¢) is the unit step function.

Substitution

Ky (t, So, A, Aa) = [ Bt So, X0, So, 2a, 22)1(—25)dE
A4

gives us the solution for the quadratic part of the increment of the state trajectory
in formula (7). This solution is of a form of the second term in the Lichtenstein—

Lapunov series (5)
rr
328() = [[ Ky(t, So, A, 42) X(h) X(Rr)d21ds . (23)
00

Having determined functions S°(¢), 6 S(¢), 6 S(r) one can obtain the 3rd-order
increment of the storage trajectory by expansions of the set (3) up to 3rd-order incre-
ments. This increment of the storage is represented by the third term in the Lichten-
stein-Lapunov series, etc. The complete proof of the equivalency between series (7)
and (5) can be found in Napiorkowski (1978).

The kernels of the inflow-outflow operator. The outflow from the cascade of reservoirs

is a function of the retention of the last reservoir only. Substitution of the last rows
in formulas (16), (23),... for S,(#), 62S,(?), ... in (11) for i = n gives us

() =115 U [ Kot Sor 1) 50 i
)(f) 5y f;x[ n (E)., fJI— E}E;! In(t’ 0 f") ,-‘C( ) 7



130 - J. 7. NAPIORKOWSKI, W, G. STRUPCZEWSKI

af )
e f f Ky (8 Sos A1y A2) X(hy) X(As)dAy diy+
in:0
1 9%, f ,
g 3 f f Ky, (t, So, 2Kyt Sor 42) X(h) X(a)dhy gt ...  (24)
n 0 0

The right-hand side of (24) is the Lichtenstein-Lapunov operator describing the
inflow—outflow relation. The kernels of this operator are determined by means of
the known kernels of the Lichtenstein—Lapunov operator describing the inflow-
-retention relation for the last reservoir. We conclude from (24) that the first two
kernels are as follows

o,

(s 8o 2) = 5" Kialts So. 1, (25a)
. af, s
hz(t, SO’ Ays )‘-2) = aS" Kzn(ts SOs Ay AZ)"I—
1 8%, )
+ E W Kln(ts SO: Al)Kln(r: S(}s ‘22) (ZSb)

The application of the analytical method of the determination of the integral
series’ kernels by means of the state equation will be shown in the next paragraph.
As an example the cascade of the identical stationary nonlinear rescrvoirs modelling
the flow in an open channel will be used.

4, THE RELATIONSHIP BETWEEN THE VOLTERRA SERIES AND NON-
LINEAR STATE EQUATIONS IN THE CASE OF THE CASCADE OF RESER-
VOIRS MODELLING THE FLOW IN AN OPEN CHANNEL

Consider the prismatic channel with a rectangular cross-section characterized by the
following parameters: B — width of the channel, / — bottom slope, n* — Manning’s
roughness coefficient, 1 — average depth (equals aproximatly to the hydraulic radius)
divided into n reaches of the length L. The retention of the reach with length L can
be described by the following equation.

V = BhL. (26)

The outflow from the reach can be aproximately expressed (using Manning’s

formula) as follows
Q = vBh = aV?s, 27
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where 9 — average flow’s velocity at the downstream cross-section, @ — flow at
the downstream cross-section,

e _]_ IIIZB—Z.-'SL—SIB
= r :

The deviation of the outflow from the steady-state outflow
(1) = 0()—04(1)
as a function of the retention changes
S(t) = V(t)—Vo(t)
can be aproximately determined by the expansion of (27) in Taylor series

a0 | 1-9%0 ] .
()= —| S+ = —| S*)+ ... = a, S()+a,S*(O)+ ..., (28)
E}V V=V, 2 ()VZ V=V
t 0 0
where V, is the retention of the reach in the steady state.
The following are the first two coefficients in the formula (28) aproximating the
increment of outflows from the reach in a retention increment function

5]

= avie, (29)
e

a = o Vs, (30)

According to (28), the deviation from the steady-state flow in an open channel
will be modelled by means of the cascade of nonlinear reservoirs and each of them
is described by the following set of equations

8,(1) = x(1)—y,(1), (31)
y(t) = a, S(t)+a, S*(t)+ ... (32)

with the zero initial condition (see formulas (1), (2)).
At this point, we can derive the relation between the deviation from the steady

state in the open channel. This relation has a form of the integral series (Fig. 2).
The results obtained in the third paragraph will be used here.

Qg+ x(t) Open Qo+ AQ x(t) Cascade of yit)
Channel reservoirs

Cascade of

reservors r

Qq 1)

x(t) Qotylt) Volterra By(t)+8%y(t)

Series

Fig. 2. The conceptual model simulating the flow’s deviation from the steady state in open channels
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Vector S*(z). Recall that we analyze the deviation from the steady state. Under
this assumption the initial condition with respect to the cascade of reservoirs will
also be zero and the solution for set (3) under x(¢) = 0is a vector equals to zero wit-
hin the interval [0, +o0). So
So(r) = 0.

Vector 4S(¢) — the linear aproximation. Substitution of equation (32) for f,[S;(¢), ¢]
yields from (14) the stationary set of differential equations. This in turn enables us
to determine the linear part of the increment of the storage trajectory

88, (t) = —a; 88, (H)+x(1),

3S,(t) = —a,08,(t)+a, 68, (1),

(33)
88, (1) = —a,8S,(t)+a,8S,_, (1),
48(0)=0.

In order to solve (33) one has to derive its state-transition matrix. The easiest
way to achieve that in case of stationary systems is by Laplace transform. As far as
equations (33) are concerned it is necessary to obtain the inverse transform of matrix
(pI— A)~* (matrix A is defined by (15), I'is identity matrix, p is a complex variable).
The state-transition matrix derived this way for equations (33) is of the form

i i0 | g
G EEnE
dt)=et=| — I = Y
(a r)n-‘- —agt! (al )u 2_ e a1t . . i g9t
IR ' (n—2)! | |

Taking the above into account as well as the formula (16) we conclude that the
linear part of the storage increment in the ith reservoir of the cascade can be deter-
mined according to the formula

55,(1) = fmua]-”w%w&. (35)
(i—1)

Inasmuch as the kernel of the operator (35) depends only on the difference
t—A we get (after the substitution) that

5S,(1) = (@ e~ (t—1) d. (36)

g=nl

So, in the case of the cascade with stationary parameters and the zero initial con-

dition the first term in the Lichtenstein-Lapunov series is of the form of the first term
in the Volterra series,
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Vector 6>S(¢t) — the quadratic aproximation. We can get from the relation (17)
the set of differential _quations from which the quadratic part of the increment of
the storage trajectory can be derived

825, (t) = —a, 82, (1) —a, [0S, (),

828, (1) = —a, 028, (1) +a, 0, (1) —a; [8S: (N +a, [5, (D7,
(37

028,(t) = —a, 925, (t)+a, 0%S, _, (1) —a, [6S, (> +a, [5S,_, ()],
828(0) = 0

The state-transition matrix for cquation (37) is the same as for equation (33) so the
quadratic part of the increment of the state trajectory is determined by the following
relation

828(1) = [ e~ 405 B[8S(D)]2dE, (38)

»
1]

where matrix B is defined by (18). :

The analytical determination of th: sccond kernel of the operator entails tedious
computations. For that reason we will not present details of how the quadratic part
of the trajectory’s increment was derived. So we only note here that substitution
into (38) of formula (35) for [45;(£)]? and double change of the ordzr of integration
according to formula (22) and the variables substitution lead to the conclusion that
equation (38) can be expressed as the second term in the Volterra series

2 (@, z,) ! U (a, Tz)k (3172)5“1 (al '-'71)
2 e~ flF+ra)f 0 . o pabis
: S(t)“f“ 3 j[ G- &Lk Y P ]

as e—aimax(ry.75) [al max (7, Tz)]‘ :
a, G—1)!

} x(t—z,) x(t—7,)dr, dv,. (39)

All transformations can be found in Napiérkowski (1978). One can now deter-
mine, using the solutions for the linear and quadratic parts of the increment of the
state trajectory, the higher order increments up to the point the required accuracy
is achieved.

The kernels of the Volterra series for the inflow-outflow relation. The kernels of the
Volterra series describing the inflow-outflow relation can be derived from (25), by
which they are expressed in terms of the kernels of the series describing the inflow—
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storage relation. The simple algebraic transformation give us the following solution

0 i

hy(t) = a, Kl)—' e s (40)
n—1
v TR Rt el [0 Oy
ha(ty, £) = @y e-o1(t1+12) [Tf;—iﬁ' ; e
n—1
(a, )" O(a, )" R Y [a, max(t,, )] !
-} (n___‘l)| ‘20‘ X ] —a,e ‘1 : L S (ri___l_)!—_' (4]_)

The equations (40) and (41) describe the two first kernels of the conceptual
nonlinear model. Its structure corresponds to the structure of the Volterra series.
Relation (40) describes the transfer function (IUH) for the cascade of linear reser-
voirs. The latter properties are not discussed here, as they were analyzed in many
publications.

The properties of the second kernel of the Volterra series. It was proved (see Napior-
kowski, 1978) that the second kernel of the Volterra series describing the cascade of
nonlinear reservoirs determined analytically and defined by (41) fulfils the following
conditions;

ha i, 1) =0 for either ¢, < O or ¥, <0,
R (s ds)= O for-tp=:0-0r: 1z = 0;

. ha(2y, t)] < M for all ¢, and ¢,,

o hy(ty, 6) = hy(ty, 1)) for all ¢, and ¢,

th R W N

. hy(t,, t:)— 0 for either ¢, — oo or t, — oo,

e
Ot

[ ha(ty, tr)dtydt, =0,

0

7. [ ha(t, t+c)dt = 0 for all ¢=0.
o

The above conditions were specified by Diskin and Boneh (1972) in terms of phy-
sical laws for the inflow—outflow systems without loss expressed by the two first terms
of the Volterra series!

A contour diagrams representing (41) for one, three and five nonlinear reser-
voirs are given in Figs. 3, 4, 5 respectively,

All three diagrams are plotted in terms of dimensionless variables a, 7,, @, 75,
hy(ry, v3)a; o
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Fig. 3. The second-order kernel of the Volterra series for one nonlinear reservoir

Fig. 4. The second-order kernel of the Volterra series for three nonlinear reservoirs
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a7y
4

Ty
Fig. 5. The second-order kernel of the Volterra series for five nonlinear reservoirs

5. THE EFFECT OF THE INFLOW’S MAGNITUDE ON THE CON-
VERGENCE OF THE VOLTERRA SERIES DESCRIBING THE CASCADE
OF NONLINEAR RESERVOIRS

The convergence of the Volterra series implies that the error of the aproximation
of dynamics of the actual system decreases with the increase of the number of terms
in the integral series. This aspect of the modelling of the hydrologic systems has not
so far focused attention of the investigators. It was mentioned by Kuchment (1972)
who identifies the limits of the inflow’s magnitude x(¢) < +co with the sufficient
condition for the convergence of the series (4). On the other hand Diskin and Boneh
(1972) formulated the condition in terms of physics for the model consisting of the
two first terms of the series. Its fulfilment ensures the positive outflow, provided
there is a positive inflow. However, this condition allows us to model the dynamics
by means of the Volterra series in case of the inflows for which the nonlinear model
offers a worse aproximation than the linear one.

The determination of the set of inflows such that each of them ensures the con-
vergence solution constitutes the basic condition under which the integral series can
be used in order to model hydrologic systems. This problem, expressed in general
terms, is extremly complicated. For that reason we will investigate whether there
exists an inflow’s magnitude limit implying the convergence of the integral series (4).
The latter describes the cascade of identical nonlinear reservoirs and the outflow in
the retention function is expressed by

¥i(t) = a,S(t)+a, S}(2), i=1,...,n. i (42)



CASCADE OF NONLINEAR RESERVOIRS 137

Consider first the individual nonlinear reservoir (Fig. 6). Its dynamics is descri-
bed by the following nonlinear first-order differential equation
S(8) = —a, S()—a, SX()+x(1),

(43)
S(O):O, ai >0, az >0.

1 y=a;S +0,5’

-
Fig. 6. The individual nonlinear reservoir

The solution of the above equation can be expressed as an infinite integral series
following the method presented in this paper. Two first terms are derived by substi-
tuting i = 1 in (36) and (39)

T

It
d.
S(I) — fe_"lrx(r—'r)dr—l— ff—-—z-— [(J_“i(fl+'2)—-g'_almax(rlrz)] x
a,
00

L]

xx(t—7) x(t—ry)dvidr,+ ... (44)

Consider the steady state of the reservoir with inflow with amplitude X. We conclude
from (43) that the steady state is described by the following equation

0: —als—a2S2+X. (45)

The obvious solution of this equation under § >0, X >0 is

—a,+Va?+4a
garaT i i (46)
2a,
or the series expansion
1 a, 243
S=—X——=5 X4 = X°— ... (47
a; a ay

The above series is convergent provided the following inequalities are met

da, X ai

o e g o (48)

a: 4a,
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Every term of (44) will aproximate, under x(¢) = X, t == 0 and ¢ — oo the cor-
responding term of (47). For example

1]

I 1
f M = — X 1) —— X,
a a

1
[

ff_[ —-al (ry+7a) _ _akmax(fl’f2]]X2dfldfz

i 2
il [[(1 e~ ] oS [l—e_“l’(l—l—alr)]} >——X2
l a; a “1
So, for t— oo series (44) will converge if the inequality (48) is met.
It can easily be shown that every term of series (44) is in absolute magnitude less
than, or equal to, the corresponding term in series (47) if

max x(¢) < X.
=0

This implies
maxS(t) =< S
t=0
We conclude that the sufficient condition for convergence of the Volterra series des-
cribing the individual nonlinear reservoir defined by equation (42) is

5
al

4a, ’

X =max x(1) <

Tt should be noted that the differential equation
S(t)+a, S(t)+a, S*(t) = x(1) = X = const

has a finite solution for 71— oo and 0 < X < +-oo but the Volterra series yields
a finite solution when X < a}/4a,.

The derived condition for the convergence of Volterra series in case of one reser-
voir can be generalized on the entire cascade. Equation (43) is relevant to describe
the retention state in each reservoir at steady state. In particular it refers to the last
reservoir. This implies the conclusion that (48) will also be the condition for the con-
vergence of the series describing the cascade of nonlinear reservoirs. In modelling
of the retention of the last reservoir by means of the convergent Volterra series,
(S,(?) has a finite value for all ¢ € [0, +0o0)) and this implies the convergence of the
series a, S, (t)+a, S?(1). The latter equals to y(¢). So we come to the conclusion that
the convergence of the series describing the inflow-retention relation implies the con-
vergence of the series describing the inflow-outflow relation. The condition (48) refer-
ring to the convergence of the Volterra series is a sufficient condition determined for
the most unfavourable case. However, despite the condition of maximum amplitude
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is not met, the inflows’ hydrographs can exist such that the corresponding series
converge. The above remains valid, provided the time in which the input is not met
(48) is short enough. This conclusion is confirmed by the results of the numerical
experiments. In order to complete our discussion we will try to evaluate the value
of inflows ensuring the convergence of the Volterra series in case of the conceptual
model (42) simulating the flow’s deviation from the steady state in open channels.
We conclude from (29), (30) that the condition in question is that the maximum ampli-
tude fulfills the inequalities

5
max (Q(1)—Qo) < 7 2o

t=0

6 THE RESULTS OF NUMERICAL EXPERIMENTS

Our considerations in this paper are illustrated in Figs. 7 and 8. They show the effect
of the type of input signal and of the model’s parameters on the accuracy of the solu-
tion. The cascade of three nonlinear reservoirs was investigated. The aproximation
of the outflow in retention function for each of them was of form (42) under the
assumption of the zero initial conditions. The nonlinear set of differential equations
was solved numerically by the fourth-order Runge-Kutta method. The standard
IBM procedure was used, according to which the step of integration is chosen auto-
matically for an imposed computational accuracy. The inflows of the type of a rectan-
gular pulse function with an unit amplitude and different duration were taken as
input signals. The linear and quadratic aproximations for the analyzed inflows were
determined analytically. Fig. 7 presents the results of transformation if the para-
meters da,, a, and the inflow’s amplitude fulfil the convergence condition (48). The
closer is the inflow x(z) to the steady state the higher is the accuracy of the aproxi-
mation of the cascade’s outflow. That is why the aproximation in Fig. 7a is signifi-
cantly better than that in Fig. 7b. Fig. 8 shows the rusults of transformation for two
inflow cases for which condition (48) is not met. The Volterra series does not con-
verge (Fig. 8a) if the inflow lasts for a long time, but otherwise it does (Fig. 8b).
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Hpocaae Hantoproecku, Bumoavd Cmpynuescku

AHAJIUTUYECKOE OITPEAEJIEHUE sIIPOB PAIOA BOJNBTEPPLI
OIUCVYIOIMEIO KACKAAY HEJIMHEWHBIX PE3EPBYAPOB

PE3IOME

B crathu npeicrasiieHa KOHLUENIWS CBA3ZAHUS JBYX OCHOBHBIX MATEMATHYECKMX TEXHHK MCIOIB30-
BAHHEIX K MOJACTHPOBAHHIO HEIHHCHHBIX THAPOJOrHYecKHX cucTeM. IlepBwiif MeTon monb3yeTcs
HeJTHHEHHBIM AH((epeHsIbHBIMHA YPOBHEHHAMHE, BTOPOH MHOTOTHHEHHBIM HETCIPAILHBIM PALOM.

Jlna xackana HeTWHEHHEBIX PezepByapoOB MOJETUPYIONIHX CTOK B OTKPBITOM pYyCJie ONpeIeIeHO
AHATIMTHYECKH S/ipA MHTET PaJibHOTO psa BoibTeppbl Ha OCHOBE HeJMHEeHHLIX Au(depHURAIBEHBIX
yposHenuu. OOcyxkIeHO CBOICTBA M CTPYKTYpbl IBYX TNepBuix siapos. Mecnemnosano npobiiemy
CXOJAMMOCTH psaa BonbTeppsl B 3aBUCHMOCTH OT BEIHYHHBI BXOJHOH (YHKUMM W CBOMCTBA Held-
HEHHOCTH CHCTEMEL

Jarostaw J. Napidrkowski, Witold G. Strupczewski

ANALITYCZNE WYZNACZENIE JADER SZEREGU VOLTERRY
OPISUJACEGO KASKADE ZBIORNIKOW NIELINIOWYCH

STRESZCZENIE

Prezentowana jest koncepcja powiazania dwoch podstawowych aparatéw matematycznych wyko-
rzystywanych do modelowania nieliniowych systemow hydrologicznych, opisu za pomoca rownan
stanu i wieloliniowego szeregu catkowego. Dla kaskady zibornikéw nieliniowych modelujacych
przeplyw w korycie otwartym wyznaczono analitycznie jadra szeregu calkowego Volterry w oparciu
o nieliniowe rownanie stanu. Dyskutowane sa wlasnosci i struktura dwoch pierwszych jader. Badany
est problem zbieznosci szeregu Volterry w zaleznosci od wielkoéci sygnalu wejSciowego i charakteru
jnieliniowosci obiektu.



