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ADSTRACT

In the paper a conceptual third-order discrete
Volterra model is fitted to distributed nonlinear
surface runoff system, This fitting is carried out
for several records of storms. The sufficient con-
vergence and copositivity conditions of the model
are discussed, an example illustrating the applica-
bility of the Volterra series to modelling of the
Cache River Catchment is presented,

INTRODUCTION

Vhen modelling surface runoff for natural
catchments with the help of hydrodynamic methods
one requires a detailed topographical survey and
assessment of roughness parameters, In order to
avoid this difficulty the modellers use the exter—
nal approach via conceptual and black box models,
The method discussed in the paper combines the black
box analysis with the conceptual model approach,
The nonlinear behaviour of the system is desribed
by a model in the form of third-order approximation
of a cascade of nonlinear reservoirs, Such a model
is equivalent to the three first terms of the
Volterra series (Napidrkowski, 1983),

In the course of mathematical modelling of
surface runoff systems, one deals with discrete
signals at the stage of measurements. In the paner
the discrete set of outputs is obtained via analyti-
tal solution of the continuous problem, This ap-
proach compares favourably to simple mechanical
discretization of the kernels with respect to accu-
racy and necessary computational effort,




CONTINUOUS THIRD~ORDER VOLTERRA MODEL

The findings presented in this section borrow
heavily from Napidrkowski (1983), The surface runoff
system is represented as a cascade of equal nonlin-
ear reservoirs in which each reservoir is respon-
sible for a part of the attenuation of the system
response, This lumped dynamic model can be repre-—
sented by a set of ordinary differential equations
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where n is the number of reservoirs, I(t) is the
effective rainfall, Si(t) is the storage of i-th
reservoir, f£{ ) represents the outflow-storage
relation of the individual reservoirs, y(t) is the
output from the model. The function f({ ) is not
prescribed, One assumes only that it is differen~
tiable for Si®0 es many times as required, In this
study we are concernecd with initially relaxed
systems, hence the initial condition is S%O%:O.

The solution of the differential Eq,(1) can be
given in the form of Taylor series, Accordingly
Si(t) and y(t) are divided into linear, quadratic
and cubic parts and a residual error

51(8) = 85,(6) + &%5,(t) + &, (t) + ... (2)
y(8) = Sy(t) + &y(t) + Ly(t) + ... (3)
In order to compute the linear (8), quadratic (g2)

and cubie (43) components of y(t) and Si(t) we -
make use of expansion of the outflow~storage rela- i

tion .
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The linear, guadratic and cubic components from
Eqs,(2,3,4,5) should fulfil the following set of
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where the matrix ¢ is given by



-1 for i-j=0
CP(i,j) = { 1 for i-j=t (12)
otherwise

The Tfirst, second and third terms described by
differential ‘cquations (6,7,8) or by integral
cquations (9,10,11) form the continuous third-order
Volterra model, liowever, it is computationally more
cfficient to calculate approximations from the
state-space representation of the model, rather
than by using triple integrals,

From the computational point of view it is
convenient to denote the solution of Eq.{T) for b=1
bg y2(t), the solution of Eq,(8) for b=1 and c=0 by

(t), and the solution of Eq.(8) for b=0 and c=1
by y4(t). Then due to linearity of LEqs,(7,8) the
following relations are fulfiled

dy(t) =  yl(v) (13a)
5%y (t) = b y3(1) (13b)

8%y (1) = b2 ¥3(t) + e yH(t)  (13¢)

i

The functions yi(t), yz(t), yB(t) and yé(t) depend
on the paramcters d& and n, do not depend on the
parameters b and ¢, and are governed by the follow-—
ing state transition equations
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Note that:

1) cubie-b term is that part of cubic component
which results from the forsing by the product of the
linear and quadratic terms, and that cubic-c term
results from the forsing by the cube of the lincar
term, This decomposition and subsequent superposi-~
tion involves no assumption or approximation,

2) the transition matrix for LEq.(14) is the
same as for Eqs,(15,16,17) and is given by

exp(adt) = {BXP(—at)(at)i*j/(i—J)! N (18)

0 for j<i
Ly )5 e s 10

3) the input of effective precipitation I(t)
occurs only in Eq,(14). Consequently the addition
of the components y2(t), y3(t) and y?(t) effects
only the distribution of the predicted runoff and
the total volume of each of these components is
zero, It is illystrated in Fig.1 where functions
yl(t), v2(t), y°(t) and y4(t) are plotted for the
case n=3, a=1 and

1 for te(0,1)
I(t) = (19)
(¢} otherwise

DISCRETE THIRD-ORDER VOLTERRA MODEL

The discrete set of outputs is obtained via
analytic solution of the continuous problem de-~
scribed by Eqs,(14-17),This is advantageous in com-
parison to prior assumption of discrete model (e,i.
simple mechanical discretization of the kernels in
Eqs,(9,10,11)). This approach was used for the case
of two-term Volterra model by Napidrkowski and
Kundzewicz (1985).

Consider the Bgs.(14-17) expressed in diserete
framework, The data are given in discrete time
instants and the system response needs to be known
in discrete time instants, Assume that the time
instants of interest belong to the following set
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Figure 1, The trajectorics yi(t), ¥oit), yg(t) and
y4(t) ror the case of n=3, a=1 anq
rectangular pulse input

.

tk = kT where L L | (19)

Assume for brevity the nota
the input I(t) be given as
bulses, in accordance with

tion £ty )=f(k) ang let
a train of rectangular
the rainfall measurement,

Then the model response in discrete timp

e instants
can be caleculated frop Egqs, (14-17)

as follows,

The Linear Approximation
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ar model response reads
Wierzbicki,1977

tk+1

That is, in the handy notation
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Si(k+1) =g Si(k) +'§ I(k) (21a)
yi(k) = a S ¢ (21b)
where
X = exp(adr) (22)
o
B = S explad(T-r)] ar (23)
(o]

The Quadratic Approximoetion

Similarly, from Eq,(15) one can sece thot the
quadratic component is

[ee]
82(k+1)=ea¢T Sz(k)+ J exp[a?(tk+1—rﬂ<#[g1(r)]zdr
" (24)

~
where Si(t) is the extension for continuous argu-
ments of the component s1(k) given for discrete
arguments, This is achieved by linear interpolation
of S1(k) between the discrete instants, where S1(k)
is explicitly given

s'(r) = [s*()r + s (k+1) (T=ri)/r (25)

Inserting £q.(25) into Eq.(24) one gets the final
equation for the quadratic component

s (k+1)= & 5% (k) + B, ist(e)12 + B, 25t (k)51 (k41)
+ By [8%(ks1)] 2 (26a)
(k) = a s2(k) + [sL(0]2 (26b)

The final fofmulae for By, B, and By are given in
the Appendix,




The Cubic-b Approximation

5 The cubie-p response is obtained with the help
R i of Eq, (16)

t
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The Cubic-c Aggroximation

Finally, the cubic-c Tesponse is determineq
from Eg, (17)
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The final formulae for C,, C,, Cgj, and C, are given
in the Appendix,

Eqs,.(21,26,28,30) form the discrete third-
order Volterra model of surface runoff systems,

The checlk of choice of the time discretization
step (T) can be made by comparing the integral of
the second and third order increments to zero
(Diskin and Boneh, 1972)., If these values differ
considerably from zero, the linear a proximation of
the increment S1(t) in Eqs.(24,27,29§ and of the
increment S2(t) in Eg,(27) is not sufficient, that
is denser discretization is required.

COPOSITIVITY VS, CONVERGENCE OF THZ VOLTERRA MODEL

Any infinite Volterra series has a range of
convergence I(t)4M, Inside this range the error
of approximation of tha dynamics of the system is
inversely proportional to the number of terms in
the integral series, In order to identify the dy-
namics of the system one has to truncate the infin-
jte series, In that case one requircs copositivity
of the model (a positive output response to a posi-
tive input), Joint analysis of copositivity and
convergence of Volterra model has not been referred
to in professional literature, Expressed in general
terms the problem is complex, but nevertheless it
must be considered, To explain the difference
between the copositivity condition and convergence
condition a simple two-term Volterra model based on
a single reservoir is discussed below in details,

Consider the model

- a s(t) - b S2(t) + I(t)
0 (31a)

S(t)
s(0)

It

y(t) = a s(t) + b s%(t) (31b)

and the input signal

I for t £ T
I(t)= (B32)
0 for t > T

The solution of Eq.(31) can be expressed as an
infinite integral series following the method pre-
sented in this paper. It has been shown by
Napidrkowski and Strupczewski (1979) that the
differential Eq.(31) for a, b>0 has a finite
solution when O0=I(t)<od but the infinite Volterra
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Series yields a finite solution when

I £0,25 a2

To derive the

physically based Copositivi
condition we maje u

Se of Egs, (6,7), Denoting
v=e2t, z=e"a(t"T); r= ¢2T, P= 2b/a° (34)

nto account Eq, (32) one gets the ty
a model Fésponse in the form

fy(t) + &y(¢) =

and taking j

Q=
term Voltery

yl(v) = 12 (vz *P 4PV 1nv -py _y)
v

(35a)
Tor t<p
y2(z) = I{ZED(i—r)2+ z[1- %+ £(1+lnr —rX”

for t>17p (35b)
& _ where

vEilL, 20 and z € (0,1)

One can check, that for

V21 the ¢
right hand side of Eq, (

35a) is greater than

Zero,
Hence, the Copositivity Tequirement jg met when
Y2(z)20 for g (0,1), This is fulfilleq when
=2 (36)
20 36
dz z=0
that is when
b il
pe~—~=1_ (37)
= Ini
Above condition ig illustrateq in Fig,2, Positive
outflows correspond tg points hel
P=p(r) defined

by inequality (37).
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y decreasing functio

1 and (see Fig,2)
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Figure 2. The copositivity condition for a single
reservoir

I¢<0.5a%/b (39)

the outflow from the model is positive for any
value of T (c.f. Eq.(32)). When p> 1, the outflow is
positive only for short time interval, The suffi-
cient copositivty condition (39) is twice weaker
than the sufficient convergence condition (33).
The main conclusion from the above consider-
ation is that the use of the truncated Volterra
series is subject to certain restriction on the
input magnitude, which is very difficult to derive
for series with more than two terms, It is the
recommendation of the present authors that the
input magnitude used for simulation should not be
greater than the input magnitudes used for identi-
fication for the copositivity to be established.

NUMERTICLL ZXAMPLE

The methodology presented was tested at the
rainfall-runoff system for the data from the catch-
ment of the Cache Liiver at Forman in Southern
Illinois used by Diskin and Boneg (1973). The catch-
ment of the area equal to 630 km= has mild slopes
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Figure 3, Comparison of observed runoff and that
predicted by the discrete third-order
Volterra model

CONCLUSIONS

The significant advantage of the Volterra
series model based on a cascade of nonlinear reser-
voirs is the parsimony in the number of parameters,
The model used in the present study is characterized
by four parameters only; a, b and ¢ that pertain
to the Taylor series resolution of outflow law and
n - number of nonlinear conceptual elements in
series, It ensures that identification problem is

"well-conditioned and that the solution is robust in

presence of error in the input-output measurements.
Moreover, the determination of the unknown four
parameters can be reduced to optimization with
respect to two variables only.

In the paper the discrete set of outputs is
obtained via analytic solution of continuous problem
which is simple to apply and guarantes better accu-
racy than methods used so far,
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APPENDIX
Denoting

T

P, = S(t/‘l‘)i exp(axfpt)c,l)dt » 1=0,1,2 3
(o]

we have
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