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A b s t r a c t  

Methods of description of the non-linear effects in dynamic rainfall-runoff 
systems have been surveyed. Particular reference is given to such non-linear meth-
ods which do not require detailed topographical survey and determination of rough-
ness parameters. To describe rainfall-runoff relation, alternative approaches to non-
linear partial differential equations of mass and energy transfer have been dis-
cussed, namely conceptual and black-box models. In more details, application of 
Volterra net, Multi-Layer Perceptron Artificial Neural Network and Radial Basis 
Function Network is tackled. Illustrative numerical examples of rainfall-runoff 
simulation and river flow forecast are presented.  
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1. INTRODUCTION 

Models describing the geophysical processes contributing to the hydrological cycle 
were developed in non-linear form in the nineteenth century. From their physical basis 
such models can simulate the complete runoff regime, providing such outputs as: river 
discharge, groundwater head and evaporation losses. Transfer of mass, momentum 
and energy are calculated directly from the governing partial differential equations 
which are solved using numerical methods, for example the St. Venant equations for 
surface flow and river flow, the Richards equation for unsaturated zone flow and the 
Boussinesq equation for ground water flow. 

Hence, an accurate application of the hydraulic approach requires a detailed to-
pographical survey and determination of roughness parameters. In order to avoid these 
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difficulties, alternative non-linear approaches were developed, namely conceptual and 
black box models.  

Conceptual rainfall-runoff models are designed to approximate within their struc-
ture the general internal sub-processes and physical mechanisms which govern the hy-
drological cycle. Such models usually incorporate simplified forms of physical laws. 
Until recently, for practical reasons most conceptual models are lumped.  

In the second approach, known as black-box analysis, an attempt is made to ex-
tract, from the past records of input-output events on the system under examination, 
enough knowledge of the dynamics of the particular system, to provide a basis for 
predicting its output due to other specified outputs (Dooge and O’Kane, 2003). Black 
box analysis has been concerned with representing a system by a functional Volterra 
series in the form of a sum of convolution integrals (Volterra, 1930) or by some types 
of artificial neural networks. 

In the paper, alternative approaches to describe rainfall-runoff relation have been 
discussed and compared, namely the application of Volterra net, Multi-Layer Percep-
tron Artificial Neural Network and Radial Basis Function Network. 

2. CONCEPTUAL  MODEL 

Lumped conceptual models are formulated on the basis of a relatively small number of 
components, each of which is a simplified representation of one process element in the 
system being modelled. The conceptual model approach is to simulate the non-linear 
nature of the catchment response by a relatively simple model built up from simple 
elements, e.g. cascade of non-linear reservoirs. Each reservoir is responsible for part 
of the attenuation of the system response. This lumped dynamic model can be repre-
sented by a set of ordinary differential equations: 
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where x(t) is the input signal (rainfall), Si(t) is the storage in the i-th reservoir, 
f( ) represents the outflow-storage relation and y(t) is the output signal (surface runoff).  

The vector differential equation (1) can be considered as a definition of some 
non-linear operator P mapping a space of inflows into a space of corresponding stor-
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ages. In order to determine how P operates for a given inflow hydrograph x(t), it is 
necessary to solve the set of eq. (1) under the initial condition S0.  

Conceptual model that is useful as representation of some particular system 
properties cannot be claimed as universal. It obviously exhibits some deficiencies; this 
is the price for its simplicity and low cost in terms of computing time and data re-
quirements in comparison to rigorous hydrodynamic models.  

3. VOLTERRA  SERIES 

The description of dynamic systems by the Volterra series is a generalization of the 
concept of the transfer function, which is of great importance in the analysis and de-
sign of linear systems. The Volterra series represents an explicit input-output relation 
for non-linear dynamic systems and consists of infinite series composed of the form of 
convolution integrals 
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In the above equation x(t) is the input to the system (rainfall), y(t) is the output from 
the model (surface runoff), h1(τ1) is the first order kernel which reflects the linear 
properties of the system, h2(τ1, τ2) is the second order kernel which reflects the quad-
ratic properties, hn (τ1,… τn)  is the n-th order kernel and so on.  

In the course of mathematical modelling of surface runoff systems, one deals 
with discrete signals at the stage of measurements. Then each function in eq. (2) is 
represented by a series of pulses at regular grid-points at the same interval  along 
the time axis. The second order kernel is represented by an array of pulses on a square 
grid at the same interval, , as that used for the first-order functions, etc. With that 
discretization, the integrals are replaced by summation of products and the relationship 
between the pulses is given by the so-called Volterra net: 
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where NX is the number representing the memory of the system, i = 1,2,…NT,  and NT 
is the number of observations. The values of weights Hi  can be adaptively modified 
during the process of model calibration.  

The identification of kernels of the Volterra series was discussed in detail by 
Napiórkowski and Strupczewski (1984). It was shown that: 
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(1) the identification of kernels of the Volterra series is a typical example of an 
ill-posed problem in the sense of Tikhonov (1963); 

(2) in the case of slow varying input signals the solution is not unique;  
(3) very good fitting of the output from the model to the observed data may be 

completely misleading, as far as identification of the system is concerned (see exam-
ple in Napiórkowski and Strupczewski, 1984). 

Note that the number of weights Hi  increases geometrically with the number of 
terms in the Volterra net and the number NX representing the memory of the system. 
For example, number of weights H1, symmetric H2 for two-term series and NX = 10  is 
equal to  (NX 2 + 3NX)/2 = 65. 

The main reason why the problem of identification of the kernels of the Volterra 
series is ill-posed is that the class of functions within which the solution is sought is 
too wide. One has to reduce that class, on the basis of some mathematical and physical 
characteristics, to such a sub-class M for which the identification problem has a 
unique, stable solution in the case when the measurement values are contaminated 
with errors (Napiórkowski and Strupczewski, 1984). More precisely, M should be a 
subset for which the solution depends continuously on the measurements. 

From the very beginning of its hydrological applications the Volterra series 
model was conceived to be of the black-box type, i.e. it could be regarded as a direct 
extension of the convolution integral technique accompanying the concept of instanta-
neous unit hydrograph. J. Amorocho, the pioneer in the field of Volterra series hydro-
logic modelling wrote in 1973 that “at this point no correspondence can be assumed 
… to exist between the components of the polynomial system (eq. 2) and any of the 
physical elements of the prototype” (Amorocho, 1973).  

The first attempt to attribute some conceptual meaning to the black-box kernel of 
the Volterra series model used in hydrology was due to Diskin and Boneh (1972). The 
structure of their second-order kernel, however, was not directly related to any physi-
cal model. It was merely a hypothetical example of properties that theoretical second-
order kernel of a conservative system should possess.  

Napiórkowski and co-authors (Napiórkowski, 1978; 1983; Napiórkowski and 
Strupczewski, 1979; 1981; Napiórkowski and O’Kane, 1984) aimed to establish a re-
lationship between the non-linear conceptual model described in Section 2 (in the state 
space framework) and the Volterra series. It was shown that if the function f( ) in 
eq. (1) is differentiable as many times as required, the state-space equation (1) can be 
approximated by the Volterra series (eq. 2) by means of Taylor series expansion for 
operators. The structure of the first two kernels was shown to be  
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The main feature of the two-term Volterra series model based on the cascade of non-
linear reservoirs (4)–(6) is the small number of parameters (n, a, b) to be determined 
in comparison with the method based on direct optimisation of the ordinates. 

Note that analytical derivation of the kernels of the Volterra series is not another 
methodological approach, but it helps in the correct formulation of the identification 
problem and enables the verification of the optimisation procedures. 

4. MULTI-LAYER  PERCEPTRON  ARTIFICIAL  NEURAL  NETWORK  

Artificial Neural Networks (ANN) application for rainfall-runoff modelling has un-
dergone much investigation during last decade (ASCE, 2000). Although there are sev-
eral types of neural networks, without doubts the most popular in hydrological sci-
ences is Multi-Layer Perceptron (MLP) network. This is due to its simple form, flexi-
ble structure and easy calibration of parameters by means of gradient-based algo-
rithms.  

In most applications networks composed of three layers are sufficient to ap-
proximate relations between input and output variables (Brath et al., 2002). Each layer 
comprises the proper number of nodes. The number of input and output nodes is equal 
to the number of input and output variables. There is no effective rule for estimation of 
quantity of hidden nodes, which is to be evaluated empirically. 

The MLP nodes in neighbouring layers are linked via weighted connections (see 
Fig. 1). Shortly, Multi-Layer Perceptron networks applied to rainfall-runoff modelling 
operate in the following way: signals of delayed in time measured rainfall pulses x(i-p)  
and delayed in time runoff pulses z(i-q) (p = 1,…NS,  q = 1,…NY,  i = 1,…NT)  from 
the input nodes (e.g. values normalized to 0-1 interval) are multiplied by proper 
weights w(l, k), connecting the neuron from which signal has been dispatched and a 
suitable neuron in the hidden layer.  

In the second layer, in each of K nodes the weighted sum of all the inputs and 
weights w(0, k) representing threshold values is computed and then transformed by 
proper function (e.g. logistic function), giving the value dispatched by k-th neuron:  
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Afterwards the signals ( )kφ  multiplied by proper weights v(k) are transferred to 
the neuron of the third layer. In this final stage the new weighted sum is computed 
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Multi-Layer Perceptron (MLP)
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Fig. 1. A two-layer feedforward neural network. 

  (8) 
1

( ) (0) ( ) ( )
K

k

y i v v k kφ
=

= +∑

and after de-normalization of output, the sought (forecasted) value y(i) is determined. 
MLP are feed-forward networks, which means that there is only one direction of the 
propagation of information, from the input to the output layer.  

The values of weights w(l, k) and v(k) can be adaptively modified during the 
process of training the network. In this study, due to the relatively simple architecture 
of all the networks, Levenberg–Marquardt non-linear optimisation algorithm was 
adopted (Press et al., 1989).  

It should be stressed that in the distinction from the Volterra net, MLP network 
can have both rainfall and runoff observations in the input layer. 

5. RADIAL  BASIS  FUNCTION  NETWORK 

Radial Basis Function (RBF) Neural Networks gain more popularity in hydrological 
sciences in recent years (Jayawardena and Fernando, 1998; Dawson et al., 2002; Mo-
radkhani et al., 2004). RBF network architecture depicted in Fig. 2 differs from MLP 
ones and includes one hidden layer of special units that pre-process the input and feed 
a single-layer perceptron (e.g., Haykin, 1994; Silipo, 2003).  
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Radial Basis Function (RBF)
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Fig. 2. The architecture of a Radial Basis Function network. 

Similarly to MLP network, input layer of RBF may contain rainfall pulses  x(i-p) 
and runoff pulses  z(i-q) (p = 1,…NS,  q = 1,…NY,  i = 1,…NT). Each of K units in the 
hidden layer contains the centre c(k) of the given region of the input space. The corre-
sponding non-linear activation function φ (k) expresses, by means of distance meas-
ure, the similarity between any vector I of input variables and the prototype c(k). The 
most commonly adopted Basis Function is Gaussian: 

 [ ]22( ) exp( || ( ) || / 2 ( ) )I ck kφ σ= − − k  . (9) 

Parameter values c(k), σ (k) and v(k) are to be optimised. Popular self-organized 
selection of c(k) by k-nearest neighbour approach is applied in this paper, rather than 
the well-known gradient-based algorithms or global optimisation techniques for su-
pervised selection of centres, or simple fixed centre selection at random. 

After localizing centres, σ (k) values have to be evaluated, these may differ for 
each c(k) or possess the same value for all centres. The second option, when each 
σ (k) is the same for each k, is much simpler and reduces number of parameters, un-
fortunately flexibility of the model also diminishes. Nonetheless, this option was cho-
sen in present paper because of small number of data and high uncertainty of meas-
urements. In the paper heuristic rule (Haykin, 1994) was applied 
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In this rule p is the distance between the most distant centres, m is a number of centres 
and b is unknown value deciding how peak or flat σ  should be, in present work it was 
empirically verified that b should be set to 5.  

The set of linear weights v(k) was optimised by pseudoinverse method (Haykin, 
1994). 

6. COMPARISON  OF  THE  VOLTERRA  SERIES  AND  MLP  NETWORK 

Two-term Volterra series and Multi-Layer Perceptron Artificial Neural Network were 
fitted to the first six (out of eight) “classical” storms used many times for comparison 
of different models by Diskin and Boneh (1973). The watershed from which the data 
was obtained is that of Cache River at Forman in southern Illinois. The area of the wa-
tershed is 630 km2, the topography being fairly flat with gentle slopes and well-
developed drainage network. Daily rainfall data comprised ordinates of effective rain-
fall and direct surface runoff for eight storms observed between 1935 and 1951. 

The optimal values of the Volterra net parameters were found to be  n = 3,  
a = 0.75,  b = 0.01,  and the optimal structure of the MLP network  with 49 parameters 
can be described as 10–4–1 (10 inputs, 4 hidden nodes and 1 output).  It should be un-
derlined that only rainfall data were used as input both for Volterra net and MLP net-
work. 

The results of comparison of the Volterra net with the MLP network for Diskin 
and Boneh (1973) data are presented in Table 1. 

The MLP network performs better for the calibration data – the root mean 
squared error (RMSE) is lower, but the 3-parameter Volterra net gives slightly better 
results for verification records. Note that the kernels described by eqs. (5-7) automati-
cally guarantee mass conservation by the Volterra net and for the case of MLP net-
work the maximum error in mass conservation is about 4%. 

Table 1  
Comparison of the Volterra and MLP networks  

for Diskin and Boneh (1973) data 

Storm number 1 2 3 4 5 6 7 8 

Storm status Calibration Verification 

RMSE for Volterra net  2.27 1.48 0.57 0.47 0.60 1.04 1.83 1.02 

RMES for MLP  0.62 0.71 0.43 0.60 0.67 1.03 1.85 1.05 

Total runoff [mm] 133 103 87.4 57.4 56.1 55.6 78.5 50.7 

Total MLP runoff [mm] 139 103 83.8 55.7 54.5 55.1 78.1 50.3 

Maximum runoff [mm/day] 40.6 30.0 21.1 14.0 12.7 11.7 18.5 12.7 
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Fig. 3. Comparison of observed runoff and that predicted by the Volterra model and MLP net-
work for calibration data. 
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Fig. 4. Comparison of observed runoff and that predicted by the Volterra model and MLP net-
work for independent data. 

 

The degree of fit to observed runoff by the Volterra series and MLP network for the 
first storm used for calibration is shown in Fig. 3 and for one of the storms used for 
verification is shown in Fig. 4. 

7. APPLICATION  OF  THE  RBF  AND  MLP  NETWORKS  TO   
RUNOFF  FORECASTING 

The main disadvantage of the Volterra net is that observations of previous runoff can-
not be used in calculations of future runoff. So in this section devoted to runoff fore-
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casting in Nysa Kłodzka catchment only results of application of the RBF and MLP 
networks are presented.  

The case study area, namely the Nysa Kłodzka catchment in the southern part of 
Poland, is considered to be of high importance. This river is a tributary of the Odra, 
the second biggest river in the country. Here we are concerned with the forecasting of 
the flow at the Bardo cross-section, which closes the catchment of an area of 1744 km2 

(see Fig. 5).  
Calibration of both networks was based upon hydro-meteorological measure-

ments recorded with time interval  t∆ = 3 hours. The hydrographs of the total flow dis-
charge recorded during the highest water levels in the selected cross-section were de-
livered by the Institute of Meteorology and Water Management. Five 100-element se-
ries of 3-hour flows were selected: one for the year 1965, and two series for the years 
1977 and 1997 (see Table 2). 

Three-hour precipitation depths were recorded in five pluviograph stations situ-
ated in: Kłodzko, Lądek Zdrój, Międzylesie, Słoszów and Mieroszów (see Fig. 5). The  

Rain gauge 
Controled 
cross-
section 

 
Fig. 5. Nysa Kłodzka catchment.
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Table 2  
Comparison of the MLP and RBF networks – Nysa Kłodzka case study 

Flood wave Wave status MLP RMSE RBF RMSE Peak flow 

97a training 43.71 60.77 1718 

97b training 38.87 43.79 451 

77a training 24.62 27.65 488 

77b verification 22.43 27.85 423 

65 training 34.07 40.94 823 
 

data were corrected so as to make particular daily depths calculated from pluviograph 
records concordant with daily depths calculated similarly from records of all available 
rainfall stations. 

Optimal network structure of  MLP-ANN  designed  for  runoff  forecast  with 
12-hour leading time may be expressed as 24-14-1, i.e. 365 parameters. 24 inputs are 
represented by 4 delayed consecutive rainfall records at 5 pluviograph stations and 
4 delayed flow records at Bardo cross-section. Due to large number of parameters, 
4 flood records were chosen for model calibration and only one remaining record as 
the validation set. 
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Fig. 6. Comparison of observed runoff and that predicted by MLP and RBF networks for cali-
bration data. 
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12 hours lead time flow forrecast at Bardo gauge for independent data
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Fig. 7. Comparison of observed runoff and that predicted by MLP and RBF networks for veri-
fication data. 

Optimal network structure of RBF is formed by 7 inputs (4 delayed lumped rain-
fall records and 3 delayed runoff records) and 22 centers in the hidden layer. Due to 
the course of dimensionality, mean areal 3-hour precipitation depths were used. They 
were calculated with the method of equal rainfall polygons (de Thiessen) upon meas-
urements carried out in five pluviograph stations. So with one parameter σ  and 22 
linear weights, the total number of parameters is equal to 46. 

The degree of fit to the observed runoff by MLP and RBF networks for one of 
the storms used for calibration is shown in Fig. 6 and for the verification storm in 
Fig. 7. 

8.  CONCLUSIONS 

Non-linear lumped black-box models can be used to describe runoff from a catchment, 
when application of theoretically sound non-linear partial differential equations of 
mass and energy transfer is difficult or impossible due to the lack of required data. 

Volterra series and Multi-Layer Perceptron Neural Networks are able to simulate 
rainfall-runoff relations with similar performance for the data set described in sec-
tion 6. For events treated as training set, which includes two storms twice bigger than 
validation ones, MLP highly outperforms Volterra series. Note that there is a wide 
discrepancy in number of parameters to be optimized for both models (3 for Volterra 
series, 49 in the case of MLP). 
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Comparing MLP with Radial Basis Function Networks for real-world flood fore-
casting situation for Nysa Kłodzka catchment, MLP networks showed a bit better per-
formance. But one should bear in mind that precipitations from 5 stations were taken 
into account separately for MLP, giving 24 inputs, whereas in the case of RBF net-
works due to course of dimensionality a lower number of input values is allowed. 
Lumped precipitations were treated as input variables, giving the total number of them 
as low as 7. This resulted in large differences in the number of parameters in both net-
works – 365 in MLP and 46 in RBF case.  

It should be noted that in this particular catchment of Nysa Kłodzka the forecast 
is reasonably good up to 12-hour lead-time. When trying to use the ANN models to 
forecast the flow at the controlled cross-section with longer time horizon, the perform-
ance decreased rapidly.  
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