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ABSTRACT 

Napiorkowski, J.J. and O'Kane, P., 1984. A new non-linear conceptual model of flood 
waves. J. Hydro!., 69: 43-58. 

This paper reports the successful simulation of St. VEmant's nonlinear distributed 
model of flood waves in open channels using a much simpler nonlinear lumped concep
tual model. The simpler model is composed of a cascade of equal nonlinear storage 
elements preceded by an element of pure delay. The simpler model depends on four 
parameters only. The first two terms of the Taylor expansion of the state trajectory are 
shown to be equivalent to the first two terms of a Volterra convolution series. The 
accuracy of this quadratic approximation is shown by an example. 

1. INTRODUCTION 

The problem of synthesis or simulation in systems hydrology is the quest 
for a model which will convert a known input to a known output within 
certain limits of accuracy. It involves the selection of a model and the 
testing of the operation of this model by analysis (Dooge, 1973, pp. 10-12). 
The "known input" in this study is an assumed flood wave at a measuring 
station on a river. The "known output" is the corresponding flood wave at 
a station further downstream as given by a numerical solution of the non
linear St. Venant model. 

A relatively simple non-linear conceptual model is chosen. The parameters 
of the model are selected so as to convert the "known input" into an output 
which is as close as possible to the "known output". A second input is 
chosen and the model is tested by comparing the outputs from the concep
tual model and the St. Venant model. Such a test can be repeated as often 
as desired, in order to establish the accuracy with which the conceptual 
model simulates the more complex St. Venant model. 

If the conceptual model can be made to match the output from the St. 
Venant equations for a variety of inputs, then a considerable simplification 
would be achieved. The advantages to be gained are: 
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I 

(a) Less field-measurement, computation and storage are required for 
computerised flood routing. 

(b) Statistically efficient algorithms for model identification and param
eter estimation can be used. 

(c) The techniques of control theory can also be applied easily. 
(d) The parsimony of only four lumped parameters suggests that statis

tically significant relationships might be found between them and broad
scale channel characteristics. 

2. THE SECOND-ORDER STATE MODEL (SOSM) 

The uniform channel is modelled by a linear channel and a cascade of 
nonlinear reservoirs. The linear channel (a pure translatory system) reflects 
the time of propagation of a perturbation along the positive characteristic. 
The cascade of nonlinear reservoirs is responsible for the attenuation of the 
system response. 

Let Qj(t) be the inflow, and Qj+l (t) the outflow for the ith reach. Then 
the changes in the storage of each reservoir can be derived by solving simul
taneously the continuity equation: 

Sj(t) = Qj(t) - Qj+l (t) (la) 

and the outflow equation: 

(lb) 

under the initial condition Sjo' The dot on S indicates a first-order derivative. 
The function f[Sj(t)] is unknown. We assume only that it is differentiable 

as many times as may be required for Sj(t) ~ O. Substituting eq. lb into 
eq. la and taking into account the delay To in the input Qdt) gives the 
following conceptual model for an open channel: 

Sdt) - f[Sdt)] + Qdt - To) 

S2(t) = -f[S2(t)] + f[Sdt)] (2a) 

Sn(t) = --f[Sn(t)] +f[Sn-dt)] 

y(t) = f[Sn(t)] (2b) 

subject to the initial condition S(O), and any given inflow: 

We now derive the first two terms of the Taylor expansion of the state 
trajectory y(t) and S(t). .
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2.1. The Taylor expansion of a trajectory 

The vector differential equation (2) can be considered as the definition 
of a nonlinear operator P mapping a space of inflows into a space of cor
responding outflows. In order to determine how P operates for a given 
inflow hydrograph Q 1(t), we must solve the set of eq. 2 together with its 
initial condition. 

Let us denote by Qo the solution of equation set (2) corresponding to 
a steady state, and let: 

y(t) = [PQd (t - To) (3) 

be a solution corresponding to a given inflow hydrograph Q1(t). The change 
of the trajectory from the steady state, Qo to y(t), can be determined by 
means of a Taylor series expansion for operators (Wierzbicki, 1977) about 
Qo: 

y(t) - Qo = [PQo,dQd (t - To) + O.5[PQo,dQ?Ht - To) + y(t) (4a) 

where [PQO,dQl l (t - To) = <5y(t), is the linear part of the outflow in
crement, namely, the first-order Frechet differential of the operator P; 
O.5[PQo,dQ?l (t - To) = <5 2y(t), is the quadratic part of the outflow incre
ment, the second-order Frechet differential of the operator P; and y(t) is 
a function of time, and is the error of approximation in the Taylor series. 

80, the change in the inflow from Qo to Q 1(t) by an increment dQ(t), 
implies the trajectory change dy(t) from Qo to y(t): 

y(t) = Qo + dy(t) (5) 

This change in the trajectory of the output from the 808M model can be 
divided into a linear part, a quadratic part and a residual error: 

dy(t) = <5y(t) + <5 2y(t) + y(t) (4b) 

Lower-case deltas are used to make this distinction. In order to compute the 
linear and quadratic parts of the increment dy(t) we make use of a second 
Taylor expansion, namely an expansion of the storage-outflow relation 
(lb) about the steady-state storage Sjo defined by: 

Qo = f(Slo) (6a) 

Hence: 

(6b) 

where 

and (7) 

dSj(t) = Sj(t) - Sjo is the change-of-storage trajectory due to a_ change in 
the inflow from Qo to Q 1(t), namely the increment dQ 1(t). Qj(t) is the 
error term in Taylor series for the flow increment between each reservoir. 
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Furthermore, we can divide ~Sj(t) into linear and quadratic parts: 

~Sj(t) = 8Sj(t) + 82Sj(t) + Sj(t) (8) 

in exactly the same way as in expression (4b). Note that Qj(t) *f[Sj(t)] 
where Sj(t) is the error term in the Taylor series for the storage in each 
reservoir Sj(t). 

We now derive the differential equations for the linear and quadratic 
parts of ~y(t) and ~Sj(t). 

2.2. The function 8y(t) - The first part of the Taylor expansion 

Substituting eqs. 6-8 into eq. 2 and limiting them to the first-order 
increments, yields the following set of equations: 

8S1(t) = -a8S1(t)+~Q1(t-To) 

8S 2 (t) = -a8S2 (t) + a8S1(t) (9a) 

8Sn (t) = -a8Sn (t) + a8Sn -1 (t) 

8y(t) = a88n (t) (9b) 

8S(O) = °is the initial condition for this set of equations since we are not 
concerned in this study with increments in the initial condition for eq. 2, 
the starting point of this development. 

The details of this linearisation are illustrated in the Appendix. 
Eq. 9a can be expressed in a matrix notation as follows 

8S(t) = a (/>8S(t) + [1,0, ... , O]T ~Qt<t - To) I (10)
88(0) = ° 
where 

-1, 0, 0, ... , ° 
1, -1, 0, ... , ° 

(/>= 0, 1, -1, ... , ° (11) 

0, 0, 0, ... ,-1 

2.3. The functIOn 82y(t) - The second part of the Taylor expansion 

Substitution of eqs. 6-8 into eq. 2, and limiting them to the second-order 
increments, yields the following set of equations: 

82S(t) = a(/>8 2 S(t) + b(/> [8S(t)] 2 

82S(O) = ° 
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(12b) 

This is also illustrated in the Appendix. Note that the argument of the 
forcing function for eq. 12a is the solution of eq. 10, namely the function 
08(t), and that ¢ is common to both eqs. 10 and 12. 

Having determined the functions 08(t), 028(t), the third-order increment 
of the outflow trajectory can also be obtained in a similar way by expansion 
of the set (2) up to third-order increments. 

The linear channel and the first and second terms of the Taylor expansion 
of the non-linear cascade form the model SOSM of flow about a steady 
state in an open channel. 

2.4. The relationship between the 808M model and the Volterra series for 
the cascade 

2.4.1. The linear approximation. The solution of the linear set of eqs. 9a is 
(Athans and Falb, 1969): 

o8(t) = f
t 

'P(t-n[l,O, ... ,0]TAQd~-To)d~ (13) 
o 

where 'P(t) is the transition matrix. 
Hence, we must derive the transition matrix 'P(t) for the equations de

scribing the first part of the SOSM. The easiest way to achieve this in the 
case of a stationary system is by using the Laplace transform. Hence: 

'P(t) = exp[a¢t] =2'-1[{pI-a¢f 1 ] 

where p is a complex variable; I is the identity matrix, and ¢ is defined by 
eq.ll. 

The state-transition matrix derived in this way for eq. 10 is of the form 
(Napiorkowski,1978): 

_ ( [(at)i-i/(i -- j)!] exp (-at), for i ~ iJ .. _
'Pi/(t) - I,J - 1, ... , n (14) 

0, for i > i 

Having the solution for the state-transition matrix we conclude that the 
linear increment of storage in ith reservoir can be determined according to 
the formula: 

t 

o8j (t) = f H li (T)AQ l (t - T - To)dT (15a) 
o 

where 

H li (t) = 'Pit (t) 

Substituting eq. 15a into eq. 9b for i = n yields the following equation for 
the first term of the Taylor expansion of outflow: 
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l)y(t) = ft hl(T)~QI(t-T-To)dT (15b) 
o 

where hI (t) = aH1n(t) is the well-known transfer function for a cascade of 
linear reservoirs (Nash, 1957). 

2.4.2. The quadratic approximation. The solution of the linear set of eqs. 
12a describing the second Taylor term of the storage trajectory is: 

l)2S(t) = ft l,O(t - ~)b¢ [l)S(~)Pd~ (16) 
o 

where l,O(t) is the transition matrix for eq. 12a. Note that the transition 
matrices for eq. 12a and for eq. 9a are the same and are given by eq. 14. 

Substituting eq. 15a into eq. 16 and using a double change in the order of 
integration, after considerable manipulation yields (Napiorkowski, 1978): 

t t 

l)2Si(t) = f fH 2i (T, a)~QI (t - T - TO)~QI (t - a - To)dTda (17a) 
o 0 

where 

H 2i (T,a) = ~. {Hli(T) tl Hlk(a) +Hli(a) :~: H1k(T)-Hli[maX(T,a)]} 

(18a) 

Substituting eq. 17a into eq. 12b for i = n yields the following equation for 
the second Taylor term of the outflow trajectory: 

t t 

l)2y (t) =f fh2(T, a)~QI (t - T - TO)~QI (t - a - To)dTda (19b) 
o 0 

where 

h2(T, a) = aH2n (T, a) + bH1n (T)H1n (a) 

= b {H1n(T) JIHlk(a)+Hln(a) JI H1k(T)-H1nLmaX(T,a)]} 

(18b) 

It was proved by Napi6rkowski (1978) that the second-order kernel defined 
by eq. 18b meets the conditions specified by Diskin and Boneh (1972) for 
a conservative inflow-outflow system described by the Volterra series. 

So, the first and second Taylor terms of the outflow trajectory can be 
regarded as the first and second terms of the Volterra series expansion. 
The complete proof that series (6) corresponds to the Volterra series, and 
that the condition for convergence depends on the magnitude of the increase 
in the inflow, can be found in Napi6rkowski (1978) and Napi6rkowski and 
Strupczewski (1979, 1981). 
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3. THE IDENTIFICATION PROBLEM FOR THE 808M MODEL 

The problem to be solved is how to find the best estimates of the param
eters of the SOSM model in the sense of minimum mean square error 
using records of the inflow increment AQ 1(t) and the outflow increment 
AQ2(t) which have been observed in a finite time interval T. The problem 
of fitting the SOSM model can be represented as in Fig. 1. We are looking 
for the parameter estimates which minimize the objective function: 

J(a, b, n, To) = f
T 

[AQ 2(t) - oy(t) - o2y (t)J2dt (19) 
o 

The Wolfe variable metric optimization method with a modification due to 
Wierzbicki (1977) was used in solving this problem, since we can determine 
the gradient of the objective function (19) with respect to a, b and To. n was 
restricted to the integers and was subjected to a direct search. See Fig. 2 
for the structure of the complete method. 

It is computationally more efficient to calculate both the approximations 
and the gradient from the state-space representation of the model, rather than 
by using the double integrals in the corresponding Volterra series. See the 
Appendix for a comparison and also Napi6rkowski et al. (1983). 

Objective FuncllonIQzlil = Qo +AQ z(I)Q,ltl=Qo+t.Q,111 SI.Venanl a,b,n,To 
Equalions 

T 

J =l[AQzlll-byIIJ-bZylll]z 
0I 

~ 

AQ,II-TolAQ,II) by{ll+Linear Linear lerm - ~ +Channel Eq.9 

tbSltl 

ttylllQuadratic term SO S M Eq.12 

Fig. 1. The identification of the 808M describing the flow deviations from a steady state. 

3,1. The gradient with respect to a 

The gradient with respect to a is: 

a T 

-J = f 2[AQ2(t)-Oy(t)-o2y (t)] [-OYa(t)-02Ya(t)]dt (20) 
aa 0 

where the subscript denotes derivatives with respect to a. From eqs. 9b and 
12b we have respectively: 
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.----"'--------''----~----, 

Records of 
...-------l t. Q1It I 

t. Q 2 ( t I 
For a constant value of n 
use gradient optimisation 

to find a, b and To 

Correction 
of 

parameter n 

a,b,n,To 

Fig. 2. The algorithm for the identification problem of the 808M. 

l)ya(t) = l)Sn(t) + al)Sna(t) (21) 

l)2 ya (t) = l)2Sn(t) + l)2Sna (t) + 2bl)Sn(t)l)Sna(t) (22) 

Hence, in order to calculate the derivatives of the first- and second-order 
increments, l)ya(t) and l)2ya (t), we must first calculate l)Sa(t) and l)2Sa(t). 

From eqs. 9a and 12a we get: 

l)Sa(t) = a¢l)Sa(t) + ¢l)S(t) 
(23) 

l)Sa(O) = 0 

and 

l) 2Sa(t) = a¢l)2Sa(t) + ¢l)2S(t) + 2b¢l)S(t) l)Sa (t) 
(24) 

l)2Sa(O) = 0 

where the forcing function for eq. 23 is known from the solution of eq. 9a, 
and the forcing function for eq. 24 is known after solving eqs. 9a, 12a and 
23. 
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3.2. The gradient with respect to b 

The gradient with respect to b is: 

a T 

-J = r 2[~Q2(t) - oy(t) - 02y (t)] [- OYb(t) - 02yb (t)] dt (25)
ab ., 

. 0 

The derivative of oy(t) with respect to b is equal to 0, since oy(t) does not 
depend on b. To calculate 02 Y b (t) we make use 0 f eq. 12b: 

02 yb (t) = a02Snb(t) + [OSn(t)]2 (26) 

First, we must calculate 02Sb(t) in order to find 02yb (t). From eq. 12a: 

02Sb(t) = a¢o2Sb(t) + ¢[OS(t)]2 
I (27)

02Sb(0) = 0 

By comparing eqs. 27 and 12a we conclude that: 

b/j 2Sb(t) = 02S(t) (28) 

and from eq. 26 that: 

b/j2yb (t) = 02y (t) (29) 

3.3. The gradient with respect to To 

The gradient with respect to To is: 

a T 

-J = f 2[~Q2(t) - oy(t)- 02y (t)][ - OYTo(t) - 02YTo (t)]dt (30)
aTo 0 

From eq. 6 and directly from the analytical solutions for linear and quadratic
order increments oy(t) and 02y (t) (see eqs. 15b and 19b) one can see that: 

a a 
- [oy(t) + 02y (t)] = - -[oy(t) + 02y (t)) (31)aTo at 
due to pure delay in the inflow of the 808M. 

3.4. Initial parameter values 

All gradient optimization techniques require initial values of the param
eters. A cascade of n identical linear reservoirs (Le. b = 0) preceded by a 
pure delay of magnitude To is taken as a first approximation of the 808M. 
The parameters To, a and n for this cascade are calculated using the moment 
or cumulant technique (Nash, 1959; Dooge, 1973; Dooge and O'Kane, 
1977). For uniform channels, the first three cumulants for the linearised 
8t. Venant equations are (Dooge, 1980): 
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K, x/muo (32a) 

K 2 2(mrf' [1 - (m -1)2F~] (Yo/Sox)(X/muO)2 (32b) 

K 3 = 12(mrf2[1- (m -1)2FJ] [1 + (m -l)F;] (Yo/SoX)2(X/muo)3 (32c) 

where x is the distance along the channel; uo = Qo/A o is the reference 
velocity through the area A; Y = Ao/Bo is the reference value of the hy
draulic mean depth; Bo is the width of the channel at the water surface; 
m is the number which represents the ratio of the kinematic wave celerity 
to the reference velocity m = (dQ/dA)/(Q/A); Fa is the Froude number 
defined by Fa = Q5Bo/gA 3;r depends on friction and shape r = Qo(ast/aQ)/so; 
and Sf and So are the friction and bed slopes, respectively. 

For the cascade of linear reservoirs with delay the first three cumulants 
are: 

and 

where n is the number of reservoirs in the cascade and the parameter a is 
defined in eq. 7. 

By equating the first three cumulants of the linearised St. VEmant equa
tions to the first three cumulants of the cascade of linear reservoirs with 
delay we find the following expressions which relate the parameters of 
the more complex model (x, m, r, uo, Yo, Fa' So) to the parameters of the 
simpler model (a, b, n, To). This provides the initial values for these param
eters in the SOSM model a = 2K2 /K 3 , tj = 0, n = a2 K 2 , To = K 1 - n/a. 

4. RESULTS OF NUMERICAL EXPERIMENTS 

We present below an example which illustrates the applicability of the 
suggested method. The objective is to solve the problem of identifying the 
four parameters a, b, To and n of the model which describes the flow devi
ations from a steady state in a rectangular prismatic channel. The trans
formation of the flow is modelled by the St. Venant equations. The steady 
flow in the channel itself is characterized by the following parameters: flow 
Qo = 200 m3 s-', velocity Uo = 1 m S-I, depth of flow Yo = 2 m, width 
Bo = 100 m, slope So = 0.000248, Chezy coefficient C = 44.9. Calculations 
were carried out for a reach length of x = 40 km. The initial values of the 
parameters were calculated from eq. 32 and found to be a = 0.184 -10-3 S-1 , 

b = 0, n = 3, To = 9552 s. 
In the numerical experiment the parameters a, b, n and To were identified 

for an inflow increment AQ, in the form of a rectangular pulse function: 

200 m3 S-I, for t [0, 6000s]
AQ, (t) = {

0, for t > 6000s 

We control the ill-conditioned nature of this identification problem by 
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choosing an input which contains almost all important frequencies. Such an 
input will reveal almost all aspects of the system response. 

Rapid convergence was found in the cases which were studied due to 
superlinear convergence of the Wolfe method, and the results obtained are 
a = 0.1437 '10-3 S-I, b = 0.4812 '10-10 S-1 m-3 , n = 3, To = 7228. The 
optimized fit of the SOSM to the St. Venant equation is shown in Fig. 3. 

The accuracy with which the SOSM model simulates the model of St. 
Venant was examined using a typical input increment taken from Ponce 
and Theurer (1982): 

~Qr(t) = Q o exp[- (t - Tp)/(Tg - T p)] (t/Tplp/(Tg-Tp) 

Tg = 4000s, Tp = 2000s 

which is much smoother than the pulse function which was used during 
model identification. The comparison of outputs is shown in Fig. 4 and 
was found to be satisfactory. The second term of the Taylor expansion is 
seen to produce a marked improvement in the conceptual model when com
pared with its linearised version, namely, a lagged cascade of n identical 
linear reservoirs. 

Using the same values of a and b but doubling the values of n and To a 
prediction was made at x = 80 km using the smooth input. This is shown 
in Fig. 5 where it is compared with the solution of the St. Venant equation 
for the same smooth input. Clearly, the result is in accordance with our 
expectations. 

65.---------------------------, 
IDENTIFICATION OF THE 50S M AT 40 km
 
RECTANGULAR PULSE INPUT
 

55 ..~.S 0 S M model 

~ 45 ... 
E 

I 

ffi 35 
:E 
UJ 
a; 
U 
z 25 

3: 
o 
-J 

Ll. 10 

5 

St. Venant equation 

." 
. \\ Linear term 

\~ 
\ 

\ 
\ ,,,,

' .... ..... 
.......... , 

-5L-----1-_---l...-_l------l.~~=~::::::::C=.J 
o	 2·0 4·0 6·0 8·0 10·0 12·0 14·0 16'0
 

TI ME IN HOURS
 

Fig. 3. Comparison of 808M with the model of 8t. Vtmant at 40 km using a rectangular 
pulse input. 
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65
 
SIMULATION AT 40 km
 
SMOOTH INPUT
 

55 

st. V~nant equation 

;:;-
l/I 

45 
SO S M model 

E 

I 
Z 
w 35 
~ ~ 
lr 
w , Li near term 
u 
z 25 '/ 
~ 
0 " ...J " "u.. 15 " " ...... ...... 

....... 
'. " 

5 ' ....... 

-5~~-.,..l...:------~-----:-~~::::::::c::::+=J 
o 2 0 4 0 6 0 8 0 10 0 12 0 140 16 0 

TIME IN HOURS 

Fig. 4. Simulation of St. Vimant model at 40 km using a smooth input. 

PREDICTION AT 80 km 

SMOOTH INPUT 

I
Z 
W 
~ 
W 
lr 
U 
Z 

~ 
o 
...J 
u.. 

SO S M model 

~ 
:\ 
.~\ Linear term 

\·~I 
'. " .... " ....~ 

' ..........::-: :--.-. 

8·04·0o 12·0 16·0 20'0 24·0 28·0 32·0 

TIME IN HOURS 

Fig. 5. Prediction of the output from St. Vimant model at 80 km using the same smooth 
input. 
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APPENDIX 

Consider a single reach channel. The following nonlinear first-order 
differential equation applies: 

S(t) = - f[S(t)] + Q(t - To) and S(O) = So (A-Ia) 

y(t) = f[S(t)] (A-Ib) 

The change in inflow from a steady flow Qo to Q(t) such as: 

Q(t) - Qo = AQ(t) (A-2) 

implies the change of outflow and storage trajectories: 

y(t) - Qo = Ay(t) = oy(t) + 02 y (t) + y(t) (A-3a) 

S(t) - So = AS(t) = oS(t) + 02S(t) + 8(t) (A-3b) 

We now compute the first (0) and second (0 2
) terms of a Taylor expansion 

of eq. A-I for the increments defined by eqs. A-2 and A-3: 

OS(t) + 02S(t) + 8(t) = - f(So) -a[OS(t) + 02S(t) + ~(t)] 

- b[OS(t) + 02S(t) +8(t)]2 - Q(t) + Qo + l"AQ(t - To) (A-4a) 

Qo + oy(t) + 02y (t) + y(t) = f(So) + a[OS(t) + 02S(t) + 8(t)] 

+ b[OS(t) + 02S(t) + 8(t)F + Q(t) (A-4b) 

where a = of/oS, b = 0.502f/oS2. 

The first term of the Taylor expansion 

By subtracting from eq. A-4 the terms corresponding to the steady state: 

Qo = f(So) (A-5) 

and by limiting eq. A-4 to the first-order terms we have:
 

OS(t) = - aOS(t) + AQ(t - To) and OS(t) = 0 (A-6a)
 

oy(t) = aoS(t) (A-6b)
 

Eqs. A-6 have the following solution:
 
t 

OS(t) = j exp [- a(t - X)] AQ(X - To)dX (A-7) 
o 

t 

oy(t) = Jaexp[-a(t-X)]AQ(X-To)dX (A-8) 
o 

where exp (-at) is the transition matrix for eq. A-6a. 
The kernels of the transformations (A-7) and (A-8) are respectively: 
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Hdt) = exp(-at) and hI (t) = aexp(-at) (A-9), (A-IO) 

Eqs. A-9 and A-IO describe the first-order kernels of the Volterra series for 
the relations inflow-storage and inflow-outflow. 

The second term of the Taylor expansion 

By subtracting eq. A-6 (the first-order terms) and eq. A-5 (the terms 
corresponding to steady state) from eq. A-4 we get: 

82S(t) = -a82S(t)  b[8S(t)F and 82S(0) = 0 (A-lla) 

82y(t) = a8 2S(t) + b[8S(t)F (A-llb) 

Eq. A-lla has the following solution: 

82S(t) = 

t 

f 
o 
t 

exp[-a(t-~)](-b)[8S(~)Fd~ 

( ( 

= f -bexP[-a(t-~)]ffexP[-a(2~-AI -A2)] 
o	 00 

(A-12) 

The double change in the order of integration results in: 
t t	 t 

82S(t)	 = f f -bexp[-a(t-AI -A2)]f 1(~-Adl(~-A2)exp(-a~)d~ 
000 

X ~Q(AI	 - To)~Q(A2 - To)dAI dA2 (A-13) 

where I(t) is the unit step function. 
Because: 

f
t

1(~-Adl(~-A2) exp(-a~)d~ 
o	 t

f exp(-a~)d~ = -[exp(-at)-exp{-amax(AI,'A2)}]!a 

the second term of the Taylor expansion of the trajectory is described by: 
t t 

82S(t)	 = f f ~ (exp [- a(2t - Al - A2)] - exp [- a{t - min (AI' A2)}]) 
o 0 a 

x ~Q(AI - To)~Q(A2 - T o)dA l dA2 (A-14) 

After substitution of the variables T = t - AI; a, = t - A2, the kernel of that
 
transformation can be described as:
 

H2(T, a) = (b/a)[exp {--;- a(T + a)} - exp [- a max (T, a)}] (A-15)
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From eq. A-11b one can see that: 
t t 

= ff h2(r,a)~Q(t-r-~o)~Q(t-l)2Y(t) 
o 0 

a- To)drda (A-16) 

where 

aH2(r, a) + bHdr)H

b [2 exp {- a(r + a)} 

1 (a) 

- exp [- a max (r, a)] (A-17) 

Eqs. A-15 and A-17 describe the second-order kernels of the Volterra series 
for the relations inflow~torage and inflow-outflow, respectively. 

Derivatives with respect to model parameters 

The derivatives of cSy(t) and cS 2y(t) with respect to parameters a, band 
To can be calculated directly from eqs. A-8 and A-16, or can also be sought 
as solutions of differential equations obtained by differentiating eqs. A-6 and 
A-ll. 

As an example a derivative of cSy(t) with respect to a will be calculated 
below. From eq. A-8: 

a t a 
- cSy(t) = f - hi (r)~Q(t - r - To)draa 0 aa 

= f
t 

[exp(-ar)-arexp(-ar)]~Q(t-r-To)dr (A-18) 
o 

From eq. A-6: 

cSSa(t) = -acSSa(t) - cSS(t) and o (A-19a) 

cSYa(y) = acSSa(t) + cSS(t) (A-19b) 

The solution of eq. A-19a is: 

cSSa(t) = - f
t 

exp[-a(t-~)]cSS(~)d~ (A-20) 
o 

Inserting eq. A-7 into eq. A-20 for cSS(n: 

cSSa(t) = - f
t 

exp[-a(t-~)] f
t 

exp[-a(~-A)]~Q(A-To)dAd~ 
o 0 

Integration with respect to ~ gives: 
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t 

- J (t-X)exp [-a(t-X)]~Q(X-To)dX
 
o
 

t 

- JTexp(-aT)~Q(t-T-To)dT (A-21) 
o 

Inserting eqs. A-7 and A-21 into eq. A-19b gives a solution identical to that 
obtained by the direct method. 

Note that the second method which uses a state-space representation 
reduces the time of calculation in the case of 02Sa (t). It is computationally 
much more efficient to solve the linear differential equation than to calcu
late double integrals. 
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