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A Discrete Conceptualization of a Volterra Series
Model for Surface Runoff
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The Volterra series rainfall-runoff model used to be regarded as a nonlinear black box with no
correspondence between the physical prototype and the model parameters. However, as was outlined in
earlier contributions by Napiorkowski and coauthors (J. J. Napiorkowski, 1978, 1983; J. J.
Napiorkowski and W. G. Strupczewski, 1979, 1981; J. J. Napiorkowski and P. O’Kane, 1984), the output
signal of a cascade of identical nonlinear reservoirs can be approximately expressed in the form of a
Volterra series model. This offers obvious advantages in the process of identification due to the par-
simony of parameters. The conceptualization of the Volterra series model performed in the present study
is based on a state space formulation within the discrete framework justified in view of the inherently
discrete problems that we are forced to deal with in practice. The methodology presented is tested on
data from the catchment of the Cache River in southern Illinois.

1. INTRODUCTION

The technique of Volterra series introduced to hydrology by
Amorocho and Orlob [1961] and analyzed thereafter by several
researchers holds an established position among nonlinear
rainfall-runoff models. The general formulation of the Volterra
series model is

T
J

where x is the input signal, h is the kernel function, |f]; is an
iple integral, and IT is a product. In hydrologic applications
the value of N is usually taken as 2, instead of being infinite as
in the theory of series.

From the very beginning of its hydrologic applications the
model was conceived to be of the black box type: i.e., it could
be regarded as a direct extension of the convolution integral
technique accompanying the concept of the instantaneous unit
hydrograph. The late Professor Amorocho, the pioneer in the
field of Volterra series hydrologic modeling, wrote in 1973
that “at this point no correspondence can be assumed ... to
exist between the components of the polynomial system (i.e.,
Volterra series model, comment added) and any of the physi-
cal elements of the prototype” [ Amorocho, 1973]. This attitude
was very characteristic of the first two decades of hydrologic
applications of the Volterra series model. No provision was
made for use of the physical system characteristics in the pro-
cess of identification of kernels of the integrals contributing to
the Volterra series. E

The Volterra series model was never conceptualized, and
typically the number of parameters necessary for the kernel
determination was large. Approximation of kernel functions
with the help of spline functions requires a very great number
of parameters, depending on the number of elementary spline
functions considered and on the order of spline functions.
That is why the only spline approximation used in hydrologic
Volterra series identification was the zero-order method (i.e.,
piecewise constant elementar.y functions), also called the
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method of ordinates. The approximation of the kernel func-

‘tions with the help of orthogonal polynomials (e.g., of La-

guerre or Meixner type) also requires numerous parameters.
These methods decompose a higher-order kernel of the black
box Volterra series model as
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where {h;,...;,} is a set of spline functions, and {h;} is a set of
orthogonal functions. The details of derivation of (2) and (3)
can be found in the work by Diskin and Boneh [1973] and
Amorocho [1973], respectively.

The first attempt to attribute some conceptual meaning to
the black box kernel of the Volterra series model used in
hydrology was due to Diskin and Boneh [1972]. The structure
of their second-order kernel, however, was not directly related
to any physical model. It was merely a hypothetical example,
for the sake of illustration, of properties that the theoretical
second-order kernel of a conservative system should possess.

Napiérkowski and coauthors [Napiorkowski, 1978, 1983;
Napiorkowski and Strupczewski, 1979, 1981; Napiorkowski and
0’Kane, 1984] aimed to establish a relationship between the
nonlinear conceptual models in the state space framework and
the Volterra series model. This important step toward the
conceptualization of the kernels of the Volterra series models
of order higher than one results in a significant reduction in
the number of parameters. This follows earlier developments
in unit hydrograph conceptualization, where instead of a great
number of parameters of the original black box models (via
ordinates, splines, or orthogonal functions resolution) a few
conceptual parameters remained to be identified.

The novelty of the present contribution is the conceptual-
ization of the Volterra series via a state space approach within
the discrete framework. This is considered necessary, as in the
course of mathematical modeling one always deals with dis-
crete signals either at the stage of measurements or at the
stage of numerical analysis. '
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2. NONLINEAR DIFFERENTIAL MODEL AND ITS RELATION
TO VOLTERRA SERIES

Assume that the hydrologic system considered can be ap-
proximately represented by means of the wide class of math-
ematical models consisting of a series combination of equal
nonlinear dynamic structures with differentiable (n times) out-
flow laws. An established example of a structure embraced by
the above formulation is a cascade of equal nonlinear reser-
voirs with power outflow law [ Napiorkowski and Strupczewski,
1979].

Assume that the system is represented by the following set
of equations.

Law of conservation of mass:

continuity in the ith element
Si(t) = I(t) — Q1) i=1..,N
54{0) = Sy

4)
Law of conservation of mass:
linkage between (i + 1)th and ith elements
Lia)=0f) i=L...,N-1 ()
Conceptual output equation (outflow law)
o0 =/[S] i=1..,N (6)

where I, is the inflow to the ith element, Q; is the outflow from
the ith element, and S; is the storage in the ith element. The
above set of equations can be easily formulated in the state
space framework as follows.

State equations
85(t) = x(t) = f5,(9)]
S2(t) = f[8,()] — f[S2(0)]

.................... )
Sut) = f[Sx- ()] —f[SK®)]
S(0) =S,
Output equation
o) =F[SuD)] ®)
where x(t) = I,(t) is the input signal, and p(r) = Qu(t) is the

output signal.

If the form of the differentiable function fis not known, the
above set of equations cannot be solved by a direct numerical
method. One of the ways of solution of the problem is given in
the present paper.

The findings presented in this paragraph borrow heavily
from Napiérkowski [1978, 1983], Napiorkowski and O’Kane
[1984], and Napiérkowski and Strupczewski [1979, 1981]. The
state equation (7) can be regarded as a nonlinear operator P
mapping the space of inflows (input signals) {x} into the space
of storages (state variables) {S}:

S(r) = [Px](1) 9

Denote now the trajectories of inflow, storage, and outflow for
the steady state conditions as xo, Sp;, and y, =f(Se) = xo,
respectively. Development for unsteady flow reference con-
ditions given in the work by Napiérkowski and Strupczewski
[1979] yields more complicated results and will not be fol-
lowed herein. Let the inflow be perturbed around the reference

level as
x(t) = xq + Ax(t) (10)

Then the state and the output trajectories would differ from So

and y, by AS(z) and Ay(r), respectively. These deviations can
be expressed in the following form:

AS(1) = S(1) — So = 68(t) + 67S(t) + - - (11)
AYt) = Y0) = yo = o¥(t) + &* W) + -+ (12)

The first and second terms on the right-hand side of either of
(11) or (12) represent the linear variation () and the quadratic
variation (6%) (or first and second Frechet differential of the
operator P; compare Dieudonné [1969]), respectively.

Assume that the outflow law given by (6) can be devel-
oped in the Taylor series

SIS(0] =f(So) + aAS (1) + b[AS()]* + - -+ (13)
where
_Y Ly
a—ds‘ . b=05 as,? -

Accordingly, equations for linear and quadratic increments
from (11) and (12) can be obtained by inserting (11}-(13) into
(7) and neglecting all variations of orders higher than 1 or 2.
As we do not consider changes in the initial conditions of (7),
the initial conditions for variations are zero.

2.1. Linear Approximation
Substituting (11)-(13) into (7) and limiting them to the first-
order variations yields the following set of equations:

88(r) = a@dS(t) + [1, 0, - -, 017Ax(1)

S)(t) = adSy(f) (14)
55(0) = 0
where
el Wy vm, D
g= | o ok e B 15)
0, 0, , —1

Using the convenient formulation originating from dynamic
systems theory one can write the set (14) in the form

38(1) = AdS(1) + BAx(1)
S¥(t) = CoS(t) (16)
58(to) = A,

with the solution for the stationary case

O8(t) = @(t — 1,)8S(t,) + J.lrb[r — 1)BAx(1) dt (17)

where
A =ag@
B=[1,0:--,0]7
(18)
C=[0,---,0,1]

=0 Ay=0

and ¢(t) = exp (Ar) is the transition matrix that can be ef-
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fectively determined as follows:

[exp (AD)], = (a0~ exp (—an/ii —j)! =]

(19)
[exp (AT, =0  j<i
Inserting (18) into (17) one obtains
8(t) = j exp [A(t — 1)]BAx(z) dt (20)
o

2.2. Quadratic Approximation

Substitution of (11){13) into (7) and limiting them to the
second-order variations yields the following set of equations:

6%8(1) = a@s?S(t) + be[5S(1)]*
S%y(t) = ad2S\(t) + b[SS5x(1)]?
42S(0) =0
The solution of (21) can be found as for (14). Note that the
argument of the forcing function for (21) is the solution of (14)
and that the transition matrix is common for both (14) and
(21).

One arrives at structures analogous to the first two terms of
the Volterra series:

1)

o) = J. hy(t)Ax(t — 1) dt (22)

0

(1) = .[J.hz{rl, T)AX(t — 1,)Ax(t — 1,) dt, dr, (23)
oJo

where
hy(t) = aH\(1) (24)
N N
hy(ty, t;) = b{HN(rI)Z Hit,) + HN{tZ}Z H;(h)}
i=1 i=1
— bHy[max (¢, t,)] (25)

N_is an integral number, a and b are parameters resulting
from the outflow-storage relation, and

(at)!—l
(i—1)

H{t) = exp (—at) (26)
is the dimensionless first-order kernel, the widely used Nash
cascade form of the instantaneous unit hydrograph [Nash,
19597.

The linear and quadratic increments can be determined
either from (22) and (23) or directly from the state space for-
mulation (equations (14) and (21)). From the computational
viewpoint the latter method is simpler.

The use of the two-term Volterra series model based on a
cascade of nonlinear reservoirs is subject to certain restrictions
on the parameters, which are needed to ensure copositivity of
the model (a positive response to a positive input). The suf-
ficient copositivity condition is related to the amplitude of the
input signal (compare J. J. Napiorkowski, unpublished manu-
script, 1986) rather than to the total volume of the input
signal, as was suggested by Diskin et al. [1984].

3. DiIscrRETE FRAMEWORK

‘The discrete formulation of the problem is approached as
follows. Instead of a simple mechanical discretization of the
kernel, its continuous form is used. The discrete set of outputs
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is obtained via analytic solution of the continuous problem
(compare R. J. Budzianowski and Z. W. Kundzewicz, unpub-
lished manuscript, 1984). This can be regarded as advanta-
geous in comparison both to the prior assumption of a dis-
crete model and to the direct approach, i.e., discretization at
the stage of programming and numerical computations. The
“via solution” method (R. J. Budzianowski and Z. W. Kundze-
wicz, unpublished manuscript, 1984) gives better insight into
the identification process and compares favorably to the other
methods with respect to the necessary computational effort.

Consider equations (14) and (21) stated in discrete frame-
work. The data are given in discrete time instants and the
system response needs to be known in discrete time instants.
Assume that the time instants of interest belong to the follow-
ing set:

ty=1to + kAT k=0,1,---,n (27)

Let the input increment Ax(t) be given as a train of rectangu-
lar pulses, in accordance with the rainfall measurement. Then
the model response (17) can be also used, giving the result

OS[(k + 1)AT] = exp (AAT)SS(KAT)

(k+ 1)AT
+ '[ exp {A[(k + DAT — t1}B drAx(kAT) (28)
kAT
The matrices A and B are given by (18).
Now, denote for brevity F(t,) = F(k), where F is a dummy
notation of a function. Then the model equations can be writ-
ten as -

3S(k + 1) = A5S(k) + BAx(K) 29)
k) = CS(k) (30)
where the matrices A and B are
A = exp (AAT) (31)
B(i) = |:l —exp (—aAT)!g(aAT)";’k!:I/a (32)
k=0

and the vector C is defined by (18). Derivation of (32) is given
in the appendix.
Similarly, for the quadratic increments

8%S(k + 1) = exp (AAT)é6?S(k)

T+
+ bJ exp [A(ti+, — D]@[6'S(1)]* dr  (33)
't
where §'S(¢) is the extension for continuous arguments of the
variation 88(k) given for discrete arguments. This is achieved
via linear interpolation of S(t) between the discrete instants,
where dS(t) is explicitly given.

After some manipulations (see the appendix), the final equa-
tion for the quadratic increment of storage can be developed.

0%8(k + 1) = AdS(k) + bB,[3S(k)]*/(AT)?
+ 2b(ATB, — B,)5S(k)0S(k + 1)/(AT)?
+ b[B, — 2ATB, + (AT)*B,][6S(k + D]*/AT)?
(34)

The final formulae for B,, B,, and B, are developed in the
appendix.
When the storage increments are known, one can easily find
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Fig. 1. Simulation with the help of the quadratic rainfall-runoff model (gight storm events).

the corresponding linear and quadratic increments of outflow
Sy(k) = adSy(k) (35)
8%y(k) = aé’SN(k) + b[6S(k)]? (36)

The check of choice of the time discretization step can be
made by comparing the mtegral of the second-order increment
to zero [Diskin and Boneh, 1972]. If this value differs consider-

ably from zero, the linear approximation of the increment’ S(t)

is not sufficient; that i is, denser discretization is required.

4. PARAMETER IDENTIFICATION

The significant advantage of the conceptual Volterra series
model is parsimony in the number of parameters. In the pres-
ent study that pertains to the initially relaxed case (zero initial
conditions in equations (4) and (7)) there are three parameters:
a and b pertain to the Taylor series resolution of outflow law,
and N is the number of nonlinear conceptual elements in
series.

The parameters of the model are typically identified via
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Fig. 1. (continued)

analysis of the discrete input dnd output data. The opti-
mization criterion to be minirnized is

min J(N, @, ) = min 3. Douuld) = Ymea®>  BT)
where
A (38)

The initial values of the parameters a and N related to the
linear portion of the model were obtained by means of the

moment matching méthod {Nash, 1959]. The real initial value
of N resulting from the moment matching was subsequently
converted to integer N* according to the relation

N* =ent(N + 0.5)

where n A ent(x) is the largest integer less than or equal to the
real value of x. The initial real value of a is then modified in
order to compensate for the effect of rounding N to the integer
value in such a way that the first two moments remain con-
stant.
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Fig. 1. (continued)

Once the initial values of N* and g are known, the value of
parameter b can be easily found according to the following
reasoning (A. Boneh, personal communication, 1981). Let 6% y*
be the solution of the linear equation for a quadratic in-
crement for b = 1. Then, due to the linearity the following
equation holds:

0% y(k) = b&>y*(k) (39)
The necessary condition of optimality is

oJ =

5 =2 2. Dyens(k) — 8y(k) — b32y*(K)162y*(k) = 0 (40)
k=1

That is, for a given a the value of b,, can be most easily
calculated from the equation

M=

[yobn(k) - 6.]"("()]52]’*(&)

1

b k

opt —

= (41)
P CERUE

Now the minimization of the criterion function (37) with re-
spect to the parameter a can be performed. Subsequently, a
new value of b, is found from (41) that corresponds to the
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new value of a. After having reached the optimum values of
the parameters a and b, the trial calculations of two other
values of the integer N, that is, N* + 1 and N* — 1, are made.
In our experience so far this simple identification approach
has proven effective, since the initial value of parameter a,
determined by the moment matching technique, was close to
the optimal value, and possible local minima were not active
in the optimization process.

It should be underlined that optimization with respect to
only one variable is sufficient; that is, the problem is compu-
tationally simple.

5. NUMERICAL EXAMPLE

The methodology presented was tested with rainfall-runoff
data from the catchment of the Cache River at Forman in
southern Illinois used by Diskin and Boneh [1973]. The catch-
ment of the 630-km? area has mild slopes and well-developed
drainage network. The available data pertain to eight rainfall-
runoff events observed in the years 1935-1951 and allow com-
parison with other approaches to be performed.

At first, the data on all eight events available were used
both for identification and verification. Then, the events
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marked 1-3 were used for identification and the remaining
events for verification. The results of these two cases were
practically identical. Results of either of these two approaches
are shown in Figure 1. The values of model parameters ob-
tained via simplified identification as described in paragraph 4
above read N =3, a=0.75 (day™!), and b = 6.84 (day’
mm~"). As the same set of data were used by Diskin and
Boneh [1973, 1984], it seems useful to compare the results.
This can be done in several aspects.

As regards the accuracy of simulation, the results obtained
by Diskin and Boneh [1973] were better than in the present
approach. Values of the criterion function (37) were 53 and
233. However, the number of parameters used by the present
authors was much lower (3 versus 68) than in the work by
Diskin and Boneh. Moreover, the consistency of observed and
simulated outflows does not mean that consistency in system
operators has been also achieved. An example shown in the
work by Napiorkowski and Strupczewski [1984] illustrates that
similar outflows can be obtained with entirely different system
operators. The ill conditioning of the mathematical problems
tackled in the work by Diskin and Boneh did not let them use
part of available data (e.g., three as in the present paper) for
identification and part for verification purposes. The input
series in the cases marked in Figure 1 as 1 to 3 was too short
for the great number of necessary parameters to be identified.

6. CONCLUDING REMARKS

The method of identification of kernels of Volterra series
model via conceptualization is advantageous in comparison to
the classical methods of identification in terms of trade-off
between the amount of computations required and accuracy
achieved. This is supported by the comparison of the methods
of kernel identification presented in the work by Napidrkowski
[1983]. The objective function measuring the root-mean-
square departure of the modeled runoff from the measured
runofl was better for the three-parameter Volterra series con-
ceptualization than for the fourteen-parameter black box
convolution model identified via ordinates. Similar results
were obtained by Diskin et al. [1984], who concluded that “If
this result turns out to be correct also for other sets of data, it
may be taken as evidence that the second order model, based
on a cascade of nonlinear reservoirs, is indeed a suitable tool
for representing the conversion of rainfall excess into direct
surface runoff.” The conceptualization makes the Volterra
series easily tractable on a microcomputer.

The results obtained prove also that the model of cascade of
identical nonlinear dynamic systems (e.g., uniformly nonlinear
reservoirs) lends itself to applications to both flood routing
[e.g.. Napiorkowski and Strupczewski, 1981, 1984] and to
rainfall-runoff modeling [Napiorkowski, 1983; Diskin et al.,
1984]. That is, in accordance with the applications of nonlin-
ear reservoirs in the rainfall-runoff modeling reported in the
hydrology literature, the conceptual nonlinear differential
equations (nonlinear state model) used in this research could
be also of good value apart from the Volterra framework.

One can also conclude that the methodology presented
should enable other methods of conceptualization to be used.
That is, other physically significant nonlinear models (e.g., in
the case of open channel flow, models of hydrodynamic origin)
can be linked with the Volterra series kernels. The prerequisite
condition that the model be given in the state space frame-
work has been achieved in several references (e.g., via modal

analysis in the work by Dooge et al. [1983] and via dis-
cretization, in the work by Muzik [1975]; Szoéllosi-Nagy
[1982]). Since the series of references by Napiorkowski and
coauthors mentioned herein is not widely known, the follow-
ing statement seems appropriate as the final conclusion. The
door to physically based conceptual Volterra series model is
declared open.

APPENDIX

Linear Increments: Derivation of (32)
Combination of (28) and (29) gives

T+
B= -I. exp [A(ty:, — 7)]B dr
It

'k

AT
= J exp [AAT — 7)]B dt

0

AT
- j; &(1)B dt (A1)

where (1) is the transition matrix given by (19). Thus

AT i-j
-[ ¢ifr) dt = [1 — exp (—aAT) EJ(aAT}“;‘k!]/a (A2)
o k=0
Inserting (A2) in (A1) one obtains (32).

Quadratic Increments: Derivation of Equations for B,, B,, and
B,in (34)

Assume that the element 6'S(z) in (33) results from linear
interpolation; that is,

6'S(7) = dS(k) + [8S(k + 1) — IS(k)](tr — kKAT)/AT
= {[(k + DAT — 1165(k) + (1 — kAT)6S(k + 1)}/AT (A3)
Inserting (A3) in (33) one obtains
5%S(k + 1)
= exp (AAT)5?S(k)

+ bJ-“exp (AT)@[18S(k) + (AT — 1)8S(k + 1)]? dt/(AT)?
o

AT

= exp (AAT)6?S(k) + b.[ exp (At)et? di[8S(k)]*/(AT)?

0

AT
+ ZbI exp (ADQATT — 1) d1[6S(k)3S(k + 1)J/(AT)?

0

AT
+ bj. exp (AD)@[1? — 2ATt + (AT)?] dz[6S(k + 1)]*/AT)?
0

(A4)
Now auxiliary matrix variables B, B,, and B, are introduced:

AT

B,=| exp(At)or?dr
Jo
rAT
B,=| exp(ADertdr (AS5)
«+0
rAT
B,=| exp(Anedr
JO

Since for i > j,

i e i s
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AT
.[ (at)' ™/ exp (—ar)®/(i — j)! dt
o

C(i—j+2Q—j+ 1) [2T (ar)I*?

a A
=a Hi—j+20—j+ DB(i—j+3) (A6)
AT
J (at)' =/ exp (—at)t/(i —j)! dz
0
O (l _J. + l) AT {ﬂT)i_j+l = s
T e Lk G=jt+ni"
=a Ni—j+ DBi—j+2) (A7)

where the vector B developed in this appendix was given by
(32).

The elements of the matrices B,, B,, and B, for i > j can be
determined as follows:

Bii,)=—ai—j+22i—j+DBi—j+3)
+a Hi—j+i—)Bli—j+2) (A8
Byi,j)=—a Mi—j+ DBli—j+2)
+a Ni—HBi—j+1) (A9)

By(i,j)= —Bli—j+1)+sign (i—)Bi—j) (A10)
where

af

sign (x) = +1 x>0
daf

sign (x) =0 X=10
daf

sign (x) = —1 x<0

For i < j the elements of the matrices B,, B,, and B, are equal
to zero.

After having inserted the (A8)-(A10) in (A5) and then in turn
in (A4) one gets the final solution (34) for the second variation
of storage.

NoTATION

]

ZxI D F WO

model parameters.

matrices (continuous model).
B,, B, matrices (discrete model).
outflow law.

ith-order kernel.

dimensionless first-order kernel.
inflow to ith reservoir.

objective function.

number of input-output pairs.
number of Volterra series terms.
number of reservoirs.

>
o

Q; outflow from ith reservoir.
P nonlinear operator.

t time.

AT time increment.
x input.

Ax input increment.
y output.

Ay output increment.
& linear variation.

4% quadratic variation.
¢ transition matrix.
@ model matrix.
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