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A Discrete Conceptualization of a Volterra Series
Model for Surface Runoff

JAROSLAW J. NAPIÓRKOWSKI AND ZBIGNIEW W. KUNDZEWICZ

lnstitute oj Geophysics, Polish Academy oj Sciences, Warsaw, Poland

The Volterra series rainfall-runoff model used to be regarded as a nonlinear black box with no
correspondence between the physical prototype and the model parameters. However, as was outlined in
earlier contributions by Napiórkowski and coauthors (J. J. Napiórkowski, 1978, 1983; J. J.
Napiórkowski and W. G. Strupczewski, 1979, 1981; J. J. Napiórkowski and P. O'Kane, 1984), the output
signal of a cascade of identical nonlinear reservoirs caD be approximately expressed in the form of a
Volterra series model. This offers obvious advantages in the process of identification due to the par-
simony of parameters. The conceptualization of the Volterra series model penormed in the present grudy
is based on a stale space formulation within the discrete framework justified in view of the inherently
discrete problems that we are forced to deal with in practice. The methodology presented is tested on
data erom the catchment of the Cache River in southern IIlinois.

1. INTRODUCTION

The teehnique of Volterra series introdueed to hydrology by
Amorocho and ar/ob [1961] and analyzed thereafter by several
researehers holds an established position among nonlinear
rainfall-runoff models. The general formulatioIl of the Volterra
sedes model is

N
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y(t) = i~l Jo j h;(-rl' "', 'i)})lX(t - 'k) d'k

where x is the input signal, h is the kernel function, lIiiis an
iple integrai, and n is a produet. In hydrologie applications
the value of N is usually taken as 2, instead of being infinite as
in the theory of sedes.

From the very beginning of its. hydrologie applieations the
model was eoneeived to be of the blaek box type; Le., it eould
t1e regarded as a direet extension of the eonvolution integral
teehnique aeeompanying the eoneept of the instantaneous unit
hydrograph. The lale Professor Amoroeho, the pioneer in the
field of Volterra sedes hydrologie modeling, wrote in 1973
that "at Ibis point no eorrespondenee caD be assumed ... to
exist between the eomponents of the polynomial system (i.e.,
Volterra sedes model, eomment added) and aDYof the physi-
cal elements of the prototype" [Amorocho, 1973]. This attitude
was very eharaeteristie of the fiest twa deeades of hydrologie
applications of the Volterra series model. No provision was
marle for use of the physieal system eharaeteristics in the pro-
eess of identifieation of kerneIs of the integrals eontributing to
the Volterra series. .;

The Volterra series model was never eoneeptualized, and
typieally the number of parameters neeessary for the kernel
determination was large. Approximation of kernel funetions
with the help of spline funetions requires a very great number
of parameters, depending on the number of elementary spline
funetions eonsidered and on the order of spline funetions.
That is why tbe only spline approximation used in hydrologie
Volterra sedes identifieation was the zero-order method (Le.,
piecewise eonstant elementary funetions), algo ealled the
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method of ordinates. The approximation of the kernel func-
'tions with the help of orthogona1 polynomials (e.g., of La-
guerre or Meixner type) a1so requires numerous parameters.
These methods decompose a higher-order kernel of the blaek
box Volterra series model as

(1)

N, Ni

hj('l"""i)= L'" Lait...j,hit...j'('l"""i)
it=l j;=1

(2)

or

NI Ni

hi('l"""i)= L'" Lait...j,hit('l)...hj'('i)
it=l j,=l

(3)

. .
where {hit...j.} is a set of spline functions, and {hi.} is a set of
ort hogon al funetions. The details of derivation of (2) and (3)
caD be found in the wark by Diskin and Boneh [1973] and
Amorocho [1973], respeetively.

The fiest attempt to attribute same eonceptual meaning to
the blaek box kernel of the Volterra series model used in
hydrology was due to Diskin and Boneh [1972]. The strueture
of their seeond-order kernel, however, was not directiy related
to aDYphysical model. It was merely a hypothetieal example,
for the sake of iIlustration, of properties that the theoretical
second-order kernel of a conservative system should possess.

Napiórkowski and eoauthors [Napiórkowski, 1978, 1983;
Napiórkowski and Strupczewski, 1979, 1981; Napiórkowski and
O'Kane, 1984] aimed to establish a relationship between the
nonlinear eonceptual models in the stale spaee framework and
the Volterra sedes model. This important step toward the
eonceptualization of the kerneis of the Volterra sedes models
of order higher than one results in a signifieant reduetion in
the number of parameters. This follows earlier developments
in unit hydrograph eoneeptualization, where instead of a great
number of parameters of the original black box models (via
ordinates, splines, or orthogonal funetions resolution) a rew
eonceptual parameters remained to be identified.

The novelty of the present eontdbution is the coneeptual-
ization of the Volterra series via a stale spaee approach within
the diserete framework. This is considered neeessary, as in the
COllegeof mathematical modeling one always deals with dis-
erete signals either at the stage of measurements or at the
stage of numerical analysis.

1413



1414 NAPIÓRKOWSKI AND KUNDZEWICZ: SURFACE RUNOFF

2. NONLINEAR DIFFERENTlAL MODEL AND ITS RELATION

TO VOLTERRA SERIES

Assume that the hydrologie system eonsidered ean be ap-
proximately represented by means of the wide cIass of math-
ematieal models eonsisting of a series eombination of equal
nonlinear dynamie struetures with differentiable (n times) out-
flow laws. An established example of a strueture embraeed by
the above formulation is a easeade of equal nonlinear reser-
voirs with power outflow law [Napiórkowski and Strupczewski,
1979].

Assume that the system is represented by the foIlowing set
of equations.

: Law of eonservation of mass:
eontinuity in the ith element

Si(t) = Ii(t) - Qi(t)

Si(O)= SOi

i = 1, ..., N

Law of eonservation of mass:
linkage between (i + l)th and ith elements

Ii+ l(t) = Qi(t) i=l,...,N-l

Conceptual output equation (outflow law)

Qi(t) = f [Si(t)] i=l,...,N

where Ii is the inflow to the ith element, Qi is the outflow erom
the ith element, and Si is the storage in the ith element. The
above set of equations ean be easily formulated in the state
space framework as foIlows.

State equations

Sl(t) = x(t) - f[SI(t)]

S2(t) =f[Sl(t)] - f [S2(t)]

....................

SJ,t) =f[SN-l(t)] - f [SJ,t)]

8(0)= 80

Output equation

y(t) = f [SJ,t)]

where x(t) = Il(t) is the input signal, and y(t) = QJ,t) is the
output signal.

If the form of the differentiable funetion f is not known, the
above set of equations eannot be solved by a direet numerieal
method. One of the ways of solution of the problem is given in
the present paper.

The findings presented in this paragraph borrow heavily
erom Napiórkowski [1978, 1983], Napiórkowski and O'Kane
[1984], and Napiórkowski and Strupczewski [1979, 1981]. The
state equation (7) ean be regarded as a nonlinear operator P
mapping the space ofinflows (input signals) {x} into the spaee
of storages (state variabies) {8}:

8(t) = [Px](t)

Denote now the trajeetories of inflow, storage, and outflow for
the steady state eonditions as Xo, SOi' and yo = f(SOi) = Xo,
respectively. Development for unsteady flow referenee eon-
ditions given in the work by Napiórkowski and Strupczewski
[1979] yields moce eomplicated results and will not be fol-
lowed herein. Let the inflow be perturbed around the referenee

level as

x(t) = Xo + L\x(t) (10)

Then the state and the output trajeetories would differ erom So
and yo by L\8(t) and L\y(t), respeetively. These deviations ean
be expressed in the foIlowing form:

!J

L\8(t)= S(t) - So = bS(t) + b28(t) + . . .

L\y(t)= y(t) - yo = by(t) + b2y(t)+ . . .

(11)

(12)

The fiest and seeond terms on the right-hand side of either of
(11) or (12) represent the linear variation (b) and the quadratie
variation (cF) (or fiest and seeond Freehet differential of the
operator P; eompare Dieudonne [1969]), respeetively.

Assume that the outflow law given by (6) ean be devel-
operl in the Taylor series

(4)
f[Si(t)] = f(80i) + aL\Si(t) + b[Mj(t)]2 + .. . (13)

where

(5)

df

l

a--
- dSi SOi

d2f

Ib = 0.5 dS/ SOI

(6)

Aeeordingly, equations for linear and quadratie inerements
erom (11) and (12) ean be obtained by inserting (11}-(13) into
(7) and negleeting aIl variations of orders higher than 1 or 2.
As we do not consider ehanges in the initial eonditions of (7),
the initial eonditions for variations are zero.

(7)

2.1. Linear Approximation

Substituting (11}-(13) into (7) and limiting them to the first-
order variations yields the foIlowing set of equations:

bS(t) = aq>b8(t) + [1, O, . . " O] TL\x(t)

by(t) = ab8N(t)

158(0)= O

(14)

where

(8)

r-l O... O

]~ ~ lu>~::u::uu~~
(15)

Using the eonvenient formulation originating erom dynamie
systems theory one ean write the set (14) in the form

b8(t) = AbS(t) + BL\x(t)

by(t) = Cb8(t) (16)

b8(to) = L\o

with the solution for the stationary ease

b8(t) = </>(t - to)bS(to) + I'</>(t- -r)BL\x('r)d-r
J.o

(17)

where

(9)
A=aq>

B=[l,O,"',O]T

C=[O,"',O,l]
(18)

to = O L\o= O

and </>(t)= exp (At) is the transition matrix that ean be ef-
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fectively determined as follows:

[exp (At)]ij = (at)i-j exp (-at)/(i - J)!

[exp (At)]ij = O j < i

Inserting (18) into (17) one obtains

bS(t) = l'exp [A(t - 't")]Bdx('r)d't"

i"?j

2.2. Quadratic Approximation

Substitution of (llH13) into (7) and limiting Lbem to the
second-order variations yields the following set of equations:

blS(t) = a<pblS(t) + b<p[bS(t)Y

bly(t) = ablS,.(t) + b[bS,.(t)]l

blS(O) = O

The solution of (21) can be found as for (14). Note that the
argument of the forcing function for (21) is the solution of (14)
and that the transition matrix is common for both (14) and
(21).

One arrives at structures analogous to the first two terms of
the Volterra series:

by(t) = l'hl('t")dX(t - 't") d't" (22)

bly(t) = 1'1'hl('t"I' 't"l)dx(t - 't"l)dx(t - 't"l) d't"l d't"l (23)

where

hl(t) = aH,.(t)

hl(t" tl) = b{H,.(tl);tIH;(tl) + H,.(tl);tIH;(tl)}

- bHN[max (tl' tl)]

N. is an integraI number, a and b are parameters resulting
erom the outflow-storage relation, and

(atl-lH.(t) = - exp ( -at )
, (i - l)!

is the dimensionless first-order kernel, the widely used Nash
cascade form of the instantaneous unit hydrograph [Nash,
1959].

The linear and quadratic increments can be determined
either erom (22) and (23) or directly erom the staLe space for-
mulation (equations (14) and (21». From the computational
viewpoi~t the latter method is simpler.

The use of the two-term Volterra series model based on a
cascade of nonlinear reservoirs is subject to certain restrictions
on the parameters, which are needed to ensure copositivity of
the . model (a positive response to a positive input). The suf-
ficient copositivity condition is related to the amplitude of the
input signal (compare J. J. Napiórkowski, unpublished manu-
script, 1986) rather than to the total volume of the input

signal, as was suggested by Disk~net al. [1984].

3. DISCRETE FRAMEWORK

.The discrete formulation of the problem is approached as
follows. . Instead of a simple mechanical discretization of the
kernel, its continuous form is used. The discrete set of outputs

18!.'1

(19)

is obtained via analytic solution of the continuous problem
(compare R. J. Budzianowski and Z. W. Kundzewicz, unpub-
lished manuscript, 1984). This can be regarded as advanta-
geous in comparison both to the prior assumption of a dis-
crete model and to the direct approach, i.~., discretization at
the stage of programming and numerical computations. The
"via solution" method (R. J. Budzianowski and Z. W. Kundze-
WiCI,unpublished manuscript, 1984) gives better insight into
the identification process and compares favorably to the other
methods with respect to the necessary computational elfort.

Consider equations (14) and (21) stated in discrete frame-
work. The data are given in discrete time instants and the
system response needs to be known in discrete time instants.
Assume that the time instants of interest belong to the foUow-
ing set:

(20)

(21)
tk = to + kd T k = O,1, ..., n (27)

Let the input increment dx(t) be given as a train of rectangu-
lat pulses, in accordance with the rainfall measurement. Then
the model response (17) can be algo used, giving the result

bS[(k + l)d T] = exp (Ad T)bS(kd T)

i(k+ 1)4T .

+ exp {A[(k + l)dT - 't"]}Bd't"dx(kdT) (28)
k4T

The matrices A and B are given by (18).
Now, denote for brevity F(!k) = F(k), where F is a dummY

notation of a function. Then the model equations can be writ-
ten as .

(24)

bS(k + 1) = AbS(k) + Rdx(k)

y(k) = CbS(k)

(29)

(30)

where the matrices A and R are

(25)

A = exp (AdT) (31)

8(i) = [1 - exp (-adT):K (adT)k/k!]j a (32)

and the vector C is definedby (18).Derivation of (32)is given
in the appendix. .

Similarly, for the quadratic increments

blS(k + 1) = exp (AdTWS(k)

+ br+l exp [A(tu 1 - 't")]<p[b'S('t")]ld't" (33)

(26)

where b'S(t) is the extension for continuous arguments of the
variation' bS(k) given for discrete arguments. This is achieved
via linear interpolation of bS(t) between the discrete instants,
where bS(t) is explicitly given.

After sonIe manipulations (see the appendix), the final equa-
tion for the quadratic increment of storage can be developed.

blS(k + 1) = AbS(k) + bRI[bS(k)Y/(dT)l

+ 2b(dTRl - RI)bS(k)bS(k + l)/(dT)l

+ b[RI - 2dTBl + (dT)lB3][bS(k + l)]l/(dT)l

(34)

The final formulae for 81, 81, and 83 are developed in the
appendix.

When the storage increments are known, one can easily find
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Fig. 1. Simulation with the help oC the quadratic rainCalI-runoff model (eight storm events).

the corresponding linear and quadratic inc;rements or outflow 4. PARAMETER IOENTIFICA nON

~y(k) = a<5S~k)

<52y(k)':" a<52S~k) + b[<5S~k)]2

The check !>rchoice or t~e time discreti~ation step caD be
marle by comparing the integraJ or thesecond-order' increment
to zero [D'iskinand Boneh, 1972]. If tbis value differs consider-
ably erom zeró, the l~neat a.pproximation or the increment' S(t)
isnot sufficient;tllat is,denserdlscretizationis requireq. ' ..

(35)

(36)

The significant advantage or the conceptual Volterra series
model is parsimony in tJ1enumber or parameters. In the pres-
ent study that pertai~s to the initially re1axed case (zero initial
conditions in equations (4) ~nd (7» there are three parameters:
a and b pertain to the Taylor series resolution or outfl.ow law,
and N is the number or nonlinear conceptual elements in
series. .

The parameters of the model are typically identified via "'

l2~..

i
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Fig. 1. (continued)
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analysis of the discrete input and output data. The opti-
mization criterion to be minimized is

moment matching method [Nash, 1959]. Th~ real initial vahie
of N resulting from the moment matching was subsequently
converted to integer N* according to the relationm

min J(N, a, b) = min I [Yob.(k) - Ymod(k)]2
k=l

where

(37)
N* = ent(N + 0.5)

where n :!!: e~t(x) is the largest integer less than or equal to the
real value of x. The initial real value of a is then modified in

order to compensate for the effect of rounding N to the integer
value in such a way that the fiest two moments remain con-
stan t.

Ymod(k) = c5(k) + c52y(k) (38)

The initial values of the parameters a and N related to the
linear portion of the model wece obtained by means of the



ODce the initial values of N* and a are known, the value of
parameter b caD be easily found according to the following
reasoning (A, Boneh, personal communication, 1981), Let (Fy*
be th'e solution of the linear equation for a quadratic in-
crement for b = 1" Then, due to the linearity the following
equation holds: .
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Fig. 1. (continued)

That is, for a given a the value of hop! caD be most easily
calculated eromthe equation

c:52y(k)= bc:52y*(k)

The necessary condition of optimality is

(39)

m

L [yobs(k)- c:5y(k)Jc:52y*(k)
b = k= l

OP! m

L [c:52y*(k)J2
k= l

(41)

oj m

ob = 2 k~1[yobs(k)- c:5y(k) - bc:52y*(k)]c:52y*(k) = O (40)

Now the minimization of the criterion function (37) with re-
spect to the parameter a caD be performed, SubsequentIy, a
new value of hop!is found erom (41) that corresponds to the
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Fig. 1. (continued)

5. NUMERICAL EXAMPLEnew value of a. After having reached the optimum values of
the parameters a and b, the tria1 calculations of two other
values of the integer N, that is, N* + 1 and N* - 1, are marle.
In our experience so far this simple identification approach
bas proven etfective, since the initial value of parameter a,
determined by the moment matching technique, was c1ose to
the optimal value, and possible local minima were not active
in the optimization process.

Il should be underlined that optimization with respect to
only one variable is sufficient; that is, the problem is compu-
tationally simple.

The methodology presented was tested with rainfall-runotf
data erom the catchment of the Cache River at Forman in
southern Il1inois used by Diskin and Boneh [1973]. The catch-
ment of the 630-km2 area bas mild slopes and well-developed
drainage network. The available data pertain to eight rainfall-
runotf events observed in the years 1935-1951 and allow com-
parison with other approaches to be performed.

At first, the data on all eight events available were used
both for identification and verification. Then, the events

---"- -
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marked 1-3 wece used for identification and the remaining
events for verification. The results of these twa cases wece
practicalIy identical. Results of either of these twa approaches
are shown in Figure 1. The values of model parameters ob-
tained via simplified identification as described in paragraph 4
above read N = 3, a = 0.75 (day-I), and b = 6.84 (day-I
mm - I). As the same set or data wece used by Diskin and
Boneh [1973, 1984], it seems useful to compare the results.
This caD be dane in several aspects.

As regards the accuracy of simulation, the results obtained
by Diskin and Boneh [1973] wece better than in the present
approach. Values of the criterion function (37) wece 53 and
233. However, the num ber of parameters used by the present
authors was much lawet (3 versus 68) than in the wark by
Diskin and Boneh. Moreover, the consistency of observed and
simulated outflows does not mean that consistency in system
operators has been also achieved. An example shown in the
wark by Napiórkowski and Strupczewski [1984] illustrates that
simi1ar outflows caD be obtained with entirely different system
opera tors. The ilI conditioning of the mathematical problems
tackled in the wark by Diskin and Boneh did not let them use
part or available data (e.g., three as in the present paper) for
identification and part for verification purposes. The input
series in the cases marked in Figure 1 as 1 to 3 was too short
for the great number of necessary parameters to be identified.

6. CONCLUDING REMARKS

The method of identification of kerneIs of Volterra series

model via conceptualization is advantageous in comparison to
the classical methods of identification in terms of trade-off
between the amount of computations required and accuracy
achieved. This is supported by the comparison of the methods
or kernel identification presented in the wark by N apiórkowskl
[1983]. The objective function measuring the root-mean-
square departure of the modeled runoff erom the measured
runoff was better for the three-parameter Volterra series con-
ceptualization than for the fourteen-parameter black box
convolution model identified 'via ordinates. Simi1ar results
wece obtained by Diskin et al. [1984], who concluded that "If
this result turns out to be correct aiso for other sets of data, it
may be taken as evidence that the second order model, based
on a cascade of nonlinear reservoirs, is indeed a suitable tool
for representing the conversion of rainfalI excess joto direct
surface runoff." The conceptualization makes the Volterra
series easily tractable on a microcomputer.

The results obtained prove also that the model of cascade of
identical nonlinear dynamie systems (e.g., uniformly nonlinear
reservoirs) lends itself to applications to both flood routing
[e.g., Napiórkowski and Strupczewski, 1981, 1984] and to
rainfall-runoff modeling [Napiórkowski, 1983; Diskin et al.,
1984]. That is, in accordance with the applications of nonlin-
ear reservoirs in the rainfalI-runoff modeling reported in the
hydrology literature, the conceptual nonlinear differential
equations (nonlinear stale model) used in this research could
be also of good value apart erom the Volterra framework.

One caD also conclude that the methodology presented
should enable other methods of conceptualization to be used.
That is, other physicalIy significant nonlinear models (e.g., in
the case of open ch.annel flow, models of hydrodynamie origin)
caD be linked with the Volterra series kerneis. The prerequisite
condition that the model be given in the stale space frame-
wark has been achieved in several references (e.g., via modal

analysis in the wark by Dooge et al. [1983] and via dis-
cretization, in the wark by Muzik [1975]; Szollosi-Nagy
[1982]). Since the series of references by Napiórkowski and
coauthors mentioned herein is not widely known, the folIow-
ing statement seems appropriate as the fina! conclusion. The
door to physicalIy based conceptual Volterra series model is
declared open.

ApPENDIX

Linear lncrements: Derivation oj (32)

Combination of (28) and (29) gives

1

'0+'
B = exp [A(tH I - -r)]B d-r

"

(U
= Jo exp [A(AT - -r)]Bd-r

(U
= Jo cP(-r)B d-r

where cp(t)is the transition matrix given by (19).Thus

fT<PiJ{-r) d-r = [1- exp (-aAT):~(aATt/k!]la (A2)

Inserting (A2) in (Al) one obtains (32).

(Al)

Quadratic lncrements: Derivation oj Equations Jor BI, B2, and
B3 in (34)

Assume that the element 15'S(-r)in (33) results erom linear
interpolation; that is,

15'S(-r)~ l5S(k)+ [15S(k+ 1) - l5S(k)](-r- kAT)/AT

= {[(k + I)AT - -r]I5S(k)+ (-r- kAT)I5S(k+ 1)}/AT (A3)

Inserting (A3) in (33) one obtains

152S(k+ 1)

= exp (AA T)152S(k)

(AT

+ bJo exp (A-r)<p[-rI5S(k)+ (AT - -r)I5S(k+ IW d-r/(AT)2

(U
= exp (AAT)152S(k) + bJo exp (A-r)<p-r2d-r[I5S(k)]2/(AT)2

(U
+ 2bJo exp (A-r)<p(AT-r- -r2)d-r[I5S(k)l5S(k+ 1)]/(AT)2

(AT
+ bJo exp (A-r)<p[-r2- 2AT-r + (AT)2] d-r[I5S(k+ lW/(AT)2

(A4)

.~
'1
I

I

Now auxiliary matrix variabies Al, A2, and A3are introduced:

(AT

Al = Jo exp (A-r)<p-r2 d-r

(U

A2 = Jo exp (A-r)<p-rd-r

(U
A3 = Jo exp (A-r)<pd-r

(A5)

Since for i ~ j,
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('U

Jo (m:l-j exp (-at)t2f(i - j)! dt

(i - j + 2)(i- j + 1)iu (at)l-j+2 -- e-~a2 o (i - j + 2)!-a-2(i - j + 2)(i- j + I)B(i- j + 3)

('~T

Jo (at)i-j exp (-at)tf(i - j)! dt

(i-j+l) iU (at)i-j+1 -- e a< dt
a o (i - j + I)!-a-I(i - j + I)B(i - j + 2)

where the vector B developed in this appendix was given by
(32).

The elements of the matrices BI, B2, and B3 for i ~ j caD be
determined as folIows:

BI(i,j)- -a-2(i - j + 2)(i - j + I)B(i -j + 3)

+ a-2(i - j + 1)(i- j)B(i - j + 2) (A8)

B2(i,j) - -a-l(i - j + I)B(i- j + 2)

+ a-l(i - j)B(i - j + 1)

B3(i,j) = -B(i - j + 1)+ sign (i - j)B(i - j)
where

For i <j the elements ofthe matrices BI, B2, and B3 ale equal
to zero.

After having inserted the (A8)-{AI0) in (AS) and then in tum
in.(A4) one gets the final solution (34)for the second variation
of storage.

NOTATlON

a, b model parameters.
A, B, C matrices (continuous model).
A, B, BI, B2, B3 matrices (discrete model).

f outftow law.
hi ith-order kernel.
H dimensionless first-order kernel.
I i inftow to ith reservoir.
J objective function.
m number of input-output pairs.
n number of Volterra series terms.

N number of reservoirs.

-

(A9)

(A10)

\ 1421

(A6)

Qi outftow erom ith reservoir.
p nonlinear operator.
t time.

.1T time increment.

x input.
.1x input increment.

y output.
.1y output increment.

15 linear variation.
152 quadratic variation.
cll transition matrix.
<p model matrix.

(A7)
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-ro' .....

dl

sign (x) -+ 1 x>O

dl
sign (x) -O x-O

dl

sign (x) --1 x<O


