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Abst r ac t 

Generał anałysis of hydrologie input signałs in distributed and łumped forms is presentcd. 
The existence of considerabłe gap between ideałization of input signałs and reality is pointed 
out. The basie schematized standard input signals are reviewed and the relationships between 
s)'stem responsc. to particułar standard inputs are given. Speciał cases of considerabłe differ­
icnces between the dynamics of the input signał and of the system (the case of slow input and 
1rapid system .and the case of rapid input and slow system) are considered. The guidełines are 
•given <?>~ t'h.e choice of input signals for the purpose of identification of parameters of certain 
lhydre.'ło,iic modl!!s. This problem emerges at least in two practical situations, that is when one 
~an '<X>ntrol the input signal or when the data on severa! events are avaiJable. The weakness 
10fthe existing procedures of determination of effective rainfall as the input signal to the rainfall­
-runoff modeł and of ~onstruction of design hyeto.$faph are re-examined. 

1. INTRODUCTION 

Mathematical modelllng of hydro1~~gic systems has been progressing during the last 
decades. The art of modelling reached recc.2•1tly a very sophisticated stage of development 
and followed numcrous methods and technique::: developed in mathematics, system tbeory 
and in various applied .fields remote from classical h)'.drology. The complexity of model s 
being developed today seems to keep pace with the incre~.'iing power of modern compu­
ten. 

It seems, however, that investigations of input signals for hydr"~logic models arc 
severely underestimated. The main effort of modellers is laid on improving t~:.~ techniques 
of mathematical description of complex natura! phenomena occurring in three-dimo~sio­
nal nonho~ogeneous, anisotropic and irregularly shaped environment, whereas the quality 
and quantity of the input data might not match sophisticated modelling techniques. 

Let us consider, for example, the rainfall-runoff models, i.e. mathematical models 
~or calcul~tion of river flow caused by a certa in storm rainfall event. The input signal used 
Jn modelhng is effective rainfall, that is the part of rainfall that produccs the surface ru-
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noff, directly and promptly contributing to the river flow. It is easy to see, however, tbat 
hcuristic and empirical procedures of determination of the effective rainfall form a weak 
point in the modelling process. This is partly caused by the complex and unknown tem­
poral-spatial structure of precipitation fields which is to be replaced by a representati'Ve 
lumped signal, and partły by the difficulties in estimating the amount of rainfal1 that will 
not cause the surface runoff (i.e. losses by infiltration, interception, e"Vapotranspiration, 
surface detention storage etc.). This is in severe disharmony with the elegant te1ehnique of 
regular idealized standard input signals. 

2. IDEA LIZA TIONS 

2.1. Delta impulse input. The most important standard input signal used in mo­
dclling of linear systems is the Dirac delta-function (actually - generalised fun1etic,m , i.e. 
distribution) defined as 

ó(t)=O for t#O, (1) 

+oo 

s ó(t)dt=l. (2) 
- oo 

The concept of the dclta-function has a elear physical sense. lt represents alll idealized 
impulse lasting for an infinitely short time (i.e. produced by a pulse generator of infinite 
power) and occurring in the time instant t=O. Since the effect of the action of the infinite­
simal impulse (condition (2)) is different from zero, its amplitude must be infinite. The 
important property of the delta-function is its filtering ability, that is 

for t E [T1 , T2] , 
ff(r) ó(t-r)dr= {~ (t) 
T1 elsewhere. 

It is possible to approximate the Dirac delta-function by a sequence of realistie signals. 
of finite amplitude and finite duration. From the point of view of application of the one-si de: 
Laplace transform, a nonsymmetrical, right side approximating sequence ~„ 't); is appro­
priate. Such a sequence meets the following conditions 

lim ó„(t)=ó(t), €4) 
n-+ oo 

+oo 

f ó„(t)=l, 
o 

~5)1 

ó„(t)=O for t<O, n=l , 2, ... {6) 

An example of the sequence of approximating functions is given in bclow. 

l(t)={~ for t~O. 
(7) 
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Although this signal can be considered more realistic than the abstract Dirac delta-func­
tion, it also contains some amount of idealization. lt is technically impossible (would re­
quire infinite power) to perform the switching operation (from O to 1) in an infinitesimalły 
short time interval. lt could be also impossibłe to maintain level 1 in the time interval from 
zero to infinity. 

The former disadvantage disappears if a transient of finite steepness is assumed , that 
is 

for 
for 
for 

t<O, 
O~t<T, 

t>T, 
(8) 

wbere f(t) is an arbitrary practically realizable function attaining va lues O and I for the 
values of argument O and T, respectively. 

The latter disadvantage disappears if the input signal is of finite volume, that is, for 
example, if the finite unit step is considered 

l(t, T)=l(t)-1 (t-T). (9)' 

This concept, introduced to bydrology some fifty years ago, is very useful. Each con­
tinuous signal can be conveniently approximated as a train of rectangular finite pulses 
(zero-order-splines). In the case of discrete mean value measurements (e.g. raingauges) 
the input signal is readily given in the form of rectangular pulses measuring the averaged 
bebaviour of the signal. 

A sequence of finite impulse functions (Fig. I) can approximate the Dirac delta-functiort 
from the right hand side, according to the following scheme: 

c5„(t) =n· 1 (t, l/11), 

wbere l(t, I /n) is defined by formula (9). 
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Fig. I. Sequcncc of rectangular pulses approximating the Dirac delta­

-function 

( 10} 
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It could be also practical to consider polynomial or piece-wise polynomial inputs of 
.higher order, that is - in the first order case - the unit ramp 

x(t)={
0 
t, 

•or a hat function first-order-spline 

{

o, 

x(t)= ~~-t, 
o, 

t<O, 
t;;::O 

t<O , 
O~t<T , 

T~t<2T, 

t;;::2T. 

(I I) 

(12) 

2.3. Relationships between system responses to different standard input 
·signals. Once the response of a linear stationary system to a Dirac delta-function is known 
'(in the time or operator domain), one can determine the system response to an arbitrary 
input signal. In the case of a non-anticipative (causa!) initially relaxed system, the system 
res_ponse to an arbitrary input signal x (t) is given by a convolution integral 

t t 

y(t)= J h('r:)x(t--r)d-r= J h(t--r)x(-r)d-r=h(t).x(t), (13) 
o o 

-Whćre y (t) is the output signal, h (t) is the system impulse function , and *is the symbol of 

convolution operation. 
Jn .the complex domain this equation becomes 

Y(s)=H(s)X(s), (14) 

where s is a complex variable, Y (s), H (s), X (s) are the Laplace transforms of the output 
signal y (t), the impulse response h (t) and the input signal x (t), respectively. 

Since, by definition, the unit step response U (s) in the transform domain is 

the following relationships are valid: 

H(s) 
U(s)= - , 

s 

t 

u(t)= J h (r)d-r, 
o 

du(t) 
h(t)=-- ' 

dt 

(15) 

(16) 

(17) 

where u (t) is the unit step response in the time domain. Once the unit step response is 
given (S-hydrograph in the theory ofuitit graphs, cf. Chow, 1964), one has to differentiate 
it with respect to time (by analytical, graphical or numerical means) in order for to use 
the convenient convolution cquation for the output signal 

du(t) 
y(t)= - *X(t). 

dt 
(18) 
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The system response to a finite rectangular pulse can be readily evaluated in terms of 
the unit step response as 

w(t, T)=u(t)-u(t-T), (19) 

where w (t, T) is the system response to l (t, T), and is also called the T-unit hydrograph 
(TUH). 

Equation for the TUH can be a lso expressed in terms of the impulse responses of the 
system. By inserting the respective unit step responses to equation (19) one obtains 

w(t, T)= ~ [f h(-r:)d-r:- I h(-r:-T)d-r:]= ~ f h(-r:)d-r:. (20) 

O max(O,T) mox(0,1 - T) 

As an example, let us consider the Kalinin-Milyukov flood routing model. Its TUH 
can be established directly from cquation (20) for intcger n by direct integration of the 
impulse response 

h(t)= -
1- (.!_)"-i exp(-!_), 

KF(n) K K 
(21) 

according to the following formula that should be used n times (integration by parts) 

Jr"exp(- ~)dt=-Kt"exp(- .~)+nK f t" -
1
exp(- ~)dt. (22) 

Amore generał handy notation of the TUH for the Kalinin-Milyukov model makes 
use of the incomplete gamma function (Reed et al., 1975) 

(23) 

where n and Kare the model parameters (n is a real number of cbaracteristic reaehes, K is 
the time eonstant of a characteristic reach) and I is the incomplete gamma function given 
as 

(24) 

2.4. Harmonie input. The Dirac delta-funetion, polynomial funetions and splines 
-are not the only sehematized standard input signals of importance in analyses of systems 
of dynamie hydrology. In severa! cases (cf. Dooge and Kundzewiez, 1984) it is more 
appropriate to eonsider harmonie input signals (i.e. pure sine waves). This is true,.for in­
stance, if the flow in a river reaeh is influenced by tides. 

Another reason for considering harmonie signals stems from the Fourier series resolu­
tion. Every smooth continuous function, eitber j)eriodic (with period T) or defined in a 
.fi.nile interval T (i.e. amenable to periodic extension) can be developed into a Fourier 

.series 

f(t)= L gkexp i21tk - , +oo ( t ) 
t • -oo T 

(25) 
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wbere 
T 

gk= ~ f f(t)exp(-i2nk ~)at 
o 

(26) 

and i is the imaginary unit. 
lt should be mentioned, however, tbat the relative importance of this approach in hydro­

logy is considerably smaller tban in other subjects. 
Examples of periodic hydrologie input functions are any phenomena with annuaf 

(e.g. rainfall, flow), weakly (water consumption and wastewater disposal) or daily perio­
dicity (discharge from a peak-hour power station, glacier originated flow). On the other 
hand, severa) hydrologie input signals can, in fact, be considered as events that attain. 
their non-zero values in finite intervals only. 

2.5. Idealized standard stochastic signals. In mathematical modelling of 
hydrologie and water resources systems the input signals are often considered as stochastic: 
processes. In sucha case, the systems can be analysed by tracking the propagation of some­
conventional signals of stochastic structure applied to the model input. This concept has. 
been introduced by Yul e (1927) who postulated tbat signals, in the form of stochastic· 
processes with strongly dependent successive elements, can be considered as the processes. 
which are generated by another process of the mutually independent impulses. These im­
pulses are usually treated as a realization of the same random variable which is normally 
distributed with the zero mea n, µx =O, and the variance O'; . The important property of 
this stochastic process usually called the white noise is the following equation foc 
autovariance: 

(27) 

where r is the Jag time. 
Another standard stochastic signal is the simple Markovian process. The simple Mar­

kovian process (i.e. Markovian noise) is obtained on the output of the single linear reser­
voir model with the white noise on its input. In stocbastic hydrology, however, it is often 
convenient to assume that inflows form the simple Markovian process, i.e. the stationary 
and norma! Markovian noise with the autovariance given by 

RxxCr) = u;exp ( - er), (28) 

where cis a constant. 
Analyses of the transformation of stochastic processes in severa! mathematical models 

in hydrology and water resources systems are described by severa! authors. Mora n (1959) 
presented the theory of storage with the white noise input signals, and Kaczmarek 
(1963) and LI oyd (1963) developed, independently of one another, the theory of storage 
with the Markovian input signals. The transformation of standard stochastic signals in 
linear hydrologie models (of rainfall-runoff and flood routing type) was analyscd by 
Strupczewski et al. (1975). The analysi s of stochastic structure of the river flow process 
was given by Mi to sek (1984b). 
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3. LINEAR SYSTEM RESPONSE TO RAPID AND SLOW I PUT SIGNALS 

1t may happen in modelling hydrologie phenomena that the temporal scale of dynamics 
of the input signal is very much different from the system dynamics. The dynamics of the 
1nput signal is significantly more rapid than the one of the system in the following exam­
ples: 

a) input signal - storm of short duration, system - catchment (rainfall-runoff model); 
b) input signal - lumped source of effiuents to a river, system - river reach (propaga­

tion of the concentration of pollutants); 
c) input signal - discharge from a peak-hour power station, system - river reach of 

sufficient length (open channel flow). 
The dynamics of the input signal is significantly slower than the one of the system for 

the case of a long unimodal slowly-varying wave p :·opagating along a short river reach. 
Let us consider first the system whose dynamics is considerably slower than the varia­

bility of the input si gnał. The system impulse response in equation (i 3) can be convenientły 
expanded into the Taylor series 

h (t-•) = h(t)--rh'(t) +-łr2h''(t)- ... • (29) 

We can assume that the rapidly varying input signal can be represented as an isolated 
short pulse of the duration T. The model response then is 

min (1, T) min (I, T ) mln (t, T) 

y(t)=h(t) J x(r)dr-h'(t) J rx(-r)dr+!lz"(t) J -r2x(r)dr- ... (30) 
o o o 

For t > T the above equation becomes 

y(t) = (x(t))g• T h(t)- (x(t))~· T h'(t) +ł (x(t))~· T h"(t)- „. (31) 
where 

T 

(x(t))?·Jr= J tix(t)dt, i=l, 2, ... (32) 
o 

If, because of slow dynamics of the system and rapid dynamics of the input, the follo­
wing inequalities are true 

(x(t))g•rli(t)»(x(t))?·Th<1>(t), i=l,2, ... 

where h<i> denotes i-th temporal derivative of h, then 

y(t)~(x(t))~· Tfi(t), 

(33) 

that is the response of the system is similar to the Dirac delta impulse responsc multiplied 
by the volume of the input pulse. This means that in such a case one can measure the 
impulse response in the field as the system reaction to a short lasting pulse of any shape, 
subject to the scaling condition 

oo 

J h(t)dt=l. (35) 
o 
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The responses of the Kalinin-Milyukov ftood routing model to sequences of rectangular 
pulses with unit volume are presented in Fig. 2. The details of the analysis of pulse responses. 
in the Kalinin-Milyukov model are given in chapter 2.3. 

It is easy to see that, since for the sequence of functions approximating the Dirac delta 
the following condition is valid 

lim c5nCt)= c5 (t) , (36) 
11 -+ oo 

the sequcnce of responses has the propcrty 

t t 

lim [y„(t) = J h(r) c511(1 -r) dr]= J h(r) c5(t- r) dr =h ( t) . (37) 
n ... oo O O 

The above condition, illustrated al so in Fig. 2, can be interpreted th at for the input signal 
short and rapid (delta-like) the system response does not considerably differ from the­
impulse response. The system response depends entirely on the properties of the system 
and not on the details of the input si gna I. 
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Fig. 2. Responses of ftood routing model to sequences of rcctangular pulse inputs 
I - impulsc rcsponsc, 2 - rcsponsc to rcctanaular pulsc of duration 50 hours, 3 - rcsponsc to rcctanaular pulse 

of duration 200 hours 

Another application of the presented findings is the problem of pulse discrimination. 
The physical system of propagation of a constant volume fiood wave has diffusive 

properties (attenuation of the amplitude and increase of the time base with the wave p ro­
pagation). Therefore a practical question of discrimination of the consecutive input signals 
can occur. This is particularly imporKłnt for water systems containing tributaries which 
can significantly contribute to the flood wave. The safety condition for the reach below 
the confluence is the Jack of synchron.ism between the bulks of flows in the main cbannel 
and in tributaries. The idea of discrirnination is also of interest in large reaches, where a 
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Fig. 3. Discrimination of rectangular pulse inputs with the time gap between two consccutive signals. 
(a) much shorter than the lag of system dynamics, (b) suitably long 
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part of the latter input si gnał can overtake a part of the form er input si gna I. If the time gap 
between two consecutive input signals is much shorter than the lag of system dynamics, 
then the couple of inputs can be treated as a single one as the output signal shows 
a single maximum (Fig. 3). On the other hand, if the time gap between the signals is 
suitably large, then the response constructed as the sum of elementary responses to 
particular pulses has two elear local maxima. 

When the dynamics of an input signal is slow in comparison to the system dynamics, 
the input signal can be conveniently expanded into the Taylor series 

x (t--r) =x(t)--rx'(t) +0.5-r2x"(t)- ... (38) 

.and the output, under a relieved assumption of initially relaxed system, becomcs 

oo oo oo 

y ( t)= x (t) J h(r)d-r-x'(t) J rh(-r)dr+0.5x"(t) J -r2 /r(r)dr - . .. = 
o o o 

= ( h(t)) g• 00x (t)- (h(t))~· 00 x'(t) + 0.5 ( h (t))~· 00 x"(t)- .. . (39) 

If, because of slow dynamics of the input signal in comparison to the system dynamics, 
the following inequalities are valid 

then the system response can be approximated by the following relation: 

y ( t)~ X (t) (h (t))~· 00 
=X (t). 

(40) 

(41) 

To summarize th is chapter one can state that the dynami es of the system response to short 
.and rapid input signals follows primarily the impulse response of the system, whereas the 
.system response to slow input signals follows primarily the input signal. 

4. INPUT SIGNALS AND IDENTIFICATJON 

A crucial stage of mathematical modelling is the identification of model parameters. 
It is usually performed via processing the input signal and the corresponding output signal. 
In the case of a limited amount of available data, all information in hand is used in the 
process of identification. However, if the amount of data is not critical, the following two 
lines are recommended: 

A. Choice of a sui table input signal. Th is problem is sim i lar to the design of experiments. 
lt should be noted, however, that the design of experiment in hydrology in the sense of 
controlling the input signal is realizable to a small extent. In some cases (e.g. discharge 
from the power station to a system of wave propagation in a channel reach) the input is 
con trolla ble. 

But even in the case w hen no direct control of input signal is available, one can choose a 
pair of corresponding input and output events from the available data. The choice of the 
suitable set should follow the requirements easing the identification. The remaining data 
can be used, for instance, for testing the model with identified values of parameters. 
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B. Determination of the optimum impulse response (or optimum set of parameters 
of the impułse response) for all data can be achieved u sing the least squares criterion 
(Di skin and Boneh, 1975). 

4.1. Deterministic identification of łinear systems. In this chapter the 
impact of the type of input signał on the stability of solution of the deterministic identifi­
cation problem is considered. 

Let us assume that a łinear, non-anticipative, initiałły relaxed system, as given by equa­
tion (13), is to be identified from the series of concurrent vałues of input and output variab­
les. This sort of identification enables to establish the system operator (kerneł function 
h (t)) without the knowledge of the system inner mechanism. The identified kernel can be 
subsequently used, owing to the attribute of linearity, for prediction of outputs caused by 
arbitrary input signals. 

However, the requirement of initiałły rełaxed situation must be relieved in severa! cases. 
In many practical situations the system is not completeły at rest at the time t=O and t o 
overcome the difficulty with non-zero initial conditions an assumption is made tbat the 
system considered has a finite settling time T, . The settling time of the system ("me­
mory") is the time interval over which the past input history has the effect on the present 
output. 

Thus, the problem to be solved is to find the best estimate of the kernel function h (r), 
z E [O, T,] of the system with the settłing time T, 

T, 

y(t)= J /i(r)x(t-r)dr, (42) 
o 

which minimizes the mean square residua! error, using the output record y(t) observed 
in a finite interval [O, T] Jarger than the system memory and the input record x (t) obser­

ved in an interval [ -T., T] 
T 

J(h)= J [z(t)-y(t)] 2dt. (43) 
o 

4.1.1 . Orthonorma/ expansion. The problem of determining the kemel function 
is mathematically equivalent to the inversion problem, which can be solved by severa! 
methods, among which kernel expansions in orthonormal functions are widely used (e.g. 
Dooge, 1965; Papazafiriou, 1976). ln that method the approximate solution takes the 

form 
N 

h(t)= L G; ąi;(t), (44) 
1~ l 

where ąi1 (t) is the sequence of orthonormal function in [O, T,]. Any set of functions ortho­
normal over a finite interval may be used for the expa nsion. However, as advocated by 
Dooge (1965), orthonormal polynomiałs with exponentiałly decreasing weighting function 
are particularly suitable in hydrological applications. The coefficients of the polynomiałs 
are generated by the three-term recurrence relation (Da vis and Rabinowitz, 1975) 

Pn+ i ( t) =( t- an) Pn(t)- bn Pn-1(t), (45) 
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where 
P- 1(t)=O, p0(t)= 1, 

an= (tp"' p.)p, 11=0, 1, ... , 
(Pn• Pn)p 

b = (tpn, P„-1)p 

n ( Pn-l•Pn-1 )p' 
11=1,2, ... 

and the inner product is defined as 

r. 
(a, b)p= J a(t)b(t)exp(-Pt)dt. 

df o 

The orthonormal form of these polynomials is obtaincd from the following relation 

The orthonormal functions used to approximate the kernel are of the form 

and they fulfil the follo\\ing conditions 
r. f 9';(t)9'j(t)dt={~ 
o 

For the brevity of notation we use 

r. 

if 
jf 

i::Fj' 
i=j. 

ą,= J 9'1(r)x(t-r)dt. 
o 

(12 J 

(46) 

(47) 

(48) 

(49) 

(50) 

Now the problem of identification of the kernel function can be reduccd to the minimiza­
tion of the following expression 

T N 

J(h)= J [z(t)- L aiqi(t)]2dt. (51) 
o 1=1 

The necessary condition for a minimum of equation (51) is the following set of require­
ments for the expansion coefficients ai (normal equations): 

a1(q1, q1)+a2(ą1, ą2)+ ... +a.(q1, ą.)=(ą1, z), 

(52) 

where 
T 

( q,, q1)= J q,(t)q/t)dt. 
o 

(53) 
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4.1.2. Stability of the solution. The basie requirement that any identification 
method must meet is the stability of the solution. This applies also to the case when mea­
surement values are contamined by significant errors. Using the orthonormal expansion 
method one can reduce the infinitely dimensional problem to the algebraic set of n equa­
tions (52) which can be written in the matrix form 

Xa=b. (54) 

The matrix of this set depends directly on the input x(t) and the stability of the solution 
of these equations depends not only on the accuracy of measurements but also on the 
dynamics of input variability. 

If the errors of the matrix X and vector b are oX and ob, respectively, then the follo­
wing estimate of the relative solution error can be obtained (Napiórkowski , 1981): 

(55) 

where y (X) is the condition number of the matrix, e.g. the ratio of the largest to the small est 
absolute values of eigenvalues. The above estimate is usually a pessimistic one when the 
right hand si de of equation (55) is not exactly known. 

There is, however, no precise check of the problem conditioning. From relation (55) 
it follows that the relative solution error increases with the increase of the condition num­
ber y (X). Therefore, if one has several input-output records in hand and one wants to 
identify the kernel function, one should choose the pair of records for whicb the set of 
linear equations is well conditioned. The criterion wbich should be applied here is the 
minimum of the ratio of absolute values of the largest to the smallest eigenvalues of the 
matrix of the set of linear equations. 

Obviously, rapidly varying input signals that approximate the Dirac delta-function 
(c.g. rectangular pulses) will render the set of norma} equations well conditioned, because 
these signals give large diagonal elements and small non-diagonal elements of the system 
matrix. For the idealized case of Dirac delta-input one gets 

ą;(t)={6'(t) for t~T„ (56) 
for t>T1 

and thus 

(ą,, q1) =g 
if i=j, 

(57) 
if i=/: j 

and the condition number is equal to one. 
On the other hand, slowly varying input signals may lead to the ill-posed set of equa­

tions. In a particular case of a constant input fuoction all columns of the matrix X are 
lioearly dependent and the solution of the problem is not unique. 

Napiórkowski (1978) compared the results of identification of the kemel of linear 
integral operators for different input signals. The input signals considered ranked from 
weakly varying (corresponding to the p.d.f. of the Pearson Ili type), tbrough moderately 



354 Z. W. KUNDZEWTCZ et al. [14] 

varying (sum of two Pearsonian input signals with different parameters) to strongly varying 
(rectangular pulse). The identifi.ed impulse response of the system was closest to the real 
one in the case of strongly varying input signal. For weakly varying input signal the result 
of identification was rather remote from the real impulse response; negative ordinates 
occurred. It is interesting that all three identified kernel functions assured good consistency 
of simulated and real output signals. The more varying the input signal and the longer the 
record of observed outflows, the better was the estimation of the impulse response. 

4.2. Statistical properties of input signals and their impact on the ac­
curacy of estimation of difference models. Let us consider an autoregressive 
model with one parameter a 

y(t)-ay(t-1)= u(t-1) +e(t) , (58) 

where e (t)....., N (O, .F) is a normally distributed white noise. Th is notation will be used 
throughout this chapter. The maximum likelibood estimator is 

N N z: y(t)y(t-1)- z: u(t-1)y(t-1) 
A t•l t •l a- ~~~~N~~~~~~~~~~ (59) 

z: y(t-l)y(t-1) 
t=l 

The variance of this estimator under the assumption of stationarity of the processes {u} 
and {e} was determined by Budzianowski (1980) as 

.A.2 
vara=--- . 

NRy(O) 
(60) 

where .P is the variance of the process {e (t)}, R„ (O) is the variance of the output process 
{y (t)} and N is the length of the sample. 

The estimation of the parameter a is accurate if the variance of the noise e is small 
enough and the variance of the output {y (t)} is large enough (the accuracy of estimation 
calls for large variance and strong autocorrelation of the process u (t)). 

Let us consider now the moving average model: 

y(t)= b0 u(t) + b1 u (t-1) +e(t). (61) 

The maximum likelihood estimator of the parameters b0 , b1 and its variance <.:an be ex­

pressed as follows (Budzianowski, 1980): 

[~o]=[R.(0) R.(1)]- i [R,.(O)J, (62) 
b1 R.(1) R.(O) R,.(1) 

(63) 

(64) 
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where Ru is the input autocorrelation function and Ryu is the cross-correlation of input 
and output signals. 

The corollary that can be drawn from this analysis of equations (62) - (64) is as follows. 
The conditions for the high accuracy of estimation are: 
a) large value of the signal-to-noise ratio (expressed by Ru (O)/J..2) and 
b) small autocorrelation of the input signal. The best input is the wbite noise which 

fulfil s the condition 
R~(l) 
- 2-=0 . 
R„(O) 

(65) 

The former condition is obvious and common to all kinds of models. The latter condi­
tion, however, is contrary to the condition developed for the autoregression model. 

Let us consider now the problem of accuracy of the estimation for the ARMA model: 

y (t)-ay (t-1) = b1 u(t- l)+ e(t) . (66) 

Let us assume that the input signal u (t) has the properties of simple Markovian process 
with the autocorrelation function 

(67) 

The information matrix for the problem of the estimation of parameters of the ARMA 
model , defined as 

82 logL 
J=-E ' aej aoj 

(68) 

where Lis the li kelihood function and Oi is j-th parameter, was given by Budzianowski 
(I 980) as 

N N 
- CJ.+Ny - P 
s s 

] = 
N N 
- /3 
s s 

where 

The determinant of the matrix J is 
. Nz 

detJ = L1 = 2 (CJ.+sy -{32
) . 

s 

(69) 

(70) 

The area of the elłipse determined by cigenvalues of the matrix J (with the semi-axes lengths 

1;.JA.1 and 1/J). 2 ) is 
7t 7t 

P = - - = --
J ;,1f2 J'detJ ' 

(71) 

where A1 and },2 are the matrix eigenvalues. 
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The probability that the estimates of the parameters a and b are located within the 
ellipse is 

Pe=[l-exp(-0.5)]~0.39. (72) 

Let us consider now the problem of choice of the input signal which minimizes the 
area P, i.e. maximizes the determinant of the matrix l. Th is condition of maximum accu­
racy is consistent with intuition - the more information in the observation (the greater 
value of the determinant det J), the better estimation of parameters. 

The covariance matrix of the estimator is l- 1
• Elements of this matrix along the ma in 

diagonal are variances of particular parameters, which means that the estimate of the 
parameter 01 lays within the interval (001 -a0 i, 001 +a01) with the probability equal to 
0.682. 001 is the expected value of the estimator. 

By maximizing L1 with respect to a one finds that the determinant reaches its maximum 
value for a =a1 , no matter how large is the value of the signal-to-noise-ratio. The general 
corollary, valid for the order of the model equal to n, is that the frequency range of the 
input signal should by the same as the frequency range of the model. 

The reciprocal of the information matrix is 

s [1 -/3] 1
-

1 

= NLIR -/3 o:+sy ' 
(73) 

where L1R=o:-f32 +sy. 
Note that the area of the ellipse P or the value of the determinant LI are the global 

criteria of accuracy. The individual parameters do not reach their maximum accuracies 
because 

Ua~J S ' 
NLIR 

that is the li miting variance attains its minimum value for a= a' but 

attains its minimum for a=O. 
The matrix lis also the matrix of derivatives of the second order of the logarithm of 

likelihood function. This means that the larger the value of the second derivative (measured 
by the value of determinant), the better the accuracy. This is, however, only theoretical 
accuracy. In practice, in numerical calcułations, one places upon the hessian (matrix of 
the second derivatives) additional constraints which in multidimensional problems se­
verely affect the accuracy of computations. The conditioning of the hessian depends on 
the ratio of the largest to the smallest eigenvalues. It is advantageous to keep this ratio 
as small as possible. This is equivalent to the demand for the shape of the ellipse of con­
centration to be circular-like. 

In the two-dimensional case the criterion to be minimized is 

l i -~: l = IA2~J-1 j . (74 

wbere A1 and A2 are the eigenvalues of the matrix J. 
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lt can be shown that 

jA.2-A.11= 2Jf::w , 
I A.1 1+./1-w 

(75) 

where 

and that w~ 1 (equality hol ds for }. 1 = ..l2). One can infer from the ana lysis of function (75) 
that its minimization is tantamount to maximization of w, expressed as (Budzianowski , 
1980) 

The above function attains its maximum value for 

a1(bi- l+ ai+s) 
a = . 

opt. -b~-l+a~- s(l-2ai) 

The example solution for a1 =0.5, b1 = 0 .5 and s=0.2 is 

a=O, K=l.66, 

aopt. =0.136, K = 1.6, 

a=0.5 , K=2.22, 

where K=A.2 /), 1 • 

(76) 

(77) 

The best conditioning of the hessian can be obtained for a0 p1• = 0.136, that is for th e 
input signal closer to the white noise (a=O) tban the input signal minimizing the arca 
of ellipse of concentration (a=0.5). 

Table 1 

a K L1I106 

o.o 1.55 0.238 0.486 0.491 
0.136 1.31 0.258 0.497 0.502 
0.25 1.38 0.276 0.495 0.504 
0.5 2.0 0.303 0.490 0.522 
0.75 3.5 0.283 0.462 0.550 
0.95 9.0 0.209 0.420 0.576 

The optimization of the model parameters was performed with the help of generated 
data. The input signal was simple Markovian process (of the first order), normally distri­
butcd N(O, l). The calculations were performed for severa! values of the parameter a. 
The results are given in the Table 1, where }, 2 = 0.25, Ru (O)= 1, that is s = 0.25 and N= 200. 

The results of the numerical experiment support the tbeoretical analyses presented 
earlier. However, the results of calculations for real data were worse than the ones reported 
in Table 1 (cf. Bud z ianowski, 1980). 
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5. CLASSIFICATION OF INPUT SIGNALS IN HYDROLOGIC MODELS 

The general form of the vector of input signals in hydrologie models can be given by 
the following spatial-temporal vector field 

f(x , y, z, t), 

whieh, after being submitted to the input terminals of the model, gives the output signal 
(or signals) from the model. 

There are severa) special eases of interest to hydrologists. Let us assume that there 
is only one signifieant input signal to the system, which means that the vector f reduees 
to the scalar f 

If the model is of distributed type with one spatial variable, then the gencral input 
signal is 

f(x, t). 

If the signal is Jumped (as, for instanee, inputs to lumped conceptual models), then 
it is simplified to the form 

f(t)' 

"hereas if the signal is static, then it takes the form 

f(x). 

When modelling particular elements of a hydrologie cyclc, one deals with some or all 
of the speeial cases of input signals defined above. 

The examples of specification of input signals for eertain subprocesses of the hydro­
logie cycle are as follows: 

5.1. Open channel flow. Lumped input signals - boundary conditions: 
Q(O, t) - inflow to the reach, 
y(O, t) - depth (stage) at the upstream terminating cross-section, 
Q(L, t) - outflow from the reacb, 
y(L, t) - depth (stage) at the downstream terminating cross-section (tbere arc se­

vera! alternate ehoices of dependent variables describing the process of open channel 
flow: depth/stage and velocity, area and flow rate, area and veloeity and so on), 

q(I, t) - lumped lateral inflow (or outflow) located in point l (the inflow can re­
present tributary or sink of wastewater, the outftow can represent water intake). 
Distributcd input signals: 

q(x, t), x E (O, L) - distributed lateral inflow accounting losses (infiltration, evapotran­
spiration) and augmentation of flow (groundwater inftow, rainfall falling directly into 
the channel , overflow). 
Statical distributed signals: 

y(x, O), Q(x, O), O ~ x~L - initial conditions. 

5.2. Propagation of pollutants in rivers. The inflow signals listed for an open 
ehannel flow are also valid in the present case. Lumped input signals - boundary eon­
ditions: 

• 
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c(O, t), c(L, t) vector of concentration of polluting elements, biochemical oxygen 
demand and dissolved oxygen in inftow to the reach and outtlow from the reach, 

qc(I, t) - point lateral source of pollution (e.g. municipal or industrial waste intlow} 
or of oxygen (aerators). 
Distributcd input signaJ: 

qc(x, t), O~x~L - distributed Jateral waste inftow, e.g. supply of agricultural and 
farming pollutants (nitrates, fertilizers, pesticides, herbicides). 
Statical distributed signal: 

c(x, O), O~x~L - initial conditions. 

5.3. Movemcrtt of soi! moisturc. Lumpcd 1nput signals: 
Qi(t) - drawdown from a well. 

Distributed input signals: 
i(O, t) - rainfall rate at the soil surfacc, 
h(O, t) - depth of surface storage (ponding if rainfall rate excecds the infiltration: 

ca paci ty), 
r(O, t) - net watcr cxchangc bctween the soil surfacc and soi! (infiltration, evapotran­

spiration), 
p(X, t) - net water exchange between saturatcd and unsaturated zones (deep perco­

Jation, capillary rise). 

5.4. Transformation of effective rainfall into runoff. Distributed input 
signals: 

r(x, y, z, t) - rainfall rate at the point (x, y, z) , 
i(x, y, t) - losses (infiltration, evaporation) of rainfall at z=O, 
re(x, y, t) - distributed effective rainfall at z=O, equal to rainfall rate minus losses. 

Lumped input signals: 
Re(t) - value of effective rainfall, representative of the whole catchment or sub­

catchments. Detcrmination of this Iumped vałue of effective rainfałl is probably the wea­
kest point of the rainfall-runoff modelling. The rainfall data usually available pertain 
to one or a few gauges only. 

From the list presented it is obvious that in łumped models all input signals are lumped, 
whereas in distributed models some of input signals can be distributed and other - like 
boundary conditions - are łumped. 

6. SOME PRACTICAL REM ARKS 

In the hydrologie rainfall-runoff modełling one deals with cfTective rainfall and sur­
facc runoff as the system input and system output, respectively. The effective rainfall is, 
by definition (c.g. Linsley et al., 1975), that part of the total precipitation that contri­
butes directly to the surface runoff. Thus, the total runoff in a river channel, represented 
by the hydrograph, is conceptually distributed into direct runoff and basetlow. 

A river channeł transforms spatially distributed precipitation into a runoff, which is a 
spatially łumped proccss at a given cross-section. Effective rainfałl and direct runoff, 
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tllhat is the input and output processes in the rainfall-runoff modelling, are considered 
as spatiatly lumped. 

Therefore a practical problem occurs of (a) finding the representative lumped value 
<>f the precipitation over the watershed, and (b) determination of the lumped effective 
:rainfall from the representative lumped total precipitation. Though there are some well 
established techniques of these evaluations (e.g. Chow, 1964; Linsley et al., 1975), 
tthey are not equivalent and their results are different (Singh, 1977). 

In all these procedures the effective rainfall is detached as that part of rainfall which 
produces the direct runoff. Thus, the effective rainfall is defined from its result, i.e. the 
direct runoff. In these idealized systems the causality is not elear since the input precipi­
'tation is inferred from the direct runoff. Then the idealized effective rainfall is created 
without relevance to the "direction" of the hydrologie cycle (Mi to sek, 1984a). 

The common practice in engineering design of urban sewer facilities, road culverts, 
.and many small water-control structures is a runoff estimation as a fixed percentage of 
rainfall. The method used in the design of storm drains is based on the criterion that for 
so-called reliable storms of uniform intensity, distributed over the basin, the peak dis­

<eharge occurs when the entire basin area participates in a runoff formation and the peak 
i s equal to a percentage of the storm. This forms the foundations of the rational formula 
being used by hydrologists, hydraulic engineers and environmental planners for many 
years. The authorship of the approach is attributed to Mulvaney and dates back to 1851 
(cf. Dooge, 1973): 

Q=CIA, (78) 

where cis the runoff coefficient, o ~ c~ l , I is the Storm intensity, and A is the basin area· 
There are a number of variations of rational formula (78). The modified equation used 

up-to-date in Polish practice (cf. Błaszczyk et al., 1974) is 

Q= rpCIA, (79) 

where rp is a reduction coefficient, O~ rp ~ I. 
The reliable storm intensity is in generał assumed to be a function of a storm duration 

and given exceedence probability only. In hydrologie manuals there are many formulas 
-expressing the storm intensity. The reduction coefficient rp takes into account a basin and 
drains retention, whereas the runoff coefficient C defines that part of rainfall which enters 
the drains. It is worth noting that the product CIA in expression (78) is similar to the 
-effective rainfall considered above. Błaszczyk et al. (1974) estimated the average value of 
the runoff coefficient C to be equal to 0.5 for newly urbanized areas in Poland. 

Yen and Chow (1980) analysed an alternate approach to storm drains design accoun­
ting the temporal distribution of rainfall. The results obtained are consistent with the fin­
dings of cbapter 3 of this paper. For large catchment the knowledge of the average rainfall 
rate is sufficient for engineering design purposes. For small catchment, on the other hand, 
the form of tempora! distribution of rainfall infl.uences the runoff properties. According 
to the terminology introduced in chapter 3 one can call the former case the rapid input/slow 
system and the latter case the rapid input/rapid system. The former case of different dyna­
mics of the input signal and system can be simplified, while the latter remains complex. 
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Since one has to be aware of large errors in determination of the input si gnał in the rain­
fall-runoff model, it is important to evaluate the impact of these errors on the accuracy of 
simulation. This problem was approached by Singh and Woolhiser (1976), and Singh 
(1977), who compared models of different complexities. The essence of their findings is 
that even a perfectly identified nonlinear model cannot be proved uniformly better than 
a perfectly identified linear model. In other words, the input sensitivity (i.e. the sensiti­
vity of the model with respect to errors in the input signal) can grow with the degree of 
complexity of the model. 

7. CONCLUSIONS 

Compact and elegant linear system theory, that is frequently applied to hydrology, deals 
with standard idealized input signals. In hydrologie reality, however, the input signals 
(e.g. effectjve rainfall) can result from processing scarce and inaccurate data that aim to 
represent the spatial-temporal field of recorded rainfall. The accuracy of this process is a 
severe and, frequently, underestimated source of deficiences of the modelling process. 

If dynamics of the system is much different from the dynamics of the input signal, 
simplified analysis can be performed. In such a situation the slower element of the two 
(i.e. input or system) plays the decisive role. 

It has been shown possible to formulate guidelines for the correct choice of input 
signals easing the process of identification of model parameters. Deterministic identifi­
cation calls for strong variability of the input signal. Slowly varying, monotonous, input 
signals may cause bad posedness of the identification problem. The basie requirement 
of identification of stochastic model parameters is - large value of the ratio-signal-to­
-noi se. Moreover, for AR-models large variance and strong autocorrelation of input 
signals is required, whereas small autocorrelation of input signal is advantageous for 
MA-models identificat ion. Conditions of optima! choice of input signal for identification 
o f ARMA-models have been shown to be - maximizing the area of ellipse of concentra­
tion, i.e. maximizing the determinant of the information matrix. 

Manuscript rcccived 30 December 1983 
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HYDROLOGICZNE SYGNAŁY WEJŚCIOWE - lDEALIZACJA I RZECZYWISTOŚĆ 

Streszczenie 

Przedstawiono ogólną analizę h)drologicznych sygnałów wejściowych w postaci skupionej i roz­
lożonej. Wykazano znaczną lukę między idealizacją sygnałów wejściowych a rzeczywistością. Do­
konano przeglądu podstawowych standardowych sygnałów wejściowych v• postaci schematyzowanej. 
Podano związki między odpowiedziami systemu na wymuszenia standardowe. Rozważono szczególne 
przypadki, w których pojawiają się znaczne różnice między dynamiką sygnału wejściowego i systemu 
(tzn. przypadki powolnego wymuszenia i szybkiego systemu oraz szybkiego wymuszenia i powolnego 
systemu). W przypadkach tych można przeprowadzić uproszczoną analizę. Podano wskazówki doty­
czące wyboru sygnałów wejściowych dla identyfikacji parametrów pewnych modeli hydrologicznych. 
Problem ten pojawia się w co najmniej dwóch praktycznych sytuacjach: jeżeli możliwe jest kształtowa­
nie sygnału wejściowego lub jeżeli dostępne są dane dotyczące szeregu zjawisk. Dokonano analizy wad 
znanych procedur określania opadu skutecznego jako sygnału wejściowego do modelu opad - odpływ 
i konstrukcji opadu projektowego. 

ł . 


