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Nonlinear models of dynamic hydrology* 

ZBIGNIEW W, KUNDZEWICZ & JAROStAW J, 
NAPIÔRKOWSKI 
Institute of Geophysics, Polish Academy of 
Sciences, Pasteura 3, 00973 Warsaw, Poland 

ABSTRACT Methods of description of the nonlinear effects 
in dynamic hydrological systems have been surveyed. 
Particular reference was given to those sorts of non­
linear methods which do not require significantly more 
computational effort in comparison with classical linear 
models. Original concepts in the field of nonlinear 
state-space models, Volterra series models and the 
general framework of multilinear models were tackled in 
more detail. Illustrative numerical examples of flood 
routing and rainfall-runoff modelling were presented. 

Modèles non linéaires d'hydrologie dynamique 
RESUME On a étudié les méthodes de description des 
effets non linéaires dans les systèmes d'hydrologie 
dynamique. On s'est référé particulièrement à ces types 
de méthodes non linéaires qui n'exigent pas une masse de 
calculs significativement plus importante que dans le cas 
des modèles linéaires classiques. On a entrepris plus en 
détail 1'études de concepts originaux dans le domaine des 
modèles non linéaires état-espace, des modèles des séries 
de Volterra et de la structure générale de modèles multi-
linéaires. On a présenté des exemples numériques 
représentatifs de la mise en modèle de la propagation des 
crues et des relations pluies-débits. 

INTRODUCTION 

The geophysical processes contributing to the hydrological cycle are 
described by the theoretically sound nonlinear partial differential 
equations of mass and energy transfer. Also, in macroscopic 
hydrological descriptions, there are inescapable nonlinearities, 
e.g. thresholds that separate clearly distinct domains of different 
system behaviour. 

In fact, all physical hydrological systems are nonlinear. Even 
if they are assumed to be linear, this assumption is restricted to 
within some range of conditions only. 

In spite of this, there are numerous examples of successful 
applications of linear models. They typically pertain to the cases 
where the accuracy requirements are not critical and practically 
acceptable results may be obtained by means of linear models. 

*Paper presented at the Anglo-Polish Workshop held at Jahionna, 
Poland, September 1984. (See report in Hydrological Sciences 
Journal, vol.30, no.1, p.165). 
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164 Zbigniew W. Kundzewicz & Jarosiaw L. Napiôrkowski 

The inconvenience in applications of nonlinear models results 
from the following premises: 

(a) the solution of a nonlinear mathematical model is more 
difficult to obtain than the solution of a linear model; 

(b) the solution of a nonlinear model is valid for the particu­
lar set of initial and boundary conditions and the input signal used 
for computations; in order to infer the system behaviour for other 
conditions, one has to repeat the (possibly tedious) computations 
for the new conditions. 
The hydrodynamic equations describing hydrological processes were 
developed in nonlinear form in the nineteenth century. As far as 
hydrological research is concerned, probably the first recognitions 
of nonlinear behaviour were made in modelling overland flow on 
natural catchments (Horton, 1938) and on paved surfaces (Izzard, 
1944), where a conceptual nonlinear relationship between outflow 
and storage was used. The first comprehensive and systematic 
treatment of the nonlinearity aspects of rainfall-runoff modelling 
was due to Minshall (1960). Based on a large amount of observed 
data, Minshall demonstrated that the instantaneous unit hydrograph 
(IUH) depended on the rainfall intensity (higher intensity caused a 
rise in the value of the peak and a reduction in the time to peak 
of the IUH). 

Contrary to the linear systems approach, there is no unique, 
compact and general theory of nonlinear dynamic systems. This 
situation clearly influences the state of the art of hydrological 
modelling. In the present paper, a systematic investigation of the 
nonlinearity aspects of modelling hydrological processes is given. 
Several alternative means of describing system nonlinearity are 
analysed with regard to both methodological concepts and practical 
aspects. 

LINEAR MODELS 
Linear models are frequently used in dynamic hydrology due to their 
simplicity and low cost. This pertains to all genetic types of 
linear methods, namely to hydrodynamic, conceptual and black box 
system models. The formulation of linear models of hydrological 
systems or processes follows one or other of the following 
approaches : 

Linear partial differential equations 

Linear partial differential equations are obtained from the methods 
of mathematical physics with the help of linearization (e.g. 
linearization for small increments, or harmonic linearization). An 
example of this sort of model can be given for the case of open 
channel flow in the following general form of the second order 
linear partial differential equation: 

32Q ,32Q 32Q ,3Q 3Q a3U + b3l3l + ° 3 ^ + *St + •£ = ° (1) 

where Q is the flow rate and a,b,c,d,e are parameters depending on 
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Nonlinear models of dynamic hydrology 165 

the channel characteristics (length of the reach, bottom slope, 
roughness) and reference levels for linearization (cf. Dooge, 1973; 
Dooge & Harley, 1967). The linearization is usually performed for 
small increments and the reference levels pertain to the conditions 
for a steady and uniform flow situation. 

Linear ordinary differential equations 

The other linear models used in dynamic hydrology are described by 
an ordinary differential equation of the form: 

dVtl dygi + a = 
n n 1 dt o 
dt 

where x is the input signal and y is the output signal. The 
relevant set of initial conditions is: 

dD-1y(t) 
y(0) = yo, ... , 

dt Q
 y(n-l)0 

This general formulation can be decomposed within the state space 
framework to yield a set of n differential equations of the first 
order that can be conveniently written in matrix form as: 

Y = A i + B x <3> 

where x is the scalar input signal, y_ and B are vectors and A is a 
matrix. The way of transforming equation (2) into equation (3) can 
readily be found in numerous textbooks on state space methods or 
dynamic systems. 

Linear conceptual models 

Yet another form of description of a hydrological system with the 
help of an ordinary differential equation is via a conceptual model. 
In the case of flood routing, the conceptual model used consists of 
(a) a rigorous continuity equation (a lumped form of a hydrodynamic 
description of the law of conservation of mass): 

S = x - y (4) 

where S, x and y are respectively the storage in, the inflow to, and 
the outflow from a river reach; and (b) a conceptual equation 
replacing the hydrodynamic equation of conservation of momentum, and 
that takes a general linear form (Chow & Kulandaiswamy, 1971): 

„M (m) „N (n) 
S = l „ a x + L _ b y (5) 

m=l m n=l n 

A special and widely used case of equation (5) reads: 

S = ax + by (6) 
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Examples of this relationship are the storage equations of a linear 
reservoir where a = 0 or of a Muskingum model, where a = Ka and 
b = K(l - a) and a is a weighting factor. 

Combination of n elementary conceptual models in series yields 
an n-th order ordinary differential equation describing, for example, 
the operation of a cascade of linear reservoirs. 

Linear integral operators 

As an alternative to linear differential equations, models in the 
form of linear integral operators are frequently used. In the case 
of a non-anticipating (causal) system the model formulation is: 

CO ~t 

y(t) = / h(T)x(t - T)dT = y (t) + f h(T)x(t - T)dT (7) 
o o o 

where h( ) is the impulse response function (kernel function) and 
y0(t) is the effect of initial conditions (for t é 0) upon the 
output signal at the time instant t, that is y0(t) = 
/" h(T)x(t - T)dT. 

For the initially relaxed case, equation (7) takes the convolu­
tion form: 

y(t) = /* h(T)x(t - T)dT (8) 
o 

Under the assumption of finite memory of the system, usually 
accepted in dynamic hydrology, equation (7) gives: 

y(t) = JJnin(t,T)h(T)x(t - T)dT + f . .. h(T)x(t - T)dT (9) 
o min(t,T) 

whereas equation (8) yields: 

y ( t) = J
min<t'T)h(T)x(t - T)dT (10) 

Nonstationarity 

The forms of linear models considered above can be extended to cover 
nonstationarity effects. If the parameters a,b,c,d,e in equation 
(1), a0,ai, ...,an in equation (2), A and B in equation (3), am and 
bn in equation (5) or a and b in equation (6) vary with time, the 
nonstationarity is accounted for and the models remain linear. 
Similarly, if the kernel function h( ) in equations (7)-(10) depends 
on two arguments of a temporal nature (i.e. the dummy variable, T, 
and the actual time instant, t, for which the output signal is being 
calculated), the model is linear and nonstationary. However, 
nonstationary models may require significantly more effort than 
their stationary counterparts. This pertains particularly to the 
identification phase of modelling. 
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Nonlinear models of dynamic hydrology 167 

FUNDAMENTALS OF NONLINEARITY 

All the linear models considered above obey the superposition 
principle, usually understood as the condition of additivity, and 
formulated as follows. 

A system is called additive if and only if the system operator 
acting on a sum of input signals yields the same response as the 
sum of the system operator acting on the individual input signals 
for all possible input signals x± and X2-

From the above condition it follows that the sense of the 
superposition principle can be conceived in two ways: 

(a) superposition with respect to amplitude of the input 
signal; and 

(b) superposition with respect to the occurrence time of the 
input signal, 
The meaning of both aspects is illustrated in Fig.l. It is obvious 

Amplitude superposition 

* 2 

y(*J 

y ( x , ) * y ( x 2 j 

« t 

Fig. 1 Two aspects of the superposition principle. 

that all linear models fulfil both the amplitude superposition 
principle and the temporal superposition principle. However, some 
nonlinear systems fulfil the temporal superposition principle 
(Kundzewicz, 1982, 1984, 1985) whereas others do not. The authors 
do not know of any nonlinear system that fulfils the amplitude 
superposition principle. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
9
 
1
6
 
A
u
g
u
s
t
 
2
0
1
0



168 Zbigniew W. Kurtdzewicz & Jaros/aw L. Napiôrkowski 
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There is a class of nonlinear models described by nonlinear 
partial differential equations that originate from hydrodynamics. 
To this class belongs the complete St Venant model of open channel 
flow and its simplifications (e.g. the nonlinear diffusion analogy 
developed by Price (1973)). The set of partial differential 
equations of hyperbolic type, introduced by St Venant (1871), reads: 

9v _,_ 9y ^ A 9v 
9T + v 9^ + ¥ 9 l = < l / B ( 1 1 ) 

I|z + x|z + | y + s s _ J L ( V _ v ) = 0 ( 1 2 ) 
g d t g dx 9x f o gA q 

where equation (11) expresses the conservation of mass and equation 
(12) expresses the conservation of momentum. The notation used is 
standard and will not be explained here. 

The nonlinearities of equations (11) and (12) are due to the 
terms : 

v) 

By using another choice of dependent variables (A and Q) one can 
make the continuity equation linear at the cost of increasing the 
number of nonlinear terms in the momentum equation (Kundzewicz, 
1985). 

It is clear that linear hydrodynamic models originate from 
nonlinear hydrodynamic models. This parentage may not hold in other 
classes of models. Alternative approaches to nonlinear modelling 
originate from different ways of introduction of nonlinearity 
elements to the formulations of linear models developed earlier. 

In the following three sections, alternative means of introducing 
nonlinearity to linear models of dynamic hydrology will be studied. 
Accounting for nonlinear effects by means of convenient linear 
mathematics is reviewed first; nonlinear ordinary differential 
models are then studied; and finally nonlinear integral operators 
are investigated. No further analysis of nonlinear partial 
differential equations will be given, as it can be readily found in 
numerous references on hydrodynamics. 

NONLINEAR EFFECTS VIA LINEAR MATHEMATICS 

Although hydrological systems and processes are nonlinear, there 
have been many attempts to model them with the help of linear 
mathematics. If the data for several events are available, a 
linear model can be found that best fits these data according to a 
specified criterion. In this approach, o?e linear model is supposed 
to cover optimally (in the average sense) all nonlinear behaviours 
that occur for the different conditions observed. 

A step in the right direction is the use of a model that, 
although it remains linear for one event, may change from event to 
event. Thus the event characteristics tune the model parameters 
whose event-constant values are used in modelling the event. 
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Nonlinear models of dynamic hydroiogy 169 

A very simple approach of this kind is to allow for the depen­
dence of the kernel function on some aggregated characteristics of 
the input signal (effective rainfall in rainfall-runoff modelling, 
or inflow to the reach in flood routing). Extending the concepts 
of Minshall (1960) and of Amorocho (1961), who found a family of 
rainfall-dependent IUHs, one could proceed as follows: 

(a) identify the sets of conceptual model parameters corres­
ponding to a number of different events; and 

(b) correlate the conceptual model parameters with event indices. 
A family of relationships K = Gi (A,V,T) and N = G2 (A,V,T) where 
A,V,T are aggregated event indices (amplitude, volume and duration 
time, respectively) and K,N are conceptual parameters of cascade-
type models, can be considered as a simple representation of 
nonlinearity via linear means. Within one event the system behaves 
linearly, that is both aspects of the superposition principle are 
fulfilled. 

The idea outlined above can be extended to the general structure 
of the linear integral operator: 

y(t) = / h(pe,T)x(t - T)dT (13) 

where pe is a vector of event characteristics. This vector remains 
constant for one event but may vary from event to event. It is not 
quite clear, however, how to construct the vector pe optimally. 
Some kind of schematization of input signals may be necessary. 

A more advanced application of linear mathematics in modelling 
nonlinear systems will be considered in the section below on 
multilinear models. 

NONLINEAR DIFFERENTIAL MODELS 

There are two distinct ways of introducing nonlinearity to con­
ceptual hydrological models. Firstly, the nonlinear extension of 
the conceptual storage equation (5) replacing the hydrodynamic 
law of conservation of momentum can be assumed. Thus in general: 

f(S,x,x,...,xv ,y,y,...,y ) = 0 (14) 

where f is a nonlinear function. 
Secondly, the summation of equation (5) can be extended in that 

the coefficients am and bn could depend on x and y, that is: 

**M , Cm) _N . , x (n) ,,_, 
S = I a <x,y)x ' + E . b (x,y)yx (15) 

m=l m n=l n 
This latter was the nonlinear hydrological system model formulated 
by Chow & Kulandaiswamy (1971). 

Nonlinear extension of the, storage equation 

The introduction of nonlinearity to a conceptual model will first be 
examined by replacing equation (5) by the more general equation (14). 
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Consider the concept of the linear reservoir consisting of the 
continuity equation (4) and the special case of the storage equation 
(6): 

K S (16) 

There have been several attempts to use a more complex relation 
between the storage and the outflow, one that is likely to better 
represent the natural hydrological system in question. This gave 
rise to the idea of a nonlinear reservoir whose outflow law attains 
a more general form: 

y = f(S) (17) 

An example of this sort of structure is a nonlinear reservoir with 
the power outflow law: 

y = K S (18) 

S = K 1 y 
Cl 

(19) 

Such a model was used successfully by Laurenson (1964) for rainfall-
runoff modelling. 

Another concept corresponding to a typical static characteristic 
from dynamic system theory is a nonlinear reservoir with 
hysteresis (Fig.2) whose storage law is the storage equation u » ; 
extended by the derivative of outflow: 

K,y 
Cl + K 

dy 
'2 dt 

(20) 

This equation was used by Prasad (1967) in rainfall-runoff modelling. 
In his analysis of the generalized Muskingum method, Ding (1974) 
used a similar extension of equation (18): 

S + K ^ 
3 d t (21) 

storage 

m~~ QutflOW 

Fig. 2 Reservoir with hysteresis effect. 
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Yet another type of nonlinear reservoir accounts for a finite 
storage capacity. One of the possible outflow laws was devised by 
Kaczmarek (1975): 

y(t) = a [1 - b J S ] + x ( t ) — s; (22) 
max 

Equation (14) can also serve as the general background to the 
nonlinear storage law for a generalized nonlinear Muskingum method 
that was derived by Strupczewski & Kundzewicz (1980) from hydro-
dynamic premises and took the form: 

S = f(x0-6, y0,6) (23) 

Exemplification of the function f and the details of derivation are 
given in Strupczewski & Kundzewicz (1980) 

Nonlinearity via variable coefficients 

The approach resulting from equation (15) will now be investigated. 
A simple example is again a nonlinear reservoir formed by making the 
storage coefficient, K, in equation (16) dependent on S, that is 

y = K*(S).S (24) 

Another type of nonlinear reservoir can be formed by assigning 
constant values of K in equation (16) for particular ranges of S. 
This produces a threshold effect visible in nonlinear reservoir 
models with piecewise constant parameters, A simple example of 
this kind reads: 

( K for S < S* 
K = (25) 

( K2 for S > S^ 

K, S for S < S. 
1 * 

K2 S for S > S^ 
(26) 

This corresponds to a nonlinear reservoir with a bottom outlet and 
with a side outlet that operates if some threshold storage is 
reached as was used in different combinations by Sugawara et al. 
(1975) in rainfall-runoff modelling. 

A special case of a nonlinear reservoir of the threshold type 
with piecewise constant parameters (i.e. piecewise linear outflow 
law) is a reservoir with a dead zone as shown in Fig.3, The 
nonlinear reservoir given by equation (18) can also be put into the 
framework of equation (24) as: 

K (S) = K S C _ 1 (27) 
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outflow 

storage 

Fig. 3 Reservoir with a dead zone. 

Alternatively, other extensions of the equation for a linear 
reservoir (16) can be used, such as: 

S = K1(y) y (28) 

S = K2(x) y (29) 

Much attention by hydrologists has been given in the last decade to 
the Muskingum method with variable coefficients. This is the direct 
consequence of the analysis of Cunge (1969). Since the finite 
difference formulation of the Muskingum model is analogous to a 
certain finite difference scheme of the kinematic wave model (or 
even the diffusion analogy), the conceptual Muskingum parameters can 
be determined via the physically sound parameters of the latter 
hydrodynamic models. If the dependent variable of the hydrodynamic 
model (e.g. flow rate) varies with the modules of the finite 
difference scheme, the conceptual parameters of the variable 
Muskingum model follow these variations. Thus the conceptual 
parameters of the variable Muskingum equation can follow the 
relationships obtained by Cunge (1969): 

K(c) = L/c 

a(Q,c) = 0,5[1 - Q/BcS L) 

(30) 

(31) 

where c is the wave celerity, Q is the flow rate, L is the reach 
length, S 0 is the bottom slope and B is the surface width. 

Nonlinear state model 

The natural generalization of the nonlinear reservoir model 
(equations (4) and (17)) is a combination of n such conceptual 
elements. Each nonlinear reservoir is then responsible for part of 
the attenuation of the system response. This lumped dynamic model 
can be represented by a set of ordinary differential equations: 
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S ( t ) = - f f S ^ t ) ] + X ( t ) 

S ( t ) = - f [ S < t ) ] + f [ S <t>] 
(32a ) 

S ( t ) = - f [ S ( t ) ] + f [ S f t ) ] 
n L n n - 1 

Y ( t ) = f [ S ( t ) ] (32b) 
n 

under the initial condition S(0), where X is the input signal, S^ 
is the storage in the i-th reservoir, f( ) represents the outflow-
storage relation and Y is the output signal. 

It is assumed here that the function, f, is not prescribed but is 
differentiable for Si à 0 as many times as required. The vector 
differential equation (32) can be considered as the definition of a 
nonlinear operator mapping a space of inflows into a space of 
corresponding outflows. Hence the change of the trajectories Si(t) 
and Y(t) from the steady state y0 = f(S^ 0) = x0, due to an input 
increment, x(t), can be determined by means of a Taylor series 
expansion (Napiorkowski, 1978). Accordingly, we may divide the 
trajectories' increments into linear, quadratic, and cubic parts, 
and a residual error, i.e. 

AS (t) = S (t) - S. = 6S.(t) + 62S.(t) + 63S.(t) + e(S.) (33) 
i l 1 , 0 1 l l l 

y(t) = Y(t) - y = <5y(t) + ôZy(t) + ô3y(t) + e(y) (34) 

In order to compute the linear (Ô) , quadratic (ô2) and cubic (<53) 
components of y(t) and ASA(t) we make use of the Taylor expansion of 
the outflow-storage relations about the steady state, Si _: 

f[S.(t)] - y = a AS.(t) + b[AS.(t)]2 + c[AS.(t)]3 + e(f) (35) 

where 

df 1 d2f 1 d3f 
a = 7Ï ' b = - , c = (36) 

dSi 2 dS2 6 dS3 

i i 

Substituting equations (33) , (34), (35) and (36) into equation (32) 
and neglecting the second and higher order terms gives the set of 
equations for the linear approximation as: 

ÔS(t) = acj)ÔS(t) + [1,0..., 0] T x(t) (37a) 

ôy(t) = aôSn(t) (37b) 

where 
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- 1 , 0 0 
1, - 1 , . . . , 0 

0, 0 , . . . , 0 

(38) 

When the second-order increments are taken into account we get the 
additional equations: 

62S(t) = acf>ô2S(t) + b(j)[ôS(t)]2 (39a) 

<52y(t) = aô2S (t) + b[6S (t)]2 (39b) 
n n 

which are linear in & S(t) and 62y(t). 
When the third-order increments are also taken into account we 

have the further equations: 

ô 3 S ( t ) = a<f>ô3S(t) + 2b<t>ôS(t)ô 2S(t) + c<}>[ôS(t)]3 ( 40a ) 

ô3y(t) = aô3S (t) + 2bôS (t)ô2S (t) + c[ôS (t)]3 (40b) 
n n n n 

which are linear in <53S(t) and ô3y(t). 
Having determined the functions ôS(t), ô2S(t), ô3S(t) the fourth 

order increment of the output trajectory can also be obtained in a 
similar way by expansion of the set (32) up to fourth-order 
increments. 

It should be noted that the argument of the forcing function for 
equation (39) is the solution of equation (37), and that the 
arguments of the forcing function for equation (40) are the 
solutions of equations (37) and (39). It should also be noted that 
the input, x(t), occurs only in equation (37). Consequently the 
addition of the components <52y(t) and 63y(t) affects only the 
distribution of the output, and the total volume of these components 
is zero. 

A more detailed description of this approach can be found in 
Napiôrkowski (1978), Napiôrkowski & Strupczewski (1979, 1981), and 
Napiôrkowski & 0'Kane (1984), 

The first-, second- and third-order components described by 
equations (37), (39) and (40) form the Third Order State Model (T0SM) 
which was used to represent a catchment response by Napiôrkowski 
(1985). The objective was to solve the problem of identifying the 
four parameters n, a, b and c of the model for a watershed previously 
described by Diskin & Boneh (1973). The catchment is that of the 
Cache Hiver at Forman in southern Illinois. The data of effective 
rainfall, represented as rectangular pulses with a time interval of 
1 day, and surface runoff for eight storms were observed between 
1935 and 1951. 

The optimal values of the parameters (n, a, b, c) of the T0SM 
were found to be: 

n = 3 
a = 0.67 
b = 5.58 x 10"3 (day-1mm-1) 
c = 83.6 x 10~6 (day-1mm-2) 

An example of the degree of fit to the observed runoff by the T0SM 
is shown in Fig.4 for one of eight storms (storm no.l). The 
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50 

Fig. 4 Comparison of observed runoff and that predicted by the TOSM for storm 
no. 1. 

Fig. 5 The linear, quadratic and cubic terms predicted by the TOSM for storm no. 
1. 

Table 1 Optimal parameters and values of the objective function for models based 
on a nonlinear cascade 

Linear Quadratic Cubic 

n 
a 
bX 10~3 

cX 1(T6 

J 

4 
1.32 
0 
0 
445 

3 
0.75 
6.84 
0 
233 

3 
0.67 
5.58 
83.6 
154 

separate linear, quadratic and cubic components for this particular 
storm are plotted in Fig.5. In Table 1 a comparison is made between 
the optimal linear (b = c = 0), optimal quadratic (c = 0) and the 
cubic model based on a cascade of nonlinear reservoirs. 

The satisfactory results of such simulations indicate that the 
second- and third-order increments produce a marked improvement in 
the predictive power of the conceptual model when compared with its 
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linearized version, through a steepening of the rising limb and a 
flattening of the recession. 

In the next section it will be shown that the Third Order State 
Model is equivalent to the three first terms of a Volterra series. 

NONLINEAR INTEGRAL MODELS 

The linear integral operator given by equations (7) to (10) is a 
very convenient tool for modelling hydrological processes, which is 
why there have been several attempts to accommodate nonlinearity 
within this simple structure. 

Variable unit hydrograph 

One of the ways cf introducing nonlinearity to the linear integral 
operator modelling of hydrological processes was devised by Amorocho 
(1967) who suggested a variable unit hydrograph i.e. a family of 
input-dependent kernels of the operator in equations (7) to (10). 
This concept was used in practice by Ding (1974) who assumed that 
the kernel function depended on the dummy time variable, T, and also 
on the instantaneous value of the input signal at the time instant 
(t - T), where t is the time instant for which the system response 
is calculated: 

y(t) = /h[T, x(t - T)]x(t - T)dr (41) 

To the authors' knowledge this methodology proposed by Ding 
(1974) was never developed in a rigorous way. Elements of the idea, 
however, are used in the multilinear models presented below, 

Volterra series model 

A powerful tool of nonlinear modelling, well established in 
hydrology, is the Volterra series of integral operators introduced 
to mathematics by Volterra (1930) and to hydrology by Amorocho & 
Orlob (1961). Following the notation used by Volterra the model can 
be written as: 

oo ] i i 

*(t> = zi=il'li V V - ' V W ^ - \ ) d Tk ] (42) 

The description of dynamic systems by a Volterra series is a 
generalization of the concept of the transfer function which is of 
great importance in the analysis, design and control of linear 
systems. The Volterra series represents an explicit input-output 
relation for nonlinear systems and consists of an infinite series 
composed of terms of convolution integrals. The first term is the 
convolution integral of the first order kernel with the input 
function, while the n-th order term is an n-fold convolution 
integral containing the n-th order kernel multiplied by an n-th 
order product of the input function. The modelling of hydrological 
processes (such as flood routing, rainfall-runoff) by means of a 
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Volterra series has been developed independently of other methods of 
describing dynamic systems, in particular by a state equation 
formulation. The problem of series identification has been solved 
by numerical methods applied to an input record and its correspond­
ing output by means of kernel expansion (under an arbitrary 
assumption as to kernel structure) in orthonormal polynomials (see 
Amorocho & Brandstetter, 1971; Kuchment, 1972; Papazafiriou, 
1976). As was pointed out by Napiorkowski (1978), the fact that 
the structure of the kernels is not known may lead to a search for 
the solution within the wrong class of functions. Thus the 
possibility cannot be excluded that the solution derived hardly 
reflects reality. Accordingly, the analytical derivation of the 
kernels of the Volterra series is not another methodological 
approach, but it helps in the correct formulation of the identifica­
tion problem. 

Napiorkowski (1978) and Napiorkowski & Strupczewski (1979, 1981) 
have developed the description by state equations and the descrip­
tion by integral series for the case of the nonlinear cascade given 
by equation (32). 

The solution of equation (37a) describing the linear part of the 
storage trajectory is: 

6 S ( t ) = !% exp(a<j>T) [ 1 , 0 , . . . , 0 ] T x ( t - T)dT (43) 
o 

where exp(atj)t) is the transition matrix for equation (37a) . One can 
se^ that the linear component of the state of the cascade of 
nonlinear reservoirs can be described as the first term of the 
Volterra series: 

6S(t) = SX K,(T) x(t - T)dT (44a) 
o 1 

where the vector of linear response kernels is given by: 

T 
K (t) = exp(acj)t) [1,0,..,,0] (45a) 

From equation (37b) one can see that the linear part of the outflow 
trajectory is: 

<5y(t) = H\ h, (T) x(t - T)dT (44b 
o 1 

with 

h,(t) = a K, (t) (45b) 
1 l,n 

where K^ n is the linear state kernel for the n-th reservoir in the 
cascade, 

The solution of equation (39a) describing the quadratic part of 
the storage trajectory is: 
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ô 2 S ( t ) = / * exp(at})r) b<j)[ôS(t - r ) ] 2 d r (46) 
o 

and the transition matrix for equation (39a) is the same as for 
equation (37a). Having the solution for <5S(t) from equation (44a) 
we can insert [<5S(t - r)]2 in equation (46). The double change of 
the order of integration between r and Ti,T2 results in the second 
term of the Volterra series: 

ô2S(t) = /V* K2(T1'T2) X ( t " T i ) x ( t " T2)dTldT2 ( 4 7 a ) 

where 

K2(T1'T2) = /max(Tl'T2)b exp(acj)r) K1(T1 - I O K ^ T ^ - r)dr (48a) 

is the vector of the second-order state kernels. 
From equation (39b) one can see that the quadratic part of the 

outflow trajectory is: 

<52y(t) = ftIt h O ( T , T ) x(t - T^x(t - T„)dTdT„ (47b) 
O O A X A 1 A X A 

with 

ha ( Tl'V = a K2,n ( Tl'V + b Kl,n (V Kl,n (V ( 4 8 b ) 

where K2 n is the second-order state kernel for the n-th reservoir 
and Kj n is the first-order kernel already found in the linear 
approximation. 

Finally, the solution of equation (40a) describing the cubic part 
of the storage trajectory is: 

<53s(t) = /* exp(a<f;r)cf){2b6S(t - r)ô2S(t - r) + c[ôS(t - r)]3}dr 
(49) 

where the transition matrix for equation (40a) is the same as for 
equations (37a) and (39a), Having the solution for <5S(t) from 
equation (44a) and for S S(t) from equation (47a), we can insert 
<5S(t - r)62S(t - r) and [<5S(t - r) ] 3 in equation (49). The triple 
change of the order of integration between r and Ti,T2,T3 results in 
the third term of the Volterra series: 

Ô3S(t) = / W * K f T ,T„,T„) x(t - T,)x(t - T„)x(t - T„)dTndT„dT„ 
O O O o 1 A o 1 A à x A o 

(50a) 

where 

W W = /°aX(Tl'T2'T3)exp(a^r)(^t2bK1 (T± - r)K2 

(T2 " r'T3 ~ r) + C K1(T1 " r)Kl (T2 ~ r)Kl <T3 " r)Jdr (51a> 
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From equation (40b) one can see that the cubic part of the outflow 
trajectory is: 

63y(t) = / W VVT2,T3)x(t " V
X < t - V X ( t " VdTldT2dT3 

with 
(50b) 

WW = a K3,n(V W + 2b Kl,n(V K 2 , n ( W 
+ C Kl,n(Tl> Kl,n<V Kl,n(V (51b) 

where K3 n is the third-order kernel for the n-th reservoir. 
This proves that the Third Order State Model as represented by 

equations (37), (39) and (40) is equivalent to the sum of the three 
first terms of the Volterra series given by equations (44), (47) and 
(50). The structure of the first two Volterra kernels obtained 
after considerable manipulation was shown by Napiorkowski (1978) to 
be: 

h (T) = a H (T) (52) 
1 n 

h0(T1,T„) = b{H ( T ) l" H.(T ) + H (T ) Zn_1 H.(T ) 
£* X dt II X X — X X £ XI & X — X X X 

- Hn[max(T1,T2)]} (53) 

where 

H (t) = (at)11"1 exp(-at)/(n - 1)! (54) 
n 

The third-order kernel has not been obtained. It is computationally 
more efficient to calculate the higher order approximations from the 
state space representation rather than by using the n-fold integrals 
in the Volterra series. 

Multilinear models 

It is interesting that several convenient means of modelling 
nonlinear hydrological systems that seem to occur independently of 
one another can be embraced by one clearly defined category. This 
category, named multilinear models (Kundzewicz, 1982, 1984, 1985) 
contains the concepts called multiple-input linear models, multiple 
linearization models and nonlinear threshold models used earlier by 
Becker et al. (1981). Also the ideas of Amorocho (1961, 1967) and 
Ding (1974) are embraced within this category. The unifying term 
"multilinearity" has been used in mathematics (nonlinear functional 
analysis) to describe a different idea. It is believed, however, 
that no ambiguity is caused due to the redefining of the term. 

A multilinear model is composed of parallel linear submodels, 
whose input signals are parts of the exterior input signals, 
distributed by a definite algorithm (Fig.6). 
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x w l 5 x i ( t ) ; 

Algorithm 
for 
distributing 
the 
externat 
input 
s ignal 

h,(t) 

X;(ti 
hi f t j 

Yjlt) A.y,<W I y(tj=g y i( t j 

o • y„w 
Xn(tJ h n ( t ) 

Fig. 6 Principle of multilinear models. 

The general mathematical description of a multilinear model 
composed of n submodels reads: 

y(t) = Z. , Jh.(T)x.(t - T)dT 
i=l l l 

under the condition: 

(55) 

E. , x.(t) = x(t) 
i=l l 

(56) 

The limits of the integration interval in equation (55) should 
be chosen in accordance with the discussion of linear models at the 
start of this paper. 

A specific example of an early hydrological application of the 
multilinear structure of Fig.6 is the rainfall-runoff model 
introduced by Diskin (1964). The model (Fig.7) consisted of two 
cascades of linear reservoirs in parallel, with a simple algorithm 
for the distribution of the input signals by means of a constant 
coefficient, a. 

X(t} |sX/tKx|l) 

x(t! 
h,ra K/(N,)'Ki e 

^^^L.uJ>a.fV^ 
WjqmfKJ ' e ' 

y«=y,(«+y,,{t) 

Fig. 7 The Diskin model, an early example of a multilinear model 

The parallel submodels represented two components of the runoff 
process, namely surface flow and subsurface flow. The assumption 
of a constant value of the distribution factor, a, assured the 
linearity of the total model. In fact, from the physical point of 
view, the value of this parameter could depend on rainfall para­
meters (e.g. mean intensity, duration time) and on the catchment 
conditions (e.g. API). However, already the simple linear structure 
shown in Fig.7 was shown to produce a considerably better simulation 
of the natural processes than a single cascade of linear reservoirs 
in series. 

The fundamental problem that arises in multilinear modelling is 
how to distribute the external input signals into inputs to linear 
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submodels. 
There are two established answers to this question as illustrated 

in Figs 8 and 9. The mathematical description of the distribution 
reads for the amplitude distribution scheme (Fig.8): 

Fig. 8 Amplitude distribution of input signal. 

x ( t ) = min[x( t ) ,X ] 

x ( t ) = max{0, min[x( t ) - X _, X 
i i - l l \ - l » (57) 

x ( t ) = maxfx(t) - X , , 0] 
n n-1 

and for the time distribution scheme (Fig.9): 

x^t) = {1 - S[min <x(t), X1> - X ]}x(t) 

c (t) = 0.5 {l - 6[min <x(t), X.> - X.]} + 
l i i 

+ {1 - ô[max <x(t), X._ > - X ]} x(t) 
(58) 

x (t) = {1 - <5[max<x(t), X > - X ]}-x(t) 
n n-1 n-1 

(59) 

where 6(x) is the Kronecker delta function defined as: 

0 for x f 0 
>(x) = 

for 0 
(60) 

and Xk, k = l,...,n, are the upper limits of the k-th zone of the 
external input signal. 

The multilinear models corresponding to both methods of 
distribution of the input signal are used as follows (cf. Fig.6). 
The input signal is distributed into inputs to submodels, 
x.,...,x . 
1 n 

Each of the sub-inputs is convoluted by a 
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x( t ) 

Fig. 9 Time distribution of input signal. 

linear integral operator corresponding to the subinput, that is, 
with the help of the kernels hxl(T),...,hx ( T ) . The responses of 
particular linear submodels are recombined to yield the total 
response. 

It can be demonstrated that the multilinear models fulfil the 
time superposition principle but do not fulfil the amplitude 
superposition principle. An extensive discussion of the properties 
of multilinear models can be found elsewhere (Kundzewicz, 1982, 
1984), 

Multilinear models have been used widely for operational appli­
cations as is convincingly shown in the works of Becker and his 
collaborators (Becker, 1976; Becker et al., 1981). They used 
multilinear models in the amplitude distribution scheme (nonlinear 
threshold model) to forecast flows at several rivers in the German 
Democratic Republic and in other countries of central Europe. 

CONCLUDING REMARKS 

Assuming that the accuracy obtained with the help of a linear model 
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is not sufficient, a nonlinear technique should be used. If, 
within the given class of problems, a rigorous nonlinear hydro-
dynamic model is available, it is likely to outperform most of the 
nonlinear models of other types (conceptual or black box system 
models). If there is no superior hydrodynamic model or if the 
process is too complicated to be modelled by fluid mechanics laws 
alone, it may be worthwhile to use a nonlinear model of the concep­
tual or black box type. In this latter category it is advantageous 
to use the Volterra integral series that has been proved to perform 
well for both rainfall-runoff modelling and flood routing. Moreover, 
the linkage between the Volterra series and arbitrary models (e.g. 
conceptual) formulated in the state space framework has been 
established, and in effect the Volterra series is no longer a black 
box system method. 

It is desirable to continue studies on very simple nonlinear 
models which could be of good value if the large difference between 
the simplicity of the linear integral operator and the apparent 
complexity of either the Volterra series or the nonlinear hydro-
dynamic model discourages the user from applying the more sophisti­
cated method. In such a situation, the use of a multilinear model 
or of a conceptual nonlinear model should be seriously considered. 

In any case, an attempt should be made to strive towards a set 
of system impulse responses (e.g. IUHS) for different input signals 
(i.e. effective rainfall intensities) rather than to feel entirely 
satisfied with a single "mean" impulse response. 
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