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Abstract Numerical computations are presented for the longitudinal transport of passive, conservative solutes in
an actual river with the inclusion of geometrical complexities of river channels. A special emphasis is put on the
method of the identification of model parameters which is based on a specially designed optimisation procedure
using random controlled search algorithm. Two different situations are considered namely a linear version in
which one can assume that the mean velocity does not vary along the channel course and when the model
parameters are constant and the nonlinear version implying channel nonuniformity (and variability of model
parameters along the channel).

INTRODUCTION

Computational schemes for the simulation of the mass transport equations in cross-
sectionally averaged form have been widely used for many years. A wide variety of schemes
have been produced encompassing much of what is generally available in computational fluid
dynamics: finite difference, finite volume and finite element methods for spatial discretization
and explicit and implicit time stepping. Discussion of such methods in respect to the
advection-dispersion equations but with the inclusion of temporarily storage zone is rather
scarce in literature (Runkel and Chapra, 1993; Strauber 1995). In this paper we are concerned
with the 1D solute transport equations, which are combined with the process of the exchange
of mass between the mainstream and the existing in the flow areas that cause temporary
storage of the solute.

The overall aim of the paper is to establish a robust and efficient scheme for modelling
of solute transport in natural watercourses and to demonstrate its prediction capability. To
achieve this goal a relevant procedure for identification of model parameters is proposed. The
results of computations will be compared with selected experimental results obtained by
means of a dye tracer test in a lowland river.

MATHEMATICAL MODEL OF LONGITUDINAL TRANSPORT OF SOLUTES

We will concern only one-dimensional conditions after a substance has become fully
mixed across the depth and width of a river. In such case a model describing the processes of
advection, longitudinal dispersion, i.e. the spreading relative to the cross-sectional averaged
velocity and also temporary storage is suitable for the description of the spread of
conservative, passive pollutants. The transient storage process describes water moving from
the flowing stream channel into stagnant areas in which waters are well-mixed but not
transported downstream. The detailed description of the transient storage model may be, for
example, found in (Czernuszenko and Rowinski, 1997; Czernuszenko et al., 1998) and here
we will just present the relevant partial differential equations.

Transport of the solutes in the main stream may be described by:
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where: x — longitudinal direction, t-time, C(x,t) —solute concentration, u(x)-cross-sectionally
averaged velocity of water, D(x) — dispersion coefficient, A — cross-sectional area of the
channel. It has been assumed that the hydraulic conditions in the channel are steady, i.e.
parameters u, A, D do not change in time. Cp(x, ¢) denotes the concentration of solute in the
storage zone, parameters £x) and T(x) denote the ratio of the volume of the storage zones to
volume of the main stream for unit length and the penetration time of tracer into the storage
zones, respectively. In many practical situations we may additionally assume that these
parameters do not change along the channel and then the above equation is reduced to the
following form:
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where U, D, € and T are constant parameters.

The balance of mass in the storage zones is represented by:
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Equations (1) or (2) and (3) describe variations of the solute concentrations in both the main
channel and the storage zones. The solution domain is the plane Oxt limited by inequalities
0=x<L and =0, where L is the length of the modeled channel reach. The model equations are
complemented by the following:
- initial conditions:

Cx, t = 0) = C,(x) Co(x, 1= 0) = Cp,p(x) dla x0[0, L] 4)

- and boundary conditions

C(x=0, 1) = Co(?) p% -y t20 (5)
a‘x x=L

where C, 1 Cp, are the initial distributions of solute concentration along the channel reach in
both the main stream and the storage zones and C, describes the inflow of admixture at the
initial cross-section.

NUMERICAL SOLUTION

Equations (2) & (3) may be solved analytically only by means of statistical moments
(Czernuszenko and Rowinski, 1997) and therefore numerical methods are highly demanded.
A finite difference method has been applied for the described case. The scheme is set up with
a rectangular horizontal mesh. Equally spaced points along both the t- and x-axes are chosen
with grid spacing Ar and Ax correspondingly, which makes the channel divided into N
computational cross-sections and M temporal levels. A convention is used for which the
cross-section denoted by 1 corresponds to x =0, and by N to x = L. The Cranck-Nicholson
differencing scheme has been used for the representation of (2)-(3) which reads:
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for cross-sections j =2, 3, ... N-1 and
: At - N 2T -
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forj=1, 2, ... N. Approximation of boundary conditions at each temporal level leads to:

forj =1 Ci"' = Co(tirr) (8)
forj=N
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Eq. (9) has been obtained from (6) with the assumption that
Cy.1 = Cy+ (10)
which is the consequence of the numerical approximation of (5).

In the case of the model in the form represented by (1) and (3) the situation is much
more complex and the application of the Cranck-Nicholson differencing scheme has not led to
satisfying results due to the generation of large errors in the process of computations. It has
been assumed that the influence of three processes (advection, pure dispersion and transient
storage) might best be computed separately as three stages in a three-stage difference scheme.
Abbott and Minns (1998) suggest to think about such multi-staging as some processes are

being “frozen” or “locked” while the other is implemented.
In the first stage a pure advection process has been considered:

)

—+u—=0 (11)

In the second stage the results obtained from (11) are corrected by considering the dispersion
process:

9C = 10 ﬁl) A och (12)
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Last stage concerns the existence of the storage zones by means of the following equations:
aC _¢
—=—(C, -C 13
or T (€, =€) (13)
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An upwind scheme has been used for approximation of (11)
forj =1 C\"! = Colti) (15)
forj=2,3,..N
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The Cranck-Nicholson differencing scheme could be applied for the dispersion equation
which resulted in the following:

forj=1 =/ (17)
forj=2,3,..N-1
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It is important to note that in the second stage the input for computations is taken from
the first process and not from the actual preceding time level. Equations of the last stage are
solved by means of the fourth-order Runge-Kutta method. Let’s denote:

n==C »2=Cp (20)
£ 1
A(ey) == -n) £ (y)=2(n - 2) 1)
which allows us to present the problem (13) - (14) as ordinary differential equation that reads
dy
— =1z, 22
= 1y) (22)
A single step of this method may be represented as:
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It is proposed that the described method of taking individual consistencies over to
component differential forms and adding these differential component forms to obtain a
resultant differential form which brings correct results.

IDENTIFICATION OF PARAMETERS — PROBLEM FORMULATION
A real problem arises at the level of the identification of model parameters. A number of

estimation methods have been elaborated in literature such as physically based empirical
method of Pedersen (1977); fitting of the theoretical slope of the Laplace transformed solution
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for the concentration of the flow zone to the observed slope (Czernuszenko et al. 1998),
moments matching procedure (Lees ef al. 2000) or even visual determination of the set of
parameters yielding the best fit to the concentration data (Bencala, Walters 1983). An obvious
element is the relating the computed solute concentrations to some experimentally obtained
curves. In the present study the results obtained by means of the dye tracer test in the Wkra
River have been used and the time-concentrations distributions C,,(x, £) (k=1, 2, ...) at a few
selected cross-sections in the main stream have been used for comparisons. As for the
boundary condition at the inflowing cross-section the measurements taken in the first cross-
section C,(x1, ) have been taken. The measurements in the remaining cross-sections have
been used for the determination of parameters with the objective function taken as:
g T =
min (F[u.D,e.7] = Z [ B (xt) - C(x,.1)d d (26)
B =0 g
where F is the criterion function, 7 — the optimization time horizon, K number of measuring
cross-sections. The wetted cross-section has been determined from the mass balance under
steady stated conditions given by:

0 :u(x)A(x) 27)

where Q is the given discharge.
Special constraints have been put on the sought parameters or functions:

Xw<sX(x)sx

min max

(28)

where Xpin 1 Xmax are the lower and upper bounds for X(x).

Te computations of the values of the objective function for the estimated (by the
described method) parameters u, D, & T have been realized through the simulations of the
transport of solutes and the comparisons of the concentration distributions C(xy, ?).

In case of the identification of parameters of the model (1)-(3) to lower the
dimensionality of the problem a linear approximation of the sought parameters has been
assumed. The longitudinal variations of u(x), D(x), &x), T(x) have been determined based on
their values in the same cross-sections where the solute concentrations had been measured.

CONTROLLED RANDOM SEARCH METHOD

The optimisation problem (26) was solved by means of the global random search
procedure (Price, 1987) namely the following version of Controlled Random Search (CRS2)
described in details in Dysarz and Napidrkowski (2002). The algorithm is one of the random
global optimisation techniques. Its basis is well known simplex method used in non-linear
optimisation. The set of points from n-dimensional space is processed in following iterations.
In each step, new solution is generated by reflection of a simplex vertex. One of a few well
known versions of the method was used, namely CRS2.

The algorithm starts from the creation of the set of points, many more than » + 1 points
in n -dimensional space, selected randomly from the domain. The optimal quantity of set was
taken as suggested by Price (1987), equal to 10(n + 1). Let us denote the set as S. After
evaluating the objective function for each of the points, the best x; (i.e. that of the minimal
value of the performance index) and the worst xy (i.e., that of the maximal value of the
performance index) points are determined and a simplex in n-space is formed with the best
point x; and n points (x2, X3, ..., X,+1) randomly chosen from S. Afterwards, the centroid x5 of
points xz, X2, ..., X, is determined. The next trial point xy is calculated as the reflection of x,+1,
that is xp = 2xg — x,+1 (Niewiadomska-Szynkiewicz et al., 1996). Then, if the last derived
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point x¢ is admissible and “better” it replaces the worst point xz in the set S. Otherwise, a new
simplex is formed randomly and so on.

If the stop criterion is not satisfied, the next iteration is performed. This part of the
algorithm was formed in different way then in the Price original concept. The experiments
showed that following condition may be taken as the stop criterion

Favc _F (xl‘) <& (29)
where F,,. is the mean objective function value in the set, F(x;) the objective function value
in the best point x; and € is the expected accuracy determined empirically (Dysarz and

Napiorkowski, 2002).
NUMERICAL COMPUTATIONS VERSUS EXPERIMENTAL RESULTS

The results of a tracer test carried out in the selected reach of the Wkra River have been
used in the analyses. Three different experimental tests (the discharge O was 4.18, 3.97 and
4.32 m’/s) performed over a 6 kilometers river reach with 5 measuring cross sections are
taken into account. As an initial condition for computations a lack of dissolved solutes in the
channel was assumed:

Cp(x)=Cpp(x)=0 dla xJ[0, L] (30)
The time horizon for simulations was taken as 4h. Time step is taken as Az = 20 s and the
spatial one Ax =20 m.

Admissible range for model parameters is given in Tab.l. Since the differences in the
values of the sought parameters are large, a normalization was necessary and it was performed
by projecting of the admissible set on the unit cube in R" by means of expression:

X-X

o=——"mn_ 0<ac<l (31)
X -X

max min

Examples of simulations of the transport of solutes are shown in Figures 1 and 2. These
figures show the measured and computed concentration distributions at five cross-sections.
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Fig.1 Measured solute concentrations and that obtained by means of linear model
Performance of both linear and nonlinear models is presented. Table 2 provides the

mean values of the objective function as well as the values of standard deviation obtained by
means of the expression:
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(32)

where X is the single sample from a series of N samples having the mean value X . It is
readily seen that the agreement with the measuring data is much better in case when the
variability of model parameters along river channel is taken into account, i.e. in case of egs.
(1) and (3). Mean values of the criterion function varied in the range from 0.005 to 0.01 in this
case while those values were ten times larger in case of eqs. (2) and (3). The values of
standard deviation in both cases did not exceed 5% of mean value. However, the increase in
the accuracy of results has been obtained at much larger computational cost of parameters’
identification. Mean value of the number of runs was 131.4 in case of linear model and it was
as large as 4377.6 for the nonlinear model. Table 3 and Fig.3 provide mean values and the
standard deviations for each determined parameter for both presented models. The values of
the storage zone parameters reflects the relatively simple geometry of the considered channel
of Wkra river. Discussion of the performance of these parameters may be, for example, found
in (Czernuszenko et al., 1998).
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Fig.2 Measured solute concentrations and that obtained by means of nonlinear model

Tab. 1 Constraints for the sought parameters

Steady flow
Parameter Uniform — Egs. (2) i (3) Nonuniform— Egs. (1) i (3)
min max min max
u [m°/s] 0,3 0,7 0,4 0,8
D [m°/s] 0,5 10,0 3,8 9,0
€[] 0,0 0,2 0,0 0,2
T [s] 0,001 200,0 0,001 200,0
Tab. 2 Mean values of criterion function and standard error
test 1 2 3
Linear . Linear . Linear .
Flow model Nonlinear model Nonlinear model Nonlinear
Mean value 0.1258 0.0049 0.1724 0.0104 0.1216 0.0052
Standard 1529 4.483 1671 2677 2,639 2.830
error. %
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Fig.3. Standard deviations for each determined parameter for nonlinear model

Tab. 3 Mean values of the determined parameters and the standard errors — uniform flow conditions

u[m/s] 2
Parameter Tost 1 Test 2 Tost 3 D [m“/s] €[] T [s]
Mean value 0.5592 0.5546 0.5480 4.76127 0.1186 147.9942
Standard 4313 3.835 3.105 37.086 31.239 23.480
deviation %

CONCLUSIONS

In the study a special procedure was designed for the identification of the parameters of the
model of longitudinal transport of pollutants in rivers with the inclusion of the phenomenon of
transient storage. A model taking into account the changes of model parameters along river
channel proved to provide better results when compared to the experimental data but the
parameter identification in such case is computationally much more expensive.
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