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A b s t r a c t  
The flood control problem is discussed in respect to the Nysa Kłodzka 

Reservoir System. The main goal of the paper is to present the performance of 
control mechanisms developed by the authors to minimize the maximum peak of 
the superposition of waves on Nysa Kłodzka and Odra Rivers. The control struc-
ture consists of the simple tank models to describe the reservoirs performance, 
the St. Venant equations to represent transformation of flow in open channels 
and the sequential optimisation algorithm. This algorithm makes use of characte-
ristic features of the system and global optimisation methods. Relations resulting 
from the system dynamic equations enable to separate calculations for any par-
ticular reservoir in the cascade and to propagate the results to other system com-
ponents so that computational costs grow linearly with the number of reservoirs. 
The encouraging results of test for both synthetic and historical data are pre-
sented. 

Key words:  flood control, flood routing models, sequential optimisation, global 
optimisation method. 

1. Introduction 

The catchment of the Nysa River (see Fig. 1) is located in the southern part of 
Poland. The length of the river from the source in mountain massif of Śnieżnik to the 
junction with Odra River is 181,7 km, and the catchment area is about 4566 km2, i.e., 
1/3 of the Odra catchment at this particular cross-section. 
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Fig. 1. Catchment of the Nysa Kłodzka River (S-W Poland). 

The river reach between the source and the reservoirs is a typical mountain river 
reach with a bottom slope of about 10‰ and a number of highland tributaries The 
most important are Wilczka, Bystrzyca Kłodzka, Biała Lądecka i Bystrzyca Dusznicka 
rivers. On the other hand, there are only a few small tributaries feeding the lower part 
of Nysa Kłodzka characterized by bottom slope less than 3‰. 

The hydrological features of the upper part of this catchment are characterized 
by massive rocky underground covered only by a small layer, and an average yearly 
precipitation of about 900 mm. The missing ability of storing water underground leads 
to dangerous floods. To achieve the ability to handle this problem, two reservoirs were 
built, and more are under construction. 

Here we are just interested in the management of reservoirs to control flood 
wave in the Nysa Kłodzka River and a selected reach of the Odra River. 
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Fig. 2. Schematic representation of the system. 
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2. Formulation of the problem 

The considered system, schematically shown in Fig. 2, consists of N reservoirs 
in series and an open channel reach with lateral inflow q. 

At this stage, we assume that inflows I(t) to the system represent one of many 
possible scenarios taken into account by a decision maker. The scenarios considered 
could be based on rainfall-runoff prediction models, or recorded historical data. Reten-
tion in each reservoir Vj(t) is described by the dynamics of a simple tank, with one 
forecasted inflow Ij(t) and one controlled output uj(t), 1,j N= . According to the intro-
duced notation, the state equations for the reservoir system are: 

 
( )

( ) ( ) ,
dV t

B I t C u t
dt

= × − ×  (1) 

where B and C are appropriate matrices. The following constraints on the reservoir 
storage and releases are taken into account: 

        min max( ) ,V V t V≤ ≤ min max( ) ,U u t U≤ ≤  (2) 

for any t ∈ [0, TH], where Vmin denotes dead storage, Vmax denotes total storage, and TH 
is the optimisation time horizon, and the initial condition 

 0(0) .V V=  (3) 

To simplify the optimisation problem, the dynamics of flow in the reach be-
tween the reservoirs is omitted. The flood routing in Nysa Kłodzka River below the 
last reservoir is described by means of the Saint Venant equations or their simplified 
versions described in details in the next section, so the flow at Nysa Kłodzka outlet, 
Q(t), can be represented as: 

 ( ) [ , ]( ) .nQ t u q tϕ=  (4) 

The main goal of this system is the protection of the user located below the cas-
cade of reservoirs against flooding by minimizing the peak of the superposition of 
waves Q(t)+IN+1(t) on Nysa and Odra Rivers, respectively. This can be achieved by 
desynchronization of the flow peaks via accelerating or retarding flood wave on Nysa 
River. The second objective is storing water for future needs after flood. 

Hence, the objective function of the optimisation problem under consideration 
can be written in the form of a penalty function: 

 [ ] [ 2
1 1 2 m[0, ], 1, 1

min max ( ) ( ) ( ) ,
Hj

N

N k Ht Tu j N k
Q t I t V T Vβ β+∈= =

⎧ ⎫+ + −⎨ ⎬
⎩ ⎭

∑ ]ax k  (5) 

where symbols β1 and β2 denote appropriate weighting coefficients and TH is the opti-
misation time horizon. 
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3. Flood routing models 

In the discussed optimisation problem, flood routing model for the river reach 
of Nysa Kłodzka between the lower reservoirs and Odra River is required. For quasi 
regular cross-sections and the bottom slope of about 3‰ one can expect supercritical 
flow conditions for this particular river reach. However, some local depressions with 
much higher bottom slopes cause disturbances, e.g. transition from supercritical flow 
to subcritical flow, backwater, etc. Moreover, irregular shape of the cross-section (see 
Fig.3) and the problems involved in the determination of roughness coefficient, further 
complicate the calculations of flow transformation in Nysa Kłodzka River. 
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Fig. 3. Cross-sections of the Nysa Kłodzka River. 

To describe the flow transformation between reservoirs, two types of flood 
routing models are used. The first model is based on the de Saint-Venant equations 
with simplified trapezoidal geometry of channel cross-sections (Dysarz and Na-
piórkowski, 2001). This model guarantees more accurate description of the transfor-
mation process but requires more computational time. Therefore, to speed up numeri-
cal computations, two versions of kinematic wave models were tested, namely linear 
and nonlinear ones. 

3.1. De Saint-Venant equations 

De Saint-Venant equations constitute the mathematical description of the mass 
and momentum balance. The following form of these equations is adopted: 

 1 ,H Q q
t B x B

∂ ∂
+ =

∂ ∂
 (6) 
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2

0 0 ,f
Q Q HgA gA S S
t x A t

⎛ ⎞∂ ∂ ∂
+ + − − =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (7) 

where: independent variables are distance x and time t, dependent variables are dis-
charge Q(x, t) and water depth H(x, t), appropriate parameters are cross-section area A, 
width of the water surface B, lateral inflow q, acceleration of gravity g, bottom slope 
S0 and hydraulic slope according to Manning’s equation Sf. The initial and boundary 
conditions complement the formulation of model (6) and (7). The steady conditions 
described by the Bernoulli equation are assumed as the initial condition. The upstream 
boundary condition is the outflow from the lower reservoir, and the simplified mo-
mentum equation is taken as the downstream boundary condition. This simplification 
consists in neglecting the inertia and pressure elements in the original equation. 

3.2. Kinematic wave models 

The kinematic wave method is a straightforward simplification of the previous 
model. Its main idea is based on negligible influence of the inertia and pressure terms. 
It seems that this approach is reasonably accurate in the case of Nysa Kłodzka reach. 
Two versions of models, namely the linear one described by equation (8) and the non-
linear one described by equation (9), were tested. 

− linear version 

 ,Q c Q cq
t m x m

∂ ∂
+ =

∂ ∂
 (8) 

− nonlinear version 

 1

1 .m

Q Q q
t xmQ mQα α−

∂ ∂
+ =

∂ ∂ 1m−  (9) 

Note that equation (8) results from equation (9) when c = 1/(αQ m−1) = const. The con-
stant model parameters α, m are to be identified.  

4. Sequential optimisation 

In this section we describe the application of the particular iterative optimisation 
procedure for N reservoirs in series. At any iteration step, the water content of only 
one j-th reservoir is modified. Additionally, we modify outflow from this particular 
reservoir and all outflows from reservoirs below this reservoir uk(t), ,k j N= . 

The applied sequential optimisation procedure contains the following steps (Dy-
sarz and Napiórkowski, 2002a; 2002d; Napiórkowski and Dysarz, 2002): 
(1) assuming zero outflows from all reservoirs, i.e. 

 ,        ( ) : 0ku t = 1,k N∀ =     and    [0, ]Ht T∀ ∈  (10) 

(2) assuming index of the „improved” reservoir as   j: = N 



- 88 - 
 

(3) solving the problem 

  (11) [ ] [{ }2
1 1 2 m[0, ]

min max ( ) ( ) ( ) ,
N H

N N Hu t T
Q t I t V T Vβ β+∈

+ + − ]ax N

with Q(t) = uN (t − T0) and following constraints 

 min max( ) ,N N NV V t V≤ ≤  (12) 

 min max( )N NU u t U N≤ ≤  (13) 
and 

 1
N

N N
dV u I u
dt −= + − N N       (14) (0)(0)NV V=

(4) denoting the best solution as  

[ ]1[0, ]
: max ( ) ( )

H
Nt T

B Q t I +∈
= + t

ax j

 

(5) assuming index   j: = j − 1 

(6) solving the problem  

 [ ]{ }2

1 1 2 m[0, ]
min max ( ) ( ) ( ) ,

j H
N j Hu t T

Q t I t V T Vβ β+∈
⎡ ⎤+ + −⎣ ⎦  (15) 

with Q(t) = uN (t − T0) + Δuj (t − T0), where Δuj (t) is the difference between trajectories 
of the j-th control function of the current and the previous iteration steps; the optimisa-
tion is led under the constraints 

 min max( ) ,j jV V t V j≤ ≤  (16) 

 min max( )j jU u t U j≤ ≤  (17) 
and 

 1 ,j
j j j

dV
u I u

dt −= + −       (0)(0)j jV V=  (18) 

or 

 ,j
j j

dV
I u

dt
= −       (0)(0)j jV V=       if      1j =  (19) 

with additional constraints: 

       for    min max( ) ( )k j kU u t u t UΔ≤ + ≤ k 1,k j N= +  (20) 

(7) assuming  
( ) ( ) ( )k j ku t u t u tΔ= +       for    1,k j N= +  

(8) solving the problem 
[ ]1[0, ]

: max ( ) ( )
H

Nt T
A Q t I t+∈

+  
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(9) returning to (2) if A > B, 

(10) returning to (5) if j > 1. 

The above algorithm describes the consecutive steps of computation which was 
conducted from the reservoir N to 1. Of course, the starting point for the next iteration 
would be step (2). If the results obtained for j = 1 are not worse than those obtained in 
step j = 2, the procedure stops. The experiments showed that the computation time for 
one iteration could be very long (eight hours for N = 4 on PC Pentium III). 

5. Control Random Search method  

The functions uj(t), 1,j N=  were represented by a train of rectangular pulses, 
and the time horizon was divided into L unequal time intervals. The parameters to be 
determined were values of pulses  and time instances of switching the control func-
tion u(t). This type discretisation, denoted as TD-RP (Time Dependent Rectangular 
Pulses) was described in detail by Dysarz and Napiórkowski (2002a; 2002c). 

ˆlu

u(1)=Umin+αL(Umax-Umin) 

I(t), u(t) 
u(2)=Umin+αL+1(Umax-Umin) 

... 

u(L)=Umin+α2L-1(Umax-Umin) 

Fig. 4. Control functions as a train of rectangular pulses. 

The local optimisation problems for all reservoirs were solved by means of the 
Global Random Search procedure, namely the following version of Controlled Ran-
dom Search (CRS2) described in details in Dysarz and Napiórkowski (2002d). 

0 

T(1)=α1TH 

T(2)=α2(TH-T(1)) 

T(3)=α3(TH-T(1)-T(2)) T(4)=α4(TH-T(1)-T(2)-T(3)) 

TH 

TH-T(1)-T(2)-T(3)- T(4) 
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The CRS2 algorithm starts from the creation of the set of points, many more 
than n + 1 points in n-dimensional space, selected randomly from the domain. Let us 
denote it as S. After evaluating the objective function for each of the points, the best xL 
(i.e., that of the minimal value of the performance index) and the worst xH (i.e., that of 
the maximal value of the performance index) points are determined and a simplex in 
n-space is formed with the best point xL and n points (x2, …, xn+1) randomly chosen 
from S. Afterwards, the centroid xG of points xL, x2, …, xn is determined. The next trial 
point, xQ, is calculated, xQ = 2xG − xn+1. Then, if the last derived point, xQ, is admissible 
and better (i.e., Q(xQ) ≤ Q(xH)), it replaces the worst point xH in the set S. Otherwise, a 
new simplex is formed randomly and so on. If the stop criterion is not satisfied, the 
next iteration is performed. In the CRS2 version applied in the tests, the worst point of 
the current simplex will be the reflected point xQ = 2xG − xH, rather than the arbitrarily 
chosen one (Dysarz and Napiórkowski, 2002b). 

6. Results of tests for synthetic data 

The sequential optimisation technique described above was successfully tested 
for the system of four reservoirs in series depicted in Fig. 1 (without flood routing 
model)  and  for  the objective  function  given  by  Eq. (5).  All  reservoirs  are  identi-
cal with the parameters   V(0) = 20 mln m3,   Vmin = 20 mln m3,   Vmax = 120 mln m3, 
umin = 0 m3,   umax = 800 m3. The synthetic inflows to the system for k = 1,5 are de-
scribed by the following equation 

 
2 2

0
0( ) exp 1 .k

k k mk
mk mk

t t t tP t P P
T T

⎛ ⎞− −⎛ ⎞ ⎛ ⎞= + −⎜⎜ ⎟ ⎜ ⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠

0k ⎟⎟  (21) 

The parameters of particular waves are given in Table 1 and respective hydro-
graphs are shown in Fig. 5. 
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Fig. 5. Inflow hydrographs to the system of four reservoirs in series. 
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Table 1 

Parameters of the inflows to the system 

k P0k [m3/s] Pmk [m3/s] Tmk [h] t0k [h] 
1 10.0 500.0 120.0    0.0 
2      80.0 
3    160.0 
4    240.0 
5 10.0 500.0 120.0 320.0 

The performances of reservoirs are shown in Figs. 6a−6d and total reduction of 
the flood wave from 964 m3/s to 742 m3/s at the cross-section below the last junction 
is depicted in Fig. 6e. 
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Fig. 6 (a). Trajectories of inflow, outflow and storage for the first reservoir. 
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Fig. 6 (b). Trajectories of inflow, outflow and storage for the second reservoir. 
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Fig. 6 (c). Trajectories of inflow, outflow and storage for the third reservoir. 
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Fig. 6 (d). Trajectories of inflow, outflow and storage for the fourth reservoir. 
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Fig.7 (a). Performance of the Otmuchów (upper) Reservoir . 
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Fig.7 (b). Performance of the Nysa (lower) Reservoir. 
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7. Results of tests for historical data 

In the next step, the sequential optimisation was verified for the system of exist-
ing two reservoirs against a number of historical flood events and for two types of 
flood routing models described above. The results for one of them, namely for the 
historical floods in Nysa catchment in 1997 and for the nonlinear kinematic wave 
model, are presented in Fig. 7a, Fig. 7b and Fig. 7c, respectively. We observed that 
kinematic wave model described flow transformation with lateral inflow more accu-
rately. 

The floods in 1997 were caused by the most disastrous recent abundance of wa-
ter in the region. During the first stage of the disaster, a rapid increase in runoff was 
noted after intense and long lasting rains in the 4−10 July period in the highland tribu-
taries. Yet, a few days later, from 15 to 23 July, another series of intensive rains oc-
curred. The highest precipitation in the Kłodzko valley reached 100−200 mm. The 
flood virtually ruined the town of Kłodzko (Kundzewicz et al., 1999), and the historic 
stage record was exceeded by 70 cm. Several all-time maximum stages recorded were 
largely exceeded by that flood.  

Figure 7a shows the performance of the Otmuchow (upper) Reservoir, Fig. 7b 
shows the performance of Nysa (lower) Reservoir, and Fig. 7c shows the flow at the 
cross-section below the junction of Nysa and Odra Rivers. 

As one can see, by an appropriate choice of the control functions, the peaks of 
the waves on Nysa Kłodzka and Odra Rivers were desynchronised and the culmina-
tions did not overlap. 

8. Conclusions 

It is necessary to take into account the uncertainty of the inflows forecast in op-
eration control of reservoirs system during flood. Hence, the optimisation problem has 
to be solved repetitively for many scenarios using actual measurements and updated 
forecasts. Therefore, from the decision making point of view, the access to a quick and 
reliable optimisation module is very important. 

The approach presented in the paper makes a decomposition of the general 
problem possible, so that computational costs grow linearly with the number of reser-
voirs. Hence, a more complex representation of the control functions than that de-
scribed by Niewiadomska-Szynkiewicz and Napiórkowski (1998), can be adopted. 

Because of nondifferentiability of global and two local performance indices, the 
global optimisation technique CRS is used. 

The results of applications of the sequential optimisation to determine the reser-
voir decision rules during flooding are encouraging. The accuracy of the proposed 
method is satisfactory. The initiation procedure and the stop criterion were cautiously 
investigated, so high efficiency does not cause losses in accuracy. The described con-
trol structure of Nysa Kłodzka reservoirs system includes transformation by means of 
hydrodynamic flood routing model, because the proposed technique guarantees that 
the solution of the optimisation problem can be obtained in reasonable time. 
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