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Global Optimisation Method for Determination  
of Reservoir Decision Rules During Flood 

Tomasz Dysarz 1, Jarosław J. Napiórkowski2 
 

The flood control problem is discussed in respect to the Nysa Kłodzka Reservoir 
System. The main goal of the paper is to present performance of the particular 
control structures and control mechanisms developed by authors. The new control 
algorithm is proposed that make use of characteristic features of the system and 
global optimisation methods. Relations resulting from the system dynamic 
equations enable to separate calculations for any particular reservoir in the cascade 
and to propagate the results to other system components. Then the solution 
obtained at the previous iteration step is modified. This decomposition reduces the 
dimensionality of the sub-problems that leads to the reduction of the overall 
computational costs.  

 
 

Introduction 
The catchment of Nysa River is located in the southern part of Poland. The hydrological 
features of the upper part of this catchment are characterized by massive rocky underground 
covered only by small layer, and an average yearly precipitation of about 900 mm. The 
missing ability of storing water underground leads to dangerous floods. To achieve the ability 
to handle this problem two reservoirs were built, and two are under construction. Here we are 
just interested in the management of two existing reservoirs to control flood wave in the Nysa 
Kłodzka River and a selected reach of the Odra River.  

Description of the Nysa Reservoir System 
The considered system that consists of two reservoirs in series and open channel reach with 
lateral inflow q is schematically shown in Fig.1. Management and control of flooding 
generally require the use of forecasting techniques. At this stage we assume that inflows to 
both reservoirs I1(t), I2(t), lateral inflow and flow in Odra River I3(t) represent one of many 
possible scenarios taken into account by a decision maker. The scenarios considered are based 
on rainfall-runoff prediction models, or recorded historical data. 
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Fig. 1 Schematic representation of the system 
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Retention in each reservoir Vj(t) is described by the dynamics of a simple tank, with one 
forecasted inflow Ij(t) and one controlled output uj(t), j=1,2  

  1
1 1( ) ( )dV I t u t

dt
= −   1 

  2
1 2 2( ) ( ) ( )dV u t I t u t

dt
= + −   2 

The following constraints on the reservoir storage and releases (given in Table 1) are taken 
into account: 

  ( )1 10V V= ( )2 0V = 20V  (initial condition) 0  

  ( ) jjj VtVV maxmin ≤≤  ( ) jjj UtuU maxmin ≤≤  3 

for j=1,2 and for any , where V[ HTt ,0∈ ] min denotes dead storage, Vmax denotes total storage, 
and TH is optimisation time horizon.  

 
Table 1. System parameters 

 

Reservoir Vmin [mln m3] Vmax [mln m3] Umin [m3/s] Umax [m3/s] 

Upper (no 1) 19,38 124,66 0,0 1363,0 

Lower (no 2) 20,29 113,60 0,0 1960,0 

 

Flood routing models 
To describe the flow transformation between the lower reservoir and Odra River two types of 
flood routing models were used. The first model was based on the de Saint – Venant 
equations with simplified trapezoidal geometry of channel cross – sections. This model 
guarantees more accurate description of the transformation process but requires more 
computational time. Therefore to speed up numerical computations two versions of kinematic 
wave models were tested, namely linear and nonlinear ones. 

De Saint – Venant equations  
De Saint – Venant equations constitute the mathematical description of the mass and 
momentum balance. The following form of this equations is adapted: 

 1H Q
t B x B

q∂ ∂
+ =

∂ ∂
 4 

 ( )
2

0 0f
Q Q HgA gA S S
t x A t

 ∂ ∂ ∂
+ + − − ∂ ∂ ∂ 

=  5 

where independent variables are x – distance and t – time are independent variables, 
dependent variables are Q(x,t) - discharge, H(x,t) – water depth, appropriate parameters are A 
- cross-section area, B – width of the water surface, q – lateral inflow, g – acceleration of 
gravity, S0 – bottom slope, Sf – hydraulic slope according to Manning equation. The initial and 
boundary conditions complement the formulation of model 4 and 5. The steady conditions 
described by Bernoulli equation are assumed as the initial condition. The upstream boundary 
condition is the outflow from the lower reservoir and the simplified momentum equation is 
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taken as the downstream boundary condition. This simplification consists in neglecting the 
inertia and pressure elements in the original equation.  

Kinematic wave models 
The kinematic wave method is a straightforward simplification of the previous model. Its 
main idea bases on negligible influence of the inertia and pressure terms. It seems that this 
approach is reasonably accurate in the case of Nysa Klodzka reach. Two versions of models, 
namely the linear one described by equation 6 and the nonlinear one described by equation 7 
were tested. 
- linear version 

 Q c Q cq
t m x m

∂ ∂
+ =

∂ ∂
 6 

- nonlinear version 

 1

1
m

Q Q
t mQ x mQα α 1m

q
− −

∂ ∂
+ =

∂ ∂
 7 

Note that equation 6 results from equation 7 when ( )11 mc Q constα −= = . The constant model 
parameters a, m are to be identified.  

Optimisation problem 
The main goal of this system is the protection of the user located at the Brzeg cross-section 
against flooding by minimizing the peak of the superposition of waves Q(t)+I3

max

(t) on the Nysa 
and Odra rivers, respectively. This can be achieved by desynchronization of the flow peaks 
via accelerating or retarding flood wave on Nysa River. The second objective is storing water 
for future needs after flood. 
Hence the objective function of the optimisation problem under consideration can be written 
in the form of a penalty function: 

  
[ ]

( ) ( )( ) ( )
1 2

2 2

1 3 2, 0, 1
min max

H
j H ju u t T j

Q t I t V T Vβ β
∈

=

 
 + + −  

 
∑  8 

where symbols 1β  and 2β  denote appropriate weighting coefficients and  is the 
optimisation time horizon. 

HT

Note that minimisation of objective function 8 is subject to the constraints described by 
equations 1-3 and  
 [ ]( )2( ) ,Q t u q tϕ=  9 

where φ represents one of the transformation methods described in the previous section.  
 

Sequential optimisation approach 
In this section we describe the application of the particular optimisation procedure for two 
reservoirs in series. Let us assume that for k-th iteration step the control  and the 
retention V  of the of upper reservoir are specified for any 

)1(
11 ˆ −= kuu

)1(
11
ˆ −= kV [ ]HT,0t∈ . Then one has to 

determine the control value  and retention value  of the lower reservoir. 
The optimisation problem for lower reservoir takes form: 

)(
22

kuu = )(
2

k
2 VV =
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kk
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under constraints 

  
( )

( 1) ( )2
1 2ˆ

k
k kdV u I u

dt
−= + − 2  11 

 ( ) ( ) ( ) ( )2 ,k kQ t u q tϕ  =    12 

   ( ) 2max
)(

22min VtVV k ≤≤ ( ) 2max
)(

22min UtuU k ≤≤  13 

 
After solving optimisation problem 10, i.e. after solving for  and V , the control and 
retention of the upper reservoir are modified so that to improve the primary objective function 
8, while maintaining V ; all modifications of the control function u

)(
2ˆ ku )(

2̂
k

)(
2̂

k
1 are directly transferred 

to the control function u2 that describes the outflow from the reservoir system. The 
optimisation problem for the upper reservoir takes form: 

  
[ ]

( )( ) ( ){ }1
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under direct constraints  

  
( )

( )1
1 1

k
kdV I u

dt
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   ( ) 1max
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and indirect constraints resulting from equation 2 

   17 )1(
1

)(
1
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2
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 ( ) ( ) ( ) ( )1 1
2 ,k kQ t u q tϕ  =    18 

  ( ) 2max
)(

22min
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where u  is improved outflow from the lower reservoir. )(
2

1k

The solutions of the optimisation problem 14 – 19 are the optimal trajectories of , 
 and . Therefore the solutions of the primary optimisation problem at -th 

iteration step are these three functions and the  trajectory determined at the previous 
stage.  

)(
11 ˆ kuu =

k)(
11
ˆ kVV = )(

22
1ˆ kuu =

)(
22

ˆ kVV =

After solving the problems for lower and upper reservoirs, i.e. completing k-th step of 
sequential optimisation, one can go to the next step, k+1, once more solving the optimisation 
problem 10 – 13 using the values obtained at the step k. Calculations terminate when the 
stopping rule is met. The chosen criterion is the difference ε between outflows from the 
system at first and second stage for the current iteration step k.  

  1
 2( ) ( )

2 2
0

ˆ ˆ
HT

k ku u dt ε − ≤ ∫  20 
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The essential problem related to the described algorithm is the selection of initial values 
approximation of  and . Among different options two cases can be intuitively 
justified. In the first case one can assume a constant retention of the upper reservoir: 

)0(
1ˆ

=ku )0(
1̂

=kV

  0
ˆ )0(
1 =

=

dt
Vd k

   21 ⇒ 1
)0(

1ˆ Iu k ==

It means that at the first stage of the next step, all inflows to the system must pass through the 
lower reservoir. This requirement can negatively affect the performance of the algorithm due 
to constraints 13. In some cases the better initial approximation is given by: 

    0ˆ )0(
1 ==ku ⇒ 1

)0(
1̂ I
dt

Vd k

=
=

 22 

In the majority of cases, the above formula does not guarantee that initial approximation 
meets the constraints 3 imposed on retention of upper reservoir. However, violation of the 
constraints resulting from 22 will be corrected at the second stage.  

Control Random Search method 
The functions uj(t), j=1,2 were represented by a train of rectangular pulses and the time 
horizon was divided into L unequal time intervals. The parameters to be determined were 
values of pulses  and time instances (parameters lû α ) of switching the control function u(t). 
This type of discretisation, denoted as TD-RP (Time Dependent Rectangular Pulses) is 
described in detail by Dysarz and Napiórkowski (2002). 
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Fig. 2 Control functions as a train of rectangular pulses 

 
The optimisation problems for the lower reservoir 10 and the upper reservoir 14 were solved 
by means of the global random search procedure (Ali and Sorey, 1994; Price 1987), namely 
the following version of Controlled Random Search (CRS2) described in details in Dysarz 
and Napiórkowski (2002). 
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The CRS2 algorithm starts from the creation of the set of points, many more than n+1 points 
in n-dimensional space, selected randomly from the domain. Let us denote it as S. After 
evaluating the objective function for each of the points, the best xL (i.e. that of the minimal 
value of the performance index) and the worst xH (i.e., that of the maximal value of the 
performance index) points are determined and a simplex in -space is formed with the best 
point x

n
L and n points (x2,…,xn+1) randomly chosen from S. Afterwards, the centroid xG of 

points xL,x2,…,xn is determined. The next trial point xQ is calculated, xQ=2xG-xn+1. Then, if the 
last derived point xQ is admissible and better (i.e., Q(xQ)≤Q(xH)), it replaces the worst point xH 
in the set S. Otherwise, a new simplex is formed randomly and so on. If the stop criterion is 
not satisfied, the next iteration is performed. In the CRS2 version applied in the tests, the 
worst point of the current simplex will be the reflected point xQ, rather than the arbitrary 
chosen one (Dysarz and Napiórkowski, 2002). 

Results of Tests for Historical Data  
The described sequential optimisation was tested and verified against a number of historical 
and synthetic flood events and for two types of flood routing models described above. The 
results for three of them, namely for the historical floods in Nysa catchment in 1965, 1977 
and 1997 and for the nonlinear kinematic wave model, are presented in Fig.3, Fig.4 and Fig.5, 
respectively. We observed that kinematic wave model more accurately described flow 
transformation with lateral inflow. 

The floods in 1997 were caused by the most disastrous recent abundance of water in the 
region. During the first stage of the disaster, a rapid increase in runoff was noted after intense 
and long lasting rains in the 4-10 July period in the highland tributaries. Yet, a few days later, 
from 15 to 23 July, another series of intensive rains occurred. The highest precipitation in the 
Klodzko valley reached 100-200 mm. The flood virtually ruined the town of Klodzko 
(Kundzewicz et al., 1999), and the historic stage record was exceeded by 70 cm. Several all-
time maximum stages recorded were largely exceeded by the 1997 flood.  

Fig.3a-5a show the performance of the Otmuchow (upper) Reservoir, Fig.4b-5b show 
the performance of Nysa (lower) Reservoir, and Fig.3c-5c show the flow at the cross-section 
below the junction of Nysa and Odra Rivers.  
As one can see, by an appropriate choice of the control functions the peaks of the waves on 
Nysa Klodzka and Odra rivers were desynchronised and the culminations did not overlap. 
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Fig. 3a Performance of Otmuchów (upper) reservoir – 1965 data  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3b Performance of the Nysa (lower) reservoir –1965 data 
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Fig. 3c Flow below the junction of Nysa and Odra Rivers –1965 data 
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Fig. 5a Performance of Otmuchów (upper) reservoir – 1977data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5b Performance of the Nysa (lower) reservoir –1977 data 

outflow

outflow from 
reservoirs

 

0

150

300

450

600

0 125 250 375 500 625 750 875 1000 1125 1250

time [h]

di
sc

ha
rg

e 
[m

3 /s
]

0

30

60

90

120

st
or

ag
e 

[m
ln

 m
3 ]

inflow

maximum 
admissible storage

storage

outflow minimum 
admissible storage

 
 
 
 

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200
time [h]

di
sc

ha
rg

e 
[m

3 /s
]

outflow from 
canal

last inflow,
 beyond reservoirs

obtained superposition 
of wavessuperposition of waves 

without retention

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4c Flow below the junction of Nysa and Odra Rivers –1977 data 
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Fig. 5a Performance of Otmuchów (upper) reservoir – 1997data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5b Performance of the Nysa (lower) reservoir –1997 data 

outflow

outflow

outflow from 
reservoirs

0

500

1000

1500

2000

0 125 250 375 500 625 750 875 1000 1125 1250

time [h]

di
sc

ha
rg

e 
[m

3 /s
]

0

30

60

90

120

st
or

ag
e 

[m
ln

 m
3 ]

inflow

maximum 
admissible storage

storage

minimum 
admissible storage

 
 
 
 
 

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200
time [h]

di
sc

ha
rg

e 
[m

3 /s
]

outflow from 
canal

last inflow,
 beyond reservoirs

obtained superposition 
of waves

superposition of waves 
without retention 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5c Flow below the junction of Nysa and Odra Rivers –1997 data 
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CONCLUSIONS 
 
It is necessary to take into account the uncertainty of the inflows forecast in operation control 
of reservoirs system during flood. Hence the optimisation problem has to be solved 
repetitively for many scenarios using actual measurements and updated forecasts. Therefore, 
from the decision making point of view, the access to a quick and reliable, especially 
designed for the particular system optimisation module, is very important.  

The approach presented in the paper makes a decomposition of the general problem 
possible, so that computational costs grow linearly with the number of reservoirs. Hence, 
more complex representation, than that described by Niewiadomska-Szynkiewicz et al. (1996) 
and Niewiadomska-Szynkiewicz and Napiórkowski (1998), of the control functions ( )tju  can 
be adopted.  

Because of nondifferentiability of global and two local performance indices, the global 
optimisation technique CRS is used. The authors have not proved the convergence of the 
proposed method yet, however convergence was observed in all carried out tests. 

The results from applications of the sequential optimisation by means of control random 
search methods to determine the reservoir decision rules during flooding are encouraging. 
Accuracy of the proposed method is satisfactory. The initiation procedure and the stop 
criterion were cautiously investigated, so high efficiency does not cause losses in accuracy. 
As a result, the described control structure of Nysa Kłodzka reservoirs system includes 
transformation by means of hydrodynamic flood routing model, because the proposed 
technique guarantees that the solution of the optimisation problem can be obtained in 
reasonable time.  
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