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A b s t r a c t  

An application of the controlled random search method for real time operation 
of the Nysa Kłodzka Reservoir System in Poland is presented. To improve efficien-
cy and accuracy of the used optimization technique a number of control structures 
were tested and a particular modification of the standard controlled random search 
method was suggested. It is shown that the introduced concept improves the per-
formance of the control structure considerably, which can be expanded to include 
hydrodynamic models for flow routing in Nysa Kłodzka River.  

Key words: flood control, optimization techniques, reservoir system. 

1. Introduction 
In the middle of the last year, the Polish Committee for Scientific Research accepted 
the research project ”Operational control of flood wave”, registered as 6 PO4D 032 
19. The objective of the project is to design Decision Support System for flood control 
for Nysa Kłodzka River and a selected reach of Odra River. In order to achieve this 
main goal the following particular problems are to be solved: numerical forecast of 
precipitation for a catchment, rainfall-runoff transformation model, unsteady flow 
models for Nysa Kłodzka and Odra Rivers, and operational control structures. The 
main goal of the paper is to present some results related to the last problem, namely a 
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control structure and control mechanisms for the cascade of Otmuchów and Nysa re-
servoirs.  

The catchment of Nysa River is located in the southern part of Poland. The hy-
drological features of the upper part of this catchment are characterized by massive 
rocky underground covered only by small layer, and an average yearly precipitation of 
about 900 mm. The missing ability of storing water underground leads to dangerous 
floods. To achieve the ability to handle this problem two reservoirs were built, and 
two are under construction. Here we are just interested in the management of two ex-
isting reservoirs governing the discharges in the city of Nysa, which lies just below the 
reservoir No. 2. Figure 1 shows the simplified Nysa Kłodzka Reservoir System. 
 

Fig. 1. Basic structure of Nysa Kłodzka Reservoir System. 

Management and control of flooding generally require the use of forecasting 
techniques. At this stage we assume that both inflows P1 and P2 to the system 
represent one of many possible scenarios taken into account by a decision maker. The 
scenarios considered could be based on rainfall-runoff prediction models, or recorded 
historical data.  

2. Formulation of the problem 
The basic goal of the optimal flood control problem, i.e., minimization of the peak 
flow measured at a downstream cross-section and storing water for future needs after 
flood can be solved in two stages: the optimization of the so-called aggregated model 
of the system, and then disaggregation of the obtained solution (Karbowski, 1993).  

To describe the original system by means of aggregated model, the system is 
transformed to a single reservoir with aggregated storage V(t) = V1(t)+V2(t), aggre-
gated inflow P(t) = P1(t) + P2(t), and one outflow u(t) = u2(t), as shown in Fig. 2.  

Thus the objective function for the optimization problem under consideration can 
be written in the form: 
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Fig. 2. Aggregated Nysa Kłodzka Reservoir System. 
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where 1β  and 2β  are the weight coefficients, TH is the estimated control time horizon, 
and Vmax is the upper constraint imposed on storage. The set of admissible solutions A 
is determined by mass balance equation  
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and appropriate inequality constraints imposed on storage V(t) and outflow u(t) for 
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where Vmin is the lower constraint of V(t), and Umin and Umax are the lower and the up-
per constraints of u(t), respectively. 

To solve the optimization problem (1)−(3) we transformed it to the equivalent 
form by adding the penalty function to the main criterion (1): 
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where the penalty function depends on current storages and outflows: 
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and where ( ) ( )max 0,f x x+ = . 

P(t) – aggregated inflow u(t)

V(t) - aggregated 
storage 

control cross-
section 
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3. The optimization techniques 
The dynamic optimization problem (4) with the equality constraints (2) can be solved 
as a static one after suitable parameterization of the control function u(t). It should be 
noted, however, that because of the mini-max form of the objective function (4), the 
well-known gradient techniques fail and the non-gradient global optimization methods 
should be applied. 

Recently, methods based on simulation of natural selection and evolution 
processes have become more popular. They have been called evolutionary algorithms 
(Holland, 1975). In parallel, there have been developed non-evolutionary methods of 
optimization. The second group contains methods based on the simplified mathemati-
cal descriptions of physical and chemical phenomena, which are naturally or artificial-
ly forced processes. This group includes the methods like generalized descent method 
(Griewank, 1981), and simulated annealing (Kirkpatrick et al., 1983; Dekkers and 
Aarts, 1991).  

In this paper we apply the global optimization technique elaborated by Price 
(1983; 1987) and later developed by Ali and Storey (1994), namely the controlled 
random search method, and particularly the versions called CRS2 and CRS3 as de-
scribed below. 

Controlled Random Search – Price approach 
CRS methods are global random search procedures combined with local optimization 
algorithms. The local optimization algorithm used can be the simplex method or in 
more developed applications the Nealder-Mead non-linear simplex method (Findeisen 
et al., 1980; Wit, 1986; Niewiadomska-Szynkiewicz, 1999).  

The CRS2 algorithm starts from the creation of the set of points, much more than 
1+n  points in n -dimensional space, selected randomly from the domain. Let us 

denote it as S. After evaluating objective function for each of the points the best Lx  
(i.e., that of the minimal value of the performance index) and the worst Hx  (i.e., that 
of the maximal value of the performance index) points are determined and a simplex 
in n -space is formed with the best point Lx  and n  points ( 12  ,..., +nxx ) randomly 
chosen from S. Afterwards, the centroid Gx  of points Lx , 2x  ,…, nx  is determined. 
The next trial point Qx  is calculated, 12 +−= nGQ xxx . Then the last, if the point Qx  

is admissible and better, i.e., ( ) ( )Q HQ x Q x≤ , replaces the worst point Hx  in the set S. 
Otherwise, a new simplex is formed randomly and so on. If stop criterion, which is 
described further, is not satisfied, the next iteration is performed. 

The CRS3 algorithm is a combination of the CRS2 procedure with the local op-
timization procedure based on the Nelder-Mead simplex method. The local algorithm 
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is switched when a newly generated point in CRS2 falls within the bottom, for exam-
ple, one-tenth of the ordered array S. After completing the local search, the global 
search is continued. The CRS3 method tends to speed the convergence of the algo-
rithm with respect to CRS2. The local optimization procedure operates only on the 
small part of set S and thus has a minimal effect on the global search performance of 
the CRS2 phase. The local procedure can operate at any stage of CRS3. It is triggered 
automatically but it can be modified to permit the user to switch the local procedure in 
or out according to his decision. 

CRS methods have been modified many times. Most of modifications have con-
sisted in adding certain local procedure into the main CRS2 or CRS3 algorithm. This 
has often improved the efficiency or accuracy in case of particular task or group of 
special kind of problems. Some of modifications concerned the construction of initial 
set. 

In this paper the authors propose another kind of CRS2b and CRS3b modifica-
tion. The worst point of the current simplex will be the reflected point 2Q G Hx x x= − , 
rather than the arbitrary chosen one . 

Details of practical application 
The initiation procedure and stop criterion are crucial for the performance of the Con-
trol Random Search techniques used. The initiation is a procedure which determines 
the choice of certain number of points from the domain of a possible solution. Follow-
ing the Price results (Price, 1983), the initial set is built by sampling the domain with 
uniform distribution, and the suggested number of points is to be equal to 10(n + 1). 

CRS methods are characterized by fast expansion of the best solution and slower 
convergence of the other points of the set S. This means that the value of the objective 
function becomes gradually constant in the set and the exploration or expansion abili-
ties are slowly lost. Hence, in the first description of CRS2 method (Price, 1983), the 
stop criterion was based on evaluation of the difference between the best objective 
function and the worst. When this difference was equal to or lower than 10−6 the stop 
criterion was fulfilled.  

It was noticed that the methods reach the optimum much faster before the above 
stop criterion is satisfied so it is expected the stop criterion could be weakened without 
loosing accuracy of the obtained solution. It was assumed in the tests that the proper 
stop criterion could be the difference between the mean value of objective function in 
converted set and the best value. To avoid unnecessary iteration, this difference should 
be equal to or lower than certain accuracy ε . In the first tests the accuracy chosen was 
10−3. Such a condition can guarantee high quality of the obtained solutions and, at the 
same time, reduces an effect which could be called “idle run”, i.e., performing itera-
tions which do not improve the best solution. 
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CRS methods may not be convergent in certain cases. Hence, the above stop cri-
terion is extended to include the second condition, namely maximum allowable com-
putational costs. As to the computational cost, the number of evaluation of objective 
function is adopted. Maximum allowable computational cost depends on actual prob-
lem solved and is in the range of 105 for two-dimensional problem and 106 for ten-
dimensional problems, respectively.  

4. Accuracy of the CRS methods  
In this section the comparison of the results obtained by means of CRS methods with 
those obtained by partially analytical approach for particular case of the control struc-
ture is presented. The analytical approach adopted here was described in detail by 
Karbowski (1991; 1993) and Karbowski and Malinowski (1995). However, it should 
be noted that the above-mentioned analytical approach cannot be applied to real world 
problems because it requires oversimplification of the hydrodynamic models for flow 
routing. 

According to the analysis proposed by Karbowski (1993), the optimal outflow 
takes the form 
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where q is a certain constant outflow from reservoir for time instances 0 2[ , ]t t t∈ . The 
above formula is well-known in literature as the “basic rule” and is shown in Fig. 3. 
The value of the discharge q and the time instances t1 and t2 are calculated according 
to the above-mentioned papers. 

 
 
 
 
 
 
 
 
 
Fig. 3. Outflow from reser-
voir described by the “basic 
rule”. 

In the numerical examples discussed below, the flood wave is represented by the 
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where 0P , mP , Pt  and mT  are the parameters that represent base flow, maximum am-
plitude of flood wave, time to pick and time scale, respectively. Computations are 
carried out for three sets of input data and different initial conditions. In each case 
reservoir parameters were taken as aggregated storage of Nysa Kłodzka system, i.e., 
Vmin = 36.67×106 m3, and  Vmax  =  238.26×106 m3.  The  appropriate  time  horizon  is 
TH = 600 h. Both the data and the obtained analytical results are shown in Table 1. 

Table 1  

Values of parameters used in tests 

 
Test 

Inflow 
V(0) 

[106 m3]

Results 

P0 
[m3/s] 

Pm 
[m3/s] 

Tm 
[h] 

tP 
[h] 

q 
[m3/s] 

t0 
[h] 

t1 
[h] 

t2 
[h] 

Set 1 10.0 700.0 120.0 0.0 36.67 201.22 40.24 40.24 226.74 
Set 2 10.0 700.0 120.0 0.0 100.00 258.94 0.00 46.84 214.52 
Set 3 10.0 700.0 120.0 60.0 100.00 205.54 0.00 100.75 285.75 
 
 

The CRS methods described in previous section were used to solve the same op-
timization problem and the same synthetic (7) inflow with constrains on q and t0: 

                                           min maxU q U≤ ≤             00 Ht T≤ ≤ . (8) 

Each version of the proposed methods were run 20 times for each set of data. 
Averaged results are shown in Table 2. They were divided into four sections, and each 
section contains two columns. The first column represents the mean cost (number of 
objective function evaluations) that is considered as a measure of efficiency. The 
second column represents accuracy and reliability of the solution and is based on 
mean distance between the values q, t0 obtained by means of the CRS methods and 
those obtained analytically ( q̂  and 0̂t  shown in Table 1) given by 

                                      
2 2
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max min

ˆˆ
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U U T
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Note, that the value in the second column in each section of Table 2 is the number of 
runs of the particular CRS method for which the value of criterion (9) is less than 5%. 
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One can see from Table 2 that the high efficiency and accuracy can be expected 
for each algorithm. Original CRS2 and CRS3 methods are more accurate but the mod-
ified techniques seem to be faster. The main conclusion is that the CRS methods can 
be applied for real reservoir systems when hydrodynamic equations are used to de-
scribe flood routing in open channels.  

Table 2  

Efficiency and reliability of the CRS methods, 20 runs 

 
Test 

CRS2 CRS3 CRS2b CRS3b 

Mean 
cost 

Runs with 
KrD < 5% 

Mean
cost 

Runs with
KrD < 5% 

Mean
cost 

Runs with
KrD < 5% 

Mean 
cost 

Runs with 
KrD < 5% 

Set 1 608 18/20 645 19/20 487 16/20 576 17/20 

Set 2 365 17/20 409 15/20 322 18/20 426 15/20 

Set 3 398 18/20 401 18/20 238 14/20 384 16/20 

5. Proposed representations of the control function  
To solve the optimization problem (1) for real systems, four types of approaches that 
lead to the determination of function u(t) depending on finite number of parameters, 
are considered. They are discussed in detail below. 

In the first case, the time horizon is divided into L equal time intervals and the 
function u(t) is represented by a train of Rectangular Pulses, so this type is denoted by 
RP 

                              ' '
1ˆ( ) const [ , ), for every 1,...,l l lu t u t t t l L−= = ∀ ∈ = . (10) 

This is one of the simplest forms of the control function and it is also convenient from 
the practical point of view. In this case the values of pulses ˆlu  are determined directly 
by the chosen CRS technique. 

In the second case, the time horizon is still divided into L equal time intervals and 
the function u(t) is represented by a train of rectangular pulses, but the values of pulses 

lû  are calculated indirectly. First, the required reservoir storage lV̂  at the end of any 
time interval is calculated by means CRS technique, and then outflow lû  is deter-
mined as 

                                   ( ) ( )
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1
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where 1l lt tτ −Δ = − . This type is denoted as RPV, that stands for Rectangles Pulsed 

controlled by water Volume. In this procedure 1
ˆ
−lV  is known from the initial condition 

or from previous computations. 
In the third case the function u(t) is represented by a train of rectangular pulses, 

but the time horizon is divided into L unequal time intervals. The parameters to be 
determined are values of pulses ˆlu  and time instances of switching the control func-
tion u(t). Note that in this case the number of time intervals 1l l lt tτ −Δ = −  can be much 
smaller than in the case of RP and RPV, so the overall number of parameters to be 
determined by means of CRS method is smaller. This type is denoted by TD-RP 
(Time Dependent Rectangular Pulses). 

The last case is similar to the third case but the values of pulses ˆlu  are calculated 
indirectly as in the case of RPV with the use of eq. (11). This type is denoted by TD-
RPV (Time Dependent Rectangular Pulses controlled by water Volume). 

6. Tests with single reservoir 
In this section the results of numerical experiments for three different scenarios are 
presented. The first two scenarios were generated artificially and they represent both 
unimodal and bimodal flood waves. The third scenario represents the real flood wave 
recorded at Bardo cross-section in Nysa Kłodzka River in the time period between 
August 01 and 25, 1980.  

The tests were carried out for aggregated Nysa Kłodzka Reservoir System as de-
scribed in Section 4. Each of four versions of the control function, namely RP, RPV, 
TD-RP and TD-RPV, was run 20 times for each of three inflow scenarios. For the first 
two versions, i.e., RP and RPV, the optimization time horizon was divided into 10 
equal time intervals, i.e., the number of variables to be determined by CRS method is 
10. For the third and fourth versions, TD-RP and TD-RPV, the optimization time hori-
zon was divided into 5 unequal time intervals, i.e., the number of variables to be de-
termined by CRS method is 9.  

The initiation procedure and the stop criterion were used as described in  Sec- 
tion 3.  

Table 6 shows the results of the applied optimization techniques, namely the 
number of objective function calls, the best solutions Fbest and the number of good 
runs (out of 20) for which coefficient Kr[%] defined by  

                                                        [ ]% 100%best

best

F FKr
F
−

= ×  (12) 

is less than 5%, where F  is objective function value obtained from current run. 
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Table 3a 
Classic CRS methods, stop criterion: 310ε −= , 20 runs 

 CRS2 CRS3 

Cost The best 
value 

Runs with 
Kr < 5% 

Cost The best 
value 

Runs with 
Kr < 5% 

Rectangular Pulses (RP) 

Scenario 1 7862 2.2E+08 1/20 108171 1.2E+08 1/20 

Scenario 2 8135 9.7E+05 1/20 9002 3.3E+06 1/20 

Scenario 3 1103775 3.6E+08 2/20 1086269 2.7E+08 1/20 

 Rectangular Pulses controlled by water Volume (RPV) 

Scenario 1 12760 244.4 11/20 12885 244.4 13/20 

Scenario 2 14915 148.9 13/20 17923 148.9 19/20 

Scenario 3 18054 65.3 18/20 19143 65.3 19/20 

 Time Dependent Rectangular Pulses (TD-RP) 

Scenario 1 1802399 206.5 7/20 1702498 206.5 7/20 

Scenario 2 1424697 138.5 16/20 1451865 138.5 15/20 

Scenario 3 591021 62.7 20/20 582604 62.7 20/20 

 Time Dependent Rectangular Pulses controlled by water Volume (TD-RPV) 

Scenario 1 1940155 206.5 20/20 2000000 206.5 20/20 

Scenario 2 1153309 138.5 20/20 1261611 138.5 20/20 

Scenario 3 796894 63.8 2/20 392993 62.7 1/20 

 
 

One can see from Tables 3a and 3b that the performance of the modified CRS2b 
and CRS3b methods is much better when compared to the classic ones and that the 
classic methods fail completely in case of RP function.  

Note that if the reservoir is filled up at the end of optimization time horizon and 
the constraints imposed on current storage are fulfilled, then the value of objective 
function represents the maximum outflow from the reservoir. Hence, very high values 
of the objective function, for example 2.2×108, indicate the violation of the con-
straints. 
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Table 3b 
Modified CRS methods, stop criterion: 310ε −= , 20 runs 

 CRS2b CRS3b 

Cost The best 
value 

Runs with 
Kr < 5% 

Cost The best 
value 

Runs with 
Kr < 5% 

Rectangular Pulses (RP) 

Scenario 1 92686 244.4 20/20 99959 244.4 20/20 

Scenario 2 162464 148.9 20/20 147457 148.9 20/20 

Scenario 3 176186 65.3 20/20 170535 65.3 20/20 

 Rectangular Pulses controlled by water Volume (RPV) 

Scenario 1 28008 244.4 20/20 28161 244.4 20/20 

Scenario 2 52346 148.9 20/20 52846 148.9 20/20 

Scenario 3 66739 65.3 20/20 64393 65.3 20/20 

 Time Dependent Rectangular Pulses (TD-RP) 

Scenario 1 1601442 206.5 20/20 1442677 206.5 20/20 

Scenario 2 1691753 138.5 20/20 1664119 138.5 20/20 

Scenario 3 905483 62.7 20/20 985361 62.7 20/20 

 Time Dependent Rectangular Pulses controlled by water Volume (TD-RPV) 

Scenario 1 1254978 206.5 20/20 1070384 206.5 20/20 

Scenario 2 1134968 138.5 20/20 1233857 138.5 20/20 

Scenario 3 326951 75.3 20/20 735728 75.0 20/20 

 
 

It also results from Tables 3a, and 3b that techniques with variable time intervals, 
namely TD-RP  and  TD-RPV,  give  better  solutions  then  techniques  with  constant 
time intervals length. However, lower values of the objective function entail higher 
computational costs.  

Examples are shown in Figs. 4−6. These are simulations of reservoir perfor-
mance which were obtained from runs of CRS3b method with TD-RP control func-
tion. 

We observed quite often during numerical tests that, for the CRSb methods with 
TD-RP and TD-RPV structure of  the  control  function,  the  stop  criterion  related  to 
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Fig. 4. CRS3b method, 
PS function, Scenario 1 

  
 
 
 
 
 
 
 
Fig. 5. CRS3b method, 
PS function, Scenario 2 

      

 
 
 
 
 
 
 
 
Fig. 6. CRS3b method, 
PS function, Scenario 3 

 
maximum allowable calls of objective function was first met. This meant the solutions 
were not converged to the best ones. It can be easily explained with the help of  Fig. 7, 
which shows the relation between the value of the objective function and computa-
tional cost (number of calls of the objective function). 
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Fig. 7. Objective function 
vs. computational cost. 
 

 
Objective functions are reduced very fast at the beginning of the optimization 

process, then one can observe a kind of plateau,  where the  decrease  of  the  objective 
function requires considerable computational cost. Hence, the number of objective 
function calls meets the appropriate stop criterion before the optimal solution is 
reached. 

Therefore, additional tests were carried out with the weaker stop criterion, name-
ly for 0.5ε =  and 0.3ε = , in which the computational cost was significantly reduced 
by 50% to nearly 90%. The price for dramatic decrease in optimization time is the 
slight increase in the obtained value of objective function. The results obtained for 

0.5ε =  are shown in Table 4. 

Table 4 

Modified CRS methods, stop criterion 0.5ε =  

 CRS2b CRS3b 

Cost The best 
value 

Runs with 
Kr < 5% Cost The best 

value 
Runs with 
Kr < 5% 

 Time Dependent Rectangular Pulses (TD-RP) 

Scenario 1 180124 206.5 17/20 215915 206.6 19/20 

Scenario 2 452923 138.5 20/20 553201 138.6 20/20 

Scenario 3 401282 62.8 20/20 355563 62.8 20/20 

 Time Dependent Rectangular Pulses controlled by water Volume (TD-RPV) 

Scenario 1 140348 206.9 20/20 107706 206.9 20/20 

Scenario 2 192899 138.8 20/20 179927 138.7 20/20 

Scenario 3 64522 76.4 20/20 60311 75.2 17/20 
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7. Conclusions 
Results of application of the control random search methods for the determination of 
the reservoir decision rules during flooding are very encouraging. Accuracy of the 
proposed methods are more than satisfactory. For special case of control function it 
was shown that the numerical solution is consistent with the analytical one. Computa-
tional tests have shown that the best are CRS2b and CRS3b methods with TD-RP 
decision rule but similar results can be also achieved with TD-RPV representation of 
the control function. The initiation procedure and the stop criterion were cautiously 
investigated, so high efficiency does not cause losses in accuracy. As a result, the de-
scribed control structure of Nysa Kłodzka Reservoir System can be easily extended to 
include transformation by means of hydrodynamic flood routing model, because the 
proposed technique guarantees the solution of the optimization problem can be ob-
tained in reasonable time.  
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