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Abstract 

The properties of the impulse response for a Jinearised channel of any shape and any 
frict ion Jaw are studied using the cumułants and shape factors of the generał response and 
the amplitude and phase spectra. It is confirmed that even for this very generał case the average 
downstream movement is given cxactly by the kinematic approximation. It is shown thai for 
very long waves the attcnuation approachcs zero whcrcas for very short waves the amplitudc 
decreases exponentially with distancc. 

1. THE GENERAL LINEAR RESPONSE 

; The classica'. solution for the unstcady movemcnt of a flood wave in a river channel 
~ is based on the Saint-Venant (1871) equations which represent a one-dimensional ana­

lysi'l. The equation of continuity is given by 

aA aQ 
-+-=0 at ax ' (1) 

where A(x, t) is the area of flow and Q(x, t) the flow ratc at a given cross scction. The 
equation for the conscrvation of linear momentum is given by 

av ov ay 
- +v-+-=g(S0 -S1) , at ax ax (2) 

where v(x, t) is the mea n velocity of flow, y(x, t) is the depth of flow, S0 is the bottom 
slope nnd S1 is the frtction slope which is a function of the channel shape and roughness 
and of the a rea of flow. An insight into the nature of the solutions of the full non-linear 
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St. Venant equations can be obtained by studying analytically the properties 01 the linearised 
forms of the equat ions. 

Whilc the earlier studies of the linear channel response were on the basis of a wide 
rectangular channel with Che.zv friction, the authors have recently extended the analysis 
to cover any shapc of channel and any friction law (D ooge, 1980; Dooge et al., 1987). 
If the linearisation is based on a reference condition of flow Q0 and area of flow A0 and 
ncglected of higher order terms then it can be shown (Dooge et al. , 1987) that the go­
verning linear equation is 

• 2 _ a2łfl a2
"' a2

"' (as / a"' as 1 a"') (l-F0)gy0-- -2v0---- = gA0 --- - - ' ax2 ax at at2 aQ at aA ax 
(3) 

where 1j1(X, t) is the perturbation in the flow Q'(x, t) or in the arca A'(x, t) or in any other 
variable of interest. F0 , y0 , and v0 denote the Froude Number, the hydra ulic mean depth 
and the mean velocity of flow for reference condition, respectively. 

For the case of a semiinfinite uniform channel with an impulsive input at the upstream 
end the Laplace transform of the linear channel response is given by 

h(x, s)=exp(exs+.fCx- x-../ as2 + bs+c), (4) 

where the coefficients are related to the parameters of the channel as follows: 

1 
a= 

g YoCI - F5)2 
' 

(Sa) 

b= 2So l+(m-l)F~ 
VoYo (1-F~)2 ' 

(Sb) 

c=m2 ~ 1 (s )2 
Yo (I-F5) 2

' 

(Sc) 

b2 
d=--ac 

4 ' 
(Sd) 

e= - o ( 1 y· 5 

F 
gyo I-Fg 

(Se) 

as can be readily verified. In the above equation m denotes the ratio of the kinematic wave 
speed to the average velocity of flow at the reference condition 

(~~) 
m= (~:). 

(6) 

The discussion of the properties of the I inear channel response in later sections of this 
paper are based directly on the Laplace transform ofthis solution as giveo by equation (4). 
Inversion of equation (4) to the time domain indicates that the generał linear downstream 

<i 

' ł 

~ 



j 
r 

(3] GENERALIZED LINEAR DOWNSTREAM CHANNEL RESPONSE 407 

channel response consists of two parts: (a) the discontinuous head of the wave and (b) the 
more slow-moving body of the wave. The head of this response to a delta function input 
at the upstream end of channel reach is a delta functi on of decreasing volume given by: 

h1(x,t)=<>(t- ~)exp(-px), (7) 

where C t is the downstream characteristic velccity: 

c1 =vo+.Ji-Yo (8) 

and the parameter p characterises the exponential decline in volume and is given by 

b 
p=2.Ja-.Jc 

which in terms of the hydraul ic parameters is 

S0 l-(m-l)F0 p= 
Yo (l +Fo)Fo 

and is positive for all cases of stable open channel flow. 
The body of the wave is given by 

[ '( X)( X)] 11 2h t-- t- -
h2(x, t) =exp(-rt+ox) h(_:_ _ _:_) ~ C1 C2 ( x) 

C1 C2 /( X)( X) 1 t-7i ' 
t- - t- -

C1 C2 

where c2 is the upstream characteristic velocity 

C2=- _I - -
.Ja+;=Vo-../gyo 

a nd the other parameters are given by 

S0 v0 I +(m-l)F~ 
r=-=- 2 

Yo Fo 

o=(m-1) -~o , 
Yo 

h= S0 v0 .J(i=F~) [I -(m- 1) 2F~] 
Yo 2F~ 

(9a) 

(9b) 

(10) 

(11) 

(12) 

(13) 

(14) 

white / 1( ] is a modified Bessel function of the first kind and 1 ( ) is a unit step function. 
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The results in equations (7) to (14) are gcneralizations (Dooge, 1980; Dooge et al., 
1987) of the results previously obtained by Dooge and Harle y (1967) for the special case 
of a widc rectangular channel with Chezy friction . 

2. MOMENTS AND CUMULANTS OF GENERAL RESPONSE 

The usc of moments to ch·.uacterise a d istribution so widely uscd in statii>tics was i · 

introduced into hydrology by Nash (1959). Since thcn it has bcen widcly used both in 
unit hy<lrograph a1nlysis and in fiood routing to study the properties of linear rcsponses 
and to compare the vr,r;ous mod·'ls proposed for use in rcpresenting the linear channel 
responsc or the unit hydrograplL Si.rcc the linear channel response is a function of both x 
and t we can describc it in t·:-rms of its momcnts with respect to A- or its moments with respect 
tot. The momcnts \\ ith respect to time arc more convcnient for the c;;sc of the downstrcam 
wave discussed in this paper. In any case wherc the form of a function is known, the mo-
ments nbout the time ongi n c~:,n be detcrmined as follows 

oo 

, f R RdR 
U[h(x,t)]= h(x,t)t dt=(-1) dsR[h(x,s)].=o• (15) 

o 

whae U' is t11c R-rh moment of the function lz(x, t) about the time origin and h(x, s) 
is the correspondi:1g Lapl~c'- tramform. 

In establishing theoretical relrttic Pship~, it is more co'1.venicrt to reph' ce the mor·cnts 
by the cumubnts which arc 1clak<l to them (Kendall and S tt.ward, 1963). While the 
moments arc g-.ncnted hy the Laplace W;mform asindicL!te<l by equaticn (15) the cumulants 
are generated by the logarithm of the L1place trnnsform. Accordingly they are given by 

dR 

kAh(x, t)] =(- l)R dsn {In [h(x , s)]}.=o. (16) 

The first cu mubnt is identical with the first moment abo ut the origin; the second cum u­
l ant is identicc.l to the second moment about the centre; the third cumulant is i<lentical 
to the third mon·ent 2 brrnt the centre; but in the case of h igher momcnts and cumulants 
this identity does not exist. 

For the fourth cumulant we have 

k 4 = U4 -3(U2)2 (17) 

which is termed exccss kurtosis in statistics. Fo r the fifth cumulant we also havc a rclativcly 
simple relationship 

ks=Us-lOU3Uz. ( 18) 

It is elear from the above t hat in the c:i~c of the linc'lr channel r~sponsc it is possible to 
derive the values of the momcnts or of the cumulants from the solution in the Laplace 
transform domain given by equation (4) cven if the explicit solution in the time domain 
given by equations (7) and (10) is not avai lable. Substituting from equation (4) in equation 
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(15) we obtain for the moments 

dR -
U'[h(x, t)] =(-ll ~ [exp(exs+.Jcx-x.Jas2 + bs+c)Js=o. (19) 

ds 

For the case of the cumulants the exponential form of equation (4) gives us a simplified 
generating function since substituting from equation (4) into cquation (16) gives 

·• dR 
kR[h(x, t)] =(-Il~ [(-.J as2 + bs+c+es+.Jc)xJs=o, (20) 

ds 

where the parameters a, b, r, and e have the values given by equations (S). 
Recentły a generał but complicated expression for any order of cumułant of the linear 

channel response has been derived by Romanowicz et al. (1986). However, only fcw 
first cumulants are used in practice. In fact, they are relatively easy to obtain from implicit 
equation (20). 

The first cumułant, which is cqual to the first moment about the origin or the lag 
of the linear channel response, is a most important characteristic for hydrological purposes. 
Its va lue may be determine by t:tking the first dcrivative in equation (20) and then putting 
s=O. The first cumułant is given by: 

ki = ( 2 ~c - e) x · 
Substituting from equations (Sb), (Sc), and (Se) gives us 

X 
k1=~. 

mvo 

(21a) 

(2l b) 

The first cumulant (and therefore the first moment) for any lcngth of channel is given by 
the time taken for a kinematic wave to traverse the length of channel. This simple and 
exact result indicates that the empirical exprcssion for the movement of the peak ot flood 
wave given by Kleitz (1877) and Seddon (1900) 

dQ 
ck= dA 

holds exactly in the linearised case for the average movement of the wave. 

(22) 

In order to obtain the second cumulant it is necessary to evaluate equation (20) for the 
second derivative. We get 

(
b2 ) X 

k2= 4c -a .Je . (23a) 

Substituting from equations (Sa), (Sb), and (Sc) we obtain 

( - )( )2 1 2 2 Yo x 
k 2 =-[l-(m-1) F 0 ] - -

m S0 x mv0 

(23b) 
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for the second cumulant (i. e. the second moment about the centre) in terms ot the hydraulic 
characteristics of the channel at the reference conditions. 

The third and next cumulants can be obtained in a sim i lar fashion. Evaluating the third, 
fourth and flfth derivatives at s=O we get the following expressions for respective cumu­
lants: 

3 
(

- )2( )3 2 2 2 Yo x 
k 3 =-z[l-(m-I) F0 ][l+(m-I)F0 ] - - , 

m ~x m% 
(24a) 

15 2 2 [ (m
2

-10m+IO)F~ 2 4J( y0 )
3

( x )
4 

k4 =-
3 

[I -(m-1 ) F 0 ] I - +(m-1) F0 - - , (25a) 
m 5 S0 x mv0 

105 2 2 2 
k5=~ [l -(m-1) F0 ] [l +(m- l)F0 ] x 

m 

[ 
(3m2 -14m+l4)F~ 2 4]( Yo )4

( x )s (26 ) x 1- +(m-1) F 0 - - • a 
7 S0 x mv0 

Substituting !ower order cumulants we get convenient for computation forms: 

3 2 (Yo) k 3 = - [l +(m- I)F0 ] - ki k 2 , 
m S0 x 

(24b) 

3(1-F~)( Yo) 2 4 k~ 
k4= - k2 +--. 

m S0 x 3 k 2 

(25b) 

3 2 Yo 2 

[ 
7 (k )2 ( - )2 J 

ks= 5k3 9 k2 -3Fo So x ki . (26b) 

For any given shape of channel and friction law the cumulants are functions of the time of 
passage of a kinematic wave tbrough the channel (x/mv0 ), the dimensionless length of the 
channel (S0 x/y0), and the Froude Number for the reference flow condition (F0). 

3. COMPARISON OF SHAPE FACTORS 

The !ower moments or cumulants have becn used in hydrology to characterise the 
response of catchment components or the to tal response of the catchment. The first moment 
or cumulant gives the lag of the hydrologie system and is of great importance in charac­
terising the response. N asb (1959) int roduced the idea of using dimensionless moments 
to describe the shape of the unit hydrograph. He defined the R-th dimensionless moment 
as 

mR 
U UR-i 

R O 

(U~l 
(27) 

where UR is the R-th moment about the centre of area, U0 is the area of the distribution 
(usually normalised to unity) and u; is the first moment about the origin. 

Dooge and Harley (1967) adapted this approach by replacing the R-th moment 
(UR) by the R-th cumulant (kR) to form shape factors for normalised linear channel res-

„ 
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ponses defined by: 

kR 
SR= kf (28) 

and applied these shape factors to the linrnr channel response of a wide rectangular channel 
with Chezy friction. For the more general case dealt with in the present paper these shape 
factors can readily be derived from the expressions for the cumulants derived in Section 2. 
Since the area under the Jinear channel response is unity, the shape factor S2 is found by 
combining equations (23b) and (2lb) to obtain: 

2= - [1-(m-l) F0 ] -S I 2 2 (Yo) 
m S0 x 

(29) 

and the shape factor S3 is got by combining equations (21b) and (24a) to obtain: 

S3 =_; [I-(m- 1)2F~] [1 +(m- l)F~] ( Yo )
2

• 
m S0 x 

(30) 

According ifthe generał solution for the linear channel response is plotted on a shape factor 
diagram of S3 versus S 2 it will be represented by the line: 

I +(m-l)F~ 2 S -3 (S) 
3 - l-(m-1)2 F~ 2 

(31) 

for any given value of the param eter m and the Froude Number P0 • Such a shape factor 
diagram can be used to compare conveniently the generał łinear channel response for the 
linearised St. Venant equations with conceptual models proposed for use in fiood routing 
and so evałuate the applicability of the łatter modełs. 

The relationship for the bigher cumulaats can ałso be readily derived. Thus we have: 

2 F
2 

2 4 1-(m -IOm+lO)-+(m-1) F0 
5 3 

S4 =15 [l-(m-l)2 pgj2 (S2) (32) 

for the fourth order shape factor and 

[1 +(m- l)F~][ 1-(3m2 -14m+ 14) ~~ +(m-1)2F~J 
4 

S,=105 [l-(m-l)2F~] 3 (S2 ) (33) 

or ałternatively: 

1-(3m2-14m+ 14) F~ +(m-1)2F~ 
35 7 2 

Ss=3 [1-(m-1)2F~][l+(m-I)F5J (S3) 
(34) 

for the fifth order shape factor. 
An alternative approach to removing the effect of area from moments or cumulants is 

to use the second moment about the centre (which is the same as the second cumulant) 

7 AGP - 4/ł'I' 
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as the basis of dimensionkss moments or dimensionkss cumulants. This appro<:ch was 
apphcd to statistical distributions by Pearson (1948) and to fL ud routing by S trup­
c zcwsk i and Kundzewicz (1980\ In this •r11„th . ..;d the R-th ord. r sh?p.:! can be ddined 
as: 

kR 
fR=(k

2
)R/2 (35) 

for the case where the area und ... r the fu.:ction is unity. F or the case of the generał linear 
channtl rcsponse we have for the third c:ckr shape f<ctor: 

3 l+(m-l)Fg (y0 )
0

·
5 

f 3 = Jm[l-(m--1)2F~]0·5 S0 x 

and for the fourth order shape f1ct..:r: 

F2 
1-(m2-10m+lO)~+(m-1)2Fri(-

- 15 5 Yo ) 
! 4 =-;; l-(m-1)2Fg S0 x . 

The relationship between the ab. ·ve f.1ctors c. 'n be written: 

2 Fg 2 4 
1-(m - !Om+ 10)-+(m-l) F0 

5 5 2 

/ 4 =3- . [1 +(m-1)F~] 2 (/3) 

(36} 

(37) 

(38) 

which corre: ponds to equation (32) in the approach where the first cumulant is used to 
remove the eff .... ct of scale. 

Th~ high•)r cumuhnts can be simil...rly d alt with. Th1...; equ, [ons (23b) i>nd {26:i) 
can be combined to give: 

05 [1-(3m2-14m+l4)F~+(m-1)2FÓJ [l+(m-I)F~]( _ i. 5 
_ l 7 Yo) (39) 

fs - m 1•5 [l -(m-1)2F~]L.5 Sox 

for the fifth order shape factor. This can be rd !' d to the third ord1;r factor by: 

p2 
l -(3m2 -14m+ 14) ~ +(m-1)2Fci° 

35 7 3 

fs =9 [l+(m-l)F~]2 (/3). (40) 

The above relationship can all be n:.„dily cvaJU..ii.Ld for particular valuc.s of the parameter 
m and the Froude Number. 

4. AMPLITUDE AND PHASE SPECTRA 

In previous sections the probbm of the g-!nt.!~ I lincarised solution has been discussed 
in terms of the impulse response of the lineariscd St. Vi!nant equations. As an alter' ,ative 
the solution of the latter eq uation can be descnb~d in terms of the frcquency response 
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(e. g. O si owski, 1972). In the present section the frcquency approach is used and expres­
sions derivcd for the ::.mplitud.:: spectrum ar.d f ·cq ·•,c._cy spe::trum of the complete Jinearised 
St. Vc:nant eq uaiions. 

In S.::ction 1 the Laplace transf0rm cf the i mpulse rcsponse was defined as 

h(x, s)=cxp(exs+JCx-x.J~-;2+ bs +c), ., 

where a, b, c, and e, ar~ p ·1mrter~ which d~p rd l t11e hyd·«mlic parameters of the 
channcl ar.d the r,·fat. .. CL fLw :::> ir~dic1tcd in , q-Ji.tion (5). 

The irrpulse re~p rnsc (4) d,·~crib~s all tr.;o for prop-!rtks c f the lineariscd St. Venant 
<::qu. ' ~ions for any input fu ion and :ef'") :n;tidi cn,...dition~ . Somctimc;s it is convcnient 
to empł·..,Y only a p 1rt of the function h(x, s) 011 th~ imrigin_. y axis s-= iw i.e. to replace 
the Laplace tran for m by the Fvurkr tr.._m,fo;:m. The fonction 

h(x,iw)= h(x, s)js•fo> (41) 

is c11led a n amplitud..:-phase c'1aracp.:r lic cf the S} .em o r a frequency transfer function. 
The quantities 

\\hich fulfił the rt: 1ations 

A (x, w)= ih(x , iw)I, 

ą>(x, w) = arg[h(x, iw)] 

A (x, -w)=A(x, w). 

ą>(x, -w)= - ą>(x, w) 

(42a) 

(42b) 

(43a) 

(43b) 

are c -JJ.~d .he "mpl·•·1dc ch.ractrr" „!c :rnd foe ph;1~e characteristic, respect.vcly. From 
equaticns (42) or.~ can s~.: that 

h(x, iw)=A(x lt))nxp[ią>łx,w)] . (44) 

So, the am pl 1 ·1d:: :rnd p 11 ; .:h.H.\l. :.: ' <l t_, r. J • d r,nr '; in amplitu<le .ind phase 
causcd by the sy~· :m f >r . nu<;· lid : , ;' .• "' .. nr i ..,,1. wtth "'i"<.q:.iL.1•.·y w. 

Th.·w r„ q·J.;:11cy lf 1a< Lr fu ie: j, n f, r th~ ],.·~ r; .f cl SL v,. nt equ: :i, TS can be obta 'r -d 
f'rom ~lte L !">! 'C\! t:·J,1•,firn1 (4) hy t<•kir: ,v1ly iue iir b"· 'y pe , r • co•T'plcx Ya, i,, hic 
S= if') i~ giv,n by: 

h(x , iw)=1.:xp(x" c+ieuJX -X \ -aw2+-c.+ibw). (45) 

In order to dd;:rmi1tv t!\c an,plitl'd\: und ph~ ,c d1ar•ctcr!„t:cs we ml.i~ scparate tll~ rea l 
and inr' ~na1y parts <..f the ~qua;.._• rcot 1 qJ .1 _, (4 .. Tne rcmaining two terms scparate 
aulom.itic 1Py. T l-i:· ~;tk.11 ·P .:.~e r•: '. <V~O o;ily. The frequencych . .r:tcl ,·istic~ 

for w O are d. t ... -n 1r• d frolll t:q· 'ttc1 ,3 (43) 
The c HT'plex q t. r Liy whr.~e sq"' ·e root is r„quired is 

(-aw 2+c)+ ibw (46a) 

7• 
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which can be expressed in polar form as 

where 

A +iB= C(cos O+ i sin 8) , 

A=-aw2 +C, 

B=bw, 

C=(A2+B2)0.s, 

B 
9=arctan - . 

A 

The square root of the expression (46b) is given by: 

[JOJ 

(46b) 

(47a) 

(47b) 

(47c) 

(47d) 

(A+iB)
0

·
5
=C

0
·
5
[cos(k7t+ ~)+isin(klt+ ~)] for k =l, 2 (48) 

and by use of the half-angle relations: 

(
c)o.s 

(A+iB)0
·
5 = ± 2 [(I +cosO) 0 ·

5+i(l-cos0)0
·
5
]. (49) 

It is important to note that as w varies from O to +oo the angle O defined by equation 
(47d) varies from O to n, 0/2 falls in the first quadrant. 

Since 
A 

cosO= C (50) 

it follows that 

(A+iB)o.s = + (C+A)
0

·
5
+i(C-A)o.s 

- I > (5 1) 

where the positive root represents waves travelling upstream, white the negative root 
represents waves travelling downst1c?m. 

The amplikde can now be written by means of equations (42a), (45), (47), and (51) 
as 

A(x' w)=exp(.Jcx- {[b2w2+(-aal+c)2J°.s -aw2 +c}o.sx) ..;
2 

, (52a) 

where w is the frequency and a, b, and c are the parameters defined by equations (5). 
Similarly the phase can be written by means of equations (42b), (45), (47), and (51) as 

X 
Q"(X, w)=exw-.J2. {[b2w2 +(-aw2 +c)2

]
0

·
5+aw2 - c}0

·
5

, (53a) 

where the parameters arc the sarre as in equation (52). Substituting of equations (5) into 
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Fig. 2. Phase spectrum for unit Jength 

equations (52a) and (53a) we have 

[ (J 4( )2 2 )2 m Sox Yo 2 2 2 Yoa> 2 
A(x, w)=exp ---2 -=- - 2 - [l + {m- l )F 0 ] w + ( - --2 +m + 

I - Fo Yo Vo So gSo 

41S 

y0 c1l 2)o.s I S0x] 
- - -2 +m 2 -=- (52.b} 

gS0 .j2(1-F0 ) Yo 
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F 2 (J 4 G )2 .( _ 2-- --)-2 o xw Yo 2 2 2 YoW 2 
ą>(x, w)= 2 - 2 - [l+(m-l)F0 ] w + - - 2 +m + 

voO-Fo) Vo So gS0 

Y- ,,,2 )o.s I S x 
0"" 2 o +--2 -m - - - 2 -=-- . (53.b) 

gS0 ,J20 - Fo) Yo 

_ Fig. 1 sliow; th·:: d i men:.ionlc.>s amp' 'tud(' sp~ctrum for the c1s-:- of a wide rectangular 
channel with Gi; ,y f ie on dunit dirr·rnsKnk~~ knr h (D=S0 x/y0 =1) frr F= 0.2 and 
F=0.8. Fig. 2 shows the dimCl' 'iicnless phr.se f>pcctrcm for the snwc two ca„ts. For cther 
lengths of channd the log~rithm of the amplill'<~·- '·cduction and the ph"1s sti"ft will be 
proportio'.lal to the dimcnsionkss ch::.nr.cl kng'h. F Jr othc..r channel shapcs and frction 
law, the amplitt de sp-: et rum w·n be si mi lar in sh~ pe to Fig. I and the phase spt.ctrum will 
be similar in sh: p ._ to Fig. 2. 

It is instructivc to examine the form of the amplitud~ ard phase spectra for the limiting 
values of the f , q' ~cy w. F r vcry low f--q··c„c es 1. e. very Jong waves, the amphtudt: 
given by eq u tions (52) can be appr t x rr r cd by 

A (x, w)~exp [(.Jc-.Jc)x] (54) 

so that therc is 1 10 attenuation for vcry krig \\ V"~. F or the same condition of very low 
frequency the płrnse giv· n by ( qua'iGl s (53) can be <•pprc.ximnted by: 

ą>(x, w) = -[( 2 ~c -e)xw J (55a) 

Substituting of cquations (5) into cquation (55, ) we havc for vcry sma ll fo.quem.ies 

X 
ą>(x, w)~ -w­

mv0 

The upstre:im boundary condi tion in the form of a harmonie osci!l?tion 

fu( t) =foCO SWI 

results in a harmonie osc1lh.ticn :.~ ~ the po,rit x 

f(x , t )=f0 cos(wt-w - x )· 
mv0 

The phase vel ocity of the c;bovc wavc 

ck = mv0 

corrcspond'> to the kinem ;c W< vc sperd. 

(55b) 

(56a) 

(56b) 

(57) 

At the other ex •me lf v r~• high frequcncirs, i.e. vuy sh.Jrt waves, the amplitude 
approaches the v::lue givrn by 

A(x,w) = exp[ - ( 2~~ -~c)xJ. (58a) 
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F rom equation (9b) we have for very h. ~h freq uencies 

A (x, w)=exp[ 
l -(m-l)Fo x ] 
Fo(I+iJ- So y;; =exp (- px). 
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(58b) 

It will be n oted that the ampr u<le for ir,fi ·,: fręą• ·mcy does not <h C''Y to ~~ro tł.us indi­
cating i ,,finite p:>w ·r. Howi..:v ~,the ampl1tLul.! \\ ,I l dccre~se to .zero if tli\.. J~rgth of the chan-

„ nel b c. rn ·s infiuite. 

... 

Tne ph„sc for very short W.lVe.> is fo'.lnd f•:>m equations (53) 

<p(x, w)~ -(.Ja-e) x . (59a) 

F rom eq ..iation (8) we get th.at 

wx = -
<p(x,w)~ - vo +.Ju-Yo , 

wx 
(59b) 

C1 

For the c1sc of a very short w.w~ as the up'itreim b.) . .mdary condition 

fu( t) =Jo cos wt (60a) 

the resulting harmonie oscill~ tion at point x takes form 

f(x, t)=exp(- px)cos( wt-::) (60b) 

which C;Jrre~p ;mds to head of the v ve ( ~e cqJatian (7)) trav„iling with the phase velocity 

c1 =v0 +../gy0 and attenu1tion exp(-px). 
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Wl..ASNOŚCI UOGÓLNIONEJ ODPOWIEDZI IMPULSOWEJ 
DLA ZLINEARYZOWANYCH RÓWNAŃ RUCHU 

PRZY GÓRNYM WARUNKU BRZEGOWYM 

Strcncnnic 

, Rozważania dotyczą kanału pryzmatycznego o dowolnym kształcie i dowolnego prawa tarcia. 
W analizie odpowiedzi impulsowej wykortystano jej kumulanty, współczynniki kształtu i charakterys­
tyki widmowe. Dla dyskutowanego ogólnego przypadku potwierdzono, że średni ruch w dól cieku jest 
opisany dokładnie za pomocą równania fali kinematycznej. Wykazano, że dla bardzo dluiich fal tłu­
mienie dąży do zera, a dla fal krótkich zmnit;isza się wykładniczo z odległością. 

„ 
'• 
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