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Abstract 

The linearised solution for the downstream movement of fiood wave in a semi-infinite 
channel is derived for the generał case of any shape of channel and any friction Jaw. The 
resulting impulse response is seeu to differ from the classical case of a wide rectangular channel 
with Chezy friction only in the v<>lucs of f\\O parameters. These values can be detcrmined 
for the generał case by differentiation of the equation for the friction slope with respect to 
discharge and to area of fiow. 

1. LINEARJSATION OF THE ST. VENANT EQUATIONS 

-

1.1. Basic equations of flood routing. The movement offlood waves in rivers 
is studicd on the basis of a one-dimensional analysis so that the independent variables 
are the elapsed time t and the single space dimension x in the direction of flow. The most 
important problem in flood routing is the downstream problem i.e. the prediction of the 
flood characteristics at a downstrcam section on the basis of a knowledge of the flow 
characteristics at an upstream section and the hydraulic characteristics of the channel 
between the two sections. Other problems of importance are: 

(a) the upstream problem which involves predicting the effect on the upstream channeł 
reach of the changes in the flow conditions at a given section; 

(b) the tributary problem which deals with the effect of tributary infiow on conditions 
in the main channel both upstream and downstream of the point of entry; 

·) the lateral infl.ow problem in which there is a distributed infl.ow to the channel 
rea.:h. 

The above classification and description applies only to a tranquil or subcritical flow 
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in which the Froude number is less than one. For rapid or supercritical flow there is no 
upstream effect. The present paper concentrates on the case of tranquil flow and on the 
downstream problem. 

When only one space dimension is taken into account, the equation of continuity 
in the absence of lateral infiow is given by: 

aQ aA 
-+ - =0 
ax at ' 

{l) 

where Q(x, t) is the discharge, A(x, t) is the cross-sectional area, x is the distance from 
the upstream boundary and t is the elapsed time. 

An equation for the conservation of linear momentum is usually derived on the assump­
tion that: 

a) the slope of the channel bed is small and uniform; 
b) vertical acceleration can be neglected so that hydrostatic pressure prevails at every 

point of the cross-section; 
c) the frictional resistance is the same as for steady uniform flow; 
d) the velocity is uniformly distributed over each cross-section. 
For these assumptiol'\( we have the equation originally written by Saint-V e na n t 

(1871) as: 
az V av l av To 
-+--+--+-=O, 
ax g ax g at yR 

(2a) 

where z(x, t) is the elevation of the water surface above a fixed horizontal daturo, v(x, t) 
is the average velocity in the cross-section, r 0 (x, t) is the average shear stress along the 
perimeter of the cross-section, y is the weight density of the water, and R(x, t) is the hydrau­
lic radius (i.e. the ratio of arca to wetted perimeter) of the cross section. This momentum 
equation is more usually written as (Cunge et al., 1980; H enderso n, 1966): 

ay V av I av 
- + -+ - -=S0 - s1 , 
ax g ax g at 

(2b) 

where y(x, t) is the depth of flow, S 0 (x) is the bottom slope and S1 (x, t) is the friction 
slope defined by 

(3) 

which is the equilibrium condition for steady uniform flow. 
The friction slope depends on the type offriction law assumed, the shape and roughness 

of the cross-section, the flow at the section and the depth of flow. For our purpose it is 
morc convenient to replace the depth of the flow by the area of flow which is a funetion 
of it. Aceordingly the friction slope can be written in the very general form: 

S1 =f(A, Q, shape, roughness). (4a) 

For any given shape and roughness of the cross-section and ar>y given friction law-whether 
Jaminar, smooth turbulent or rough turbulent (Chezy, Manning or logarithmic) - the 
friction slope can be expressed as a function of flow (Q) and the area of flow (A). Thus 
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for Chezy friction we have in generał that 

(4b) 

in which R(x, t) can be expressed as a function of A(x, t). For the particular case of a wide 
rectangular channel the friction slopc for the case of Chezy friction is given by: 

(4c) 

where B is the constant width of the channel and C 1s the Chezy friction parameter. For 
the Manning formula and wide rectangular channd the corresponding expression in 
metric units is 

(4d) 

wherc n is the Manning friction parameter. The results in the present paper apply to any 
shape of section and to any friction law. 

1.2. Linea ri sat ion in di scharge and area. The momenLum equation given 
by equation (2b) above is obviously non-lincar in character and thus no closed form 
solution of this non-linear flood routing problem is available. One approach towards the 
finding of a satisfactory approximate solution is thr ough the lincarisation of the non­
-lincar equation. The first attempt at a linearisation of the completc cquation seems to be 
due to D eymie (1935). Furth:!r work has been don·~ by Masse (1939), Supino (1950), 
Lighth ill and Whith am (1955), Dooge and Harley (1967), Brutsaert (1973). All 
of these studies were confined to Chezy friction law and a wid..: rectangular channcl. 

Any solution of a linearised problem must of nccessity be oni) an approximation to 
the solution of the original non-linear equation. The question of how good that appro­
ximation is can only be properly evaluated if the lineariscd solution is compared to the 
complete non-linear solution for that givcn problem. N .::verthele;,s, a lineariscd solution 
may give insight into the nature of the solution of the complete non-linear probl..!m and 
may do so to a greater extent than the non-linear solution of a simplified version of the 
complete equation. However, in the case of unsteady flow in open channels thcre are some 
phenomena which cannot b;: reproduced by a linearised sol ution. For example, a shock 
will occur in open channel flow whenever two like characteristics intersect one another. 
In the case o f a linearised equation, the like characteristics are all parallel to one another 
and therefore can never intersect in order to indicate shock formation. In contrast the 
non-linear kinematic wave solution will indicate the formation of shock waves which would 
not occur if the complete equation were used. 

Since the continuity equation given by equation (1) is already linear in Q(x, t) and 
A(x, t), it seems appropriate to adopt discharge and area as the dependent variables 
and to express the non-linear momentum equation in terms of the same variable. This 
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may be clone through the use of the diagnostic equation: 

Q=vA (5) 

which by definition connects the discharge Q(x, t), the mean velocity v(x, t) and the area 
of flow A(x, t). Whcn cquation (5) is used to eliminate velocity from equation (2b) we 
obtain 

2 _ oA 2Q oQ oQ 
(I-F )gy-+--+- =gA(S0 -S1), ox A ox ot 

where )i(x, t) is the hydraulic mean depth defined by 

_( ) A(x, t) 
yx , t=---

T(x, t) 

(6) 

(7a) 

and T(x, t) represents the width of the channel at the water surface and is de:fined by 

dA 
T(x, t)= ­

dy. 

and F(x, t) is lhe Froude Number defined by 

2 Q2T 
F (x t)=--

' gA3 

which is an important parameter of the flow conditions. 

(7b) 

(8) 

Equation (6) can conveniently be Jinearised by treating the unsteady flow as a per­
turbation or deviation from a steady flow condition and neglecting second and higher 
order terms. The form of the linearised equation is particularly simple if the perturbation 
is takcn about an initial condition of steady uniform flow. For the case of initial steady 
uniform flow we would writc the total flow (Q) and the cross-sectional area (A) as 

Q(x, t)= Q0 +Q'(x, t)+ea(x, t), 

A(x, t)=A 0 +A'(x , t)+e„(x, t), 

(9a) 

(9b) 

where Q0 is the reference condition of steady uniform flow, A 0 is the cross-sectional area 
corresponding to this flow, Q' and A' are the first-order increments and ea and e„ repre­
sent the higher order terms (i.e. error of the linear approximation). 

When equations (9) are substituted in equation (ł) and the higher order terms neglected, 
we obtain as the continuity equation for the perturbations Q' and A': 

oQ' oA' 
-+-=0 ox ot 

(10) 

which is identical in form to equation (1). When the non-linear terms in equation (6) are 
expanded in Taylor series aro und the uniform steady state (Q0 , A0) for the increments 
defined by equations (9) and the higher order terms than linear are neglected, we obtain 
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the linearised momentum equation given by: 

(I-F0 )gy0 -+2v0 -+-=gA0 --Q--A 2 _ oA' oQ' oQ' ( as, , as, ') 
ax ax ot oQ aA ' (11) 

where the derivatives of the friction slope S1(x, t) with respect to discharge Q and area 
A on the right hand side of the equation arc evaluated at the reference conditions. The 
left hand side of equation (11) has the same form as in equation (6) from which it is derived 
except that the coeffi.cients are frozen at their reference values. Since for the reference 
condition of uniform steady flow the total derivative in the friction slope must be zero, 
we can write 

as, 
oA dQ 

Ck=--=-
oSI dA' 

(12) 

oQ 

where ck is the kinematic wave speed (Kleitz, 1877; Lighthill and Whitham, 1955; 
Seddon, 1900). We may for convenience define m as the ratio of the k.inematic wave 
speed given by equation (12) to the average velocity of flow at the reference condition 

ck m=- . 
Qo 

(13) 

Ao 

The parameter m is a function of the shape of channel and of area of flow (A). For w i de 
rectangular channels with Chezy friction m is always equal to 3/2 and with Manning fric­
tion always equal to 5/3. For shapes of channcl other than wide rectangular m will take 
on different values. This can be illustrated for the case of a channel with a triangular 
cross-section. For such a triangular fiume with Chezy friction, m is equal to 5/4 and with 
Manning friction to 4/3. 

The variation of the friction slope with discharge at the reference condition for all 
frictional formulas for rough turbulent flow can be taken as 

oS1 2S0 
-=-
oQ Qo 

(14) 

Using this value the right hand side of equation (11) can be written as 

R.H.S.=2gA0 S0 m - -- . ( 
A' Q') 
Ao Qo 

(IS) 

If we wish to carry out flood routing in terms of the flow, it is convenient to transform 
the two first order linear equations given by equations (JO), (11) in the dependent variables 
Q'(x, t) and A'(x, t) into a single second order partia! differentia} equation in the single 
dependent variable Q'(x, t). This may be done by: 

a) differemiating equation (10) with respect to x, 



2 _8_2~~~~~~~~-~~~-1_._c_._1._n_o_o_o_E_c_t _a1_.~---------·-~!-6J 

b) differentiating equation (11) with respect to t, 
c) making the necessary substitutions in order to eliminate the variable A'(x, t). 
The resulting equation 

2 _ a2Q' a2Q' a2Q' ( as 1 aQ' ·as 1 oQ') 
(l-Fo)UYo-2 -2vo-- - - 2 =gAo --- +---ox oxot ot oA ox oQ ot (16) 

is a second order differentia! equation for the perturbation Q' (x , t) from the steady uni­
form reference flow Q0 • Equation (16) is the generalised form of the cquation derived 
by Deymie (1935) and Masse (1939) for the special case of a wide rectangular channel 
with Chezy friction. 

A single second order differentia! equation can also be obtained in terms of the per­
turbation A' (x, t) from the reference area A 0 • In this case it is necessary to eliminate 
Q'(x, t) from equations (10), (11). This is done by differentiating the continuity equation 
with respect to time and the momentum equation with respect to distance. When this 
is done the resulting linearised equation is given by 

(l-F~)gy0- -2v0--- -=gA0 __ f_ + _{_ __ , a2 A' a2 A' a2 A' ( as oA' as oA') 
ax2 ax at at2 aA ax aQ ot 

(17) 

which is seen to be identical in form to cquation (16) except for the dt:pendent variable. 
This indicates that the mathematical problem involved in the solution of the linearised 
equation is the same in each case but of course the boundary conditions will vary with the 
choice of dependent variable. This invariance of the form of the basie lineariscd equation 
for the two variables was noted by D ooge and Harley (1967) for the special case of 
a wide rectangular channel with Chezy friction. 

1.3. Linear equation for other dependent variables. The result obtained 
at the end of the last section can b~ generalised to a large numb~r of choices for the depen­
dent variable. This is most conv~niently shown by working in terms of a p~rturbation 
potentia! U'(x, t) which was introduced by Deymić (1935) and developed by Su pi no 
(1950). This perturbation potentia! can b~ defined as a function whose partia! derivative 
with respect to x gives the perturbation from the rcfcrence area: 

o U' 
- =A'(x, t ) ox (18a) 

and whose partia! derivative with respect to time gives minus the perlurbation from the 
reference discharge: 

au' 
-=-Q'(x, t). 
ot 

(18b) 

The definitions given by equations (18) above ensures that the equation of continuity for 
the perturbations in flow and area given by equations (10) is automatically satisfied. Substi­
tution from equations (18) into cquation (11) gives us a second order partia! differentia! 
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equation for the perturbation potentia! 

(l-F~)gy0---2v0-----=gA0 _ _!__+__{_- , 
02u' o2V' o2V' ( os ou' os oV') 
ox2 ox ot ot2 oA ox oQ ot (19) 

which again is identical in mathematical form to equation (16). The linearised equation 
for a number of other choices of dependent variable can be obtained from equation (19) 
above. Since equation (19) is a linear equation, then any derivative of the perturbation 
potentia! U'(x, t) is also a solution of the equation. Hence by equation (18a) the pertur­
bation from the area of flow A'(x, t) is a solution and by equation (18b) the perturbation 
of the flow Q' (x, t) is also a solution. Similarly, any linear combination of solutions is 
also a solution of the basie linear equation. Thus the perturbation of the velocity from 
its reference value is defincd by 

v(x, t)=v0 +v'(x, t)+e.(x, t), (20a) 

where v'(x, t) is the first order perturbation and e. the higher order terms. From equation 
(5) the first order perturbation can be written as 

, Q(x,t) Q0 v(x, t)=--- --e.(x, t). 
A(x, t) A 0 

(20b) 

Substitution f1om equations (9) and neglect of higher order terms gives us for v' (x, t), 
the first order perturbation in the velocity, the relationship 

v' Q' A' ' 
·-=- - - 1 
Vo Qo Ao 

(21) 

which indicates that the first order perturbation in the velocity v' (x, t) is a linear com­
bination of the perturbation in the flow and the perturbation in the area and not the ratio 
of these two perturbations. Since both of the latter are solutions of equation (19), then 
the perturbation in the velocity defined by equation (21) will also be a solution. 

Similarly, the perturbation in the surface width of the channel can be shown to be 
a solution. Since for any given shape, the area and the surface width are both unique 
functions of depth of flow we can write the surface width as a function of the area of flow 

T(x, t) = T[A(x, t)], (22) 

where the function T[ ] depends on the shape of the channel. The first order pertur­
ba tion in T(x , t) will be given by 

T'(x, t)=[dT] A'(x, t) (23) 
dA 0 

and hence will be a solution of any lincar equation of which A'(x, t) is a solution. 
I n the characteristic form of the equation of unsteady flow in open channels, the celerity 

de:fined by 

JgA 
c(x, t)= T (24) 
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is used as a dependent variable. The total perturbation in the celerity is defined by 

c(x, t)=c0 +c'(x, t)+ec(x, t). 

To a first order of approximation the perturbation c'(x, t) is given by 

~=o.s(~ -T') 
co Ao To 

(8) 

(25) 

(26) 

which indicates that the first order perturbation in the celerity c'(x, t) is a linear cornbi­
nation of the perturbation of the area A'(x, t) and the perturbation in the surface width 
T'(x, t). Since the Jatter two variables are solutions of the general equation, then the 
perturbed celerity c'(x, t) will also be a solution. 

As a finał example, we could take as the dependent variable the Froude number de­
fined by (8): 

2 QzT 
F=-. 

gA3 

Proceeding in the same way, we could define the deviation from the reference Froude 
number Fby: 

F(x, t)=F0 +F'(x, t)+ep(x, t). (27) 

To a first order of approximation we would have on the basi~ of equation (8) 

F' Q' A' T' 
-=--1.5-+0.5 - ' 
Fo Qo Ao To 

(28) 

so the first order perturbation of the Froude number F'(x, t) will also be a solution of 
the general linearised equation since it is a linear combination of three variables which 
are themselves all solution of it. 

The list of candidate dependent variables is endless and we could include first order 
approximations to changes in the specific energy or total momenturn or similar combina­
tions of the basie variables. In generał it can be said that the linearised form of the St. 
Venant equations is given by 

2 _ a21 a2f a21 ( as, of as, a~ 
(l-F0 )gy0 - -2v0 ----=gA0 - --+-- -ox2 ox ot ot2 oA ox oQ ot ' (29) 

where/(x, t) is any linear function of the perturbation potentia! defined by equation (18). 
The chcice of the dependent variable is a rnatter of convenience and it is obvious that 
the most convenient dependent variable will be the one in wbich the boundary conditions 
are directly given. Accordingly, if the upstream hydrograph in a flood routing problem 
is given in terms of discharge, then discharge is obviously the approp1 iate dependent varia ble 
for use in a linearised solution. lf, on the other hand, the upstream hydrograph is given 
in terms of wa ter level, it would be more convenient to solve the problem in terms of area 
of flow or surface width or some other varia ble which is a direct and unique function of 
water level. 

The solution of the generał linear cquation for unsteady downstream flow in an uniform 
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open channel subject to given initial conditions and app ropriate boundary conditions 
will be discussed in the next section. The complete linear :flood routing model is a hyper­
bolic partia! differential equation (i.e. it has two real characteristics) and so two boundary 
conditions are required. Because the number of conditions specified at the upstream end 
and the downstream end must be exactly equal to the number of characteristics originating 
at that boundary, it is essential to examine the directions of these characteristics when it 
comes to the correct formulation of the flood routing problem. 

The directions of the characteristics in the (x, t) piane are given 

Ci 2= dx =Qo±JgAo= Vo (Fo±l) 
' dt A0 T0 F0 ' 

(30) 

which gives the celerity of both the primary and secondary waves in the system. In the 
case of rapid flow, i.e. Froude number greater than l, the celerity of both waves is positive 
and as a result two boundary conditions are required at the upstream end of the reach. 
In the case of the movement of flood waves, which is the major concern in practice, the 
flow is tranquil, i.e. the Froude number is less than l, the celerity of the secondary wave 
is negative and one boundary condition must be prescribed at each end of the channel 
reach. 

2. SOLUTION OF GENERAL LINEAR EQUATION 

2.1. Solution in transform d omain. The generał linear equation for unsteady 
flow in open channels can conveniently be solved by the use of the Laplace transform 
tcchnique. The Laplace transform L(x, s) of the dependent variablc f(x, t) is defined as • • 

oo 

L(x, s)= J exp(-st)f(x, t)dt. (31) 
o 

Since cquation (29) reprcsents perturbations from an initial steady condition, the initial 
value of the dependent varia blef (x, t) and its derivatives will all be zero. For this case 
of zero initial conditions, equation (29) when transformed to the Laplace transform do­
main bccomes 

2 - d
2
L dL 2 ( asf dL 0S1) 

(l-F0 )gy0 dx 2 -2v0 s-;J';-s L=gA0 - oA dx +sL oQ . (32) 

The above cquation is a second-order homogeneous ordinary diffcrential cquation for the 
Laplace transform L(x, s) as a function of x. The solution can be written in th-~ generał 
form: 

(33) 

where /.1 and ).2 are the roots of the charactcristic equation for equation (32): 

(34) 

and A1 (s), A 2 (s) arc functions of s to be determined so the appropt·iatc b :>U1u i "f c„.m-
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ditions are satisfied. Since cquation (34) is a quadratic equation, the solution can be written 
directly. Using the standard expression for the solution of the quadratic equation and gather­
ing terms in powers of the transform variable s, we obtain the expression 

A1 , 2 =es+f±-.1as2 +bs+c, (35) 

where the parameters are given in terms of the hydraulic variables by the following rela­
tionship: 

l 
a=----

g)io(l-F~)2' 

2 as, A 0 F~os1 
b=To QoCl-Fo) 8Q _--a:4 __ =-2S_0_ l+(m-l)F~ 

Qo(I - F~)2 
Vo Yo (I - F~)2 

2 (as1)
2 

To aA 2 (So)2 1 
c= 4(1-F~)2=m Yo (l-F~)2' 

b2 
d=--ac, 

4 

( 
1 )o.s F 0 

e= UYo (1 -F~) ' 

r0 as1 

o A 
f = - 2(1-F5) 

So 
m_ 2. 

YoO-Fo) 

(36a) 

(36b) 

(36c) 

(36d) 

(36e) 

(36f) 

Since e and f are positive for F < l and since the Laplace transform L(x, s) must vanish 
fors-+ oo, the positive root in equation (35) must represent waves travelling upstream and 
the negat ive root waves travelling downstream. 

The functions A 1 (s) and A2 (s) can be found from the equations for the upstream fu(t) 
and the downstream.fd(t) boundary conditions. At the upstream boundary (x=O) we have 

(37) 

and at the downstream boundary (x=L) we have 

fh)=A 1(s)exp [A.i(s) L] + Ai(s)exp [A.i(s)L], (38) 

where fu(s) and /d(s) are the Laplace transforms of fu(t) and .fd(t), respectively. Solving 
equations (37) and (38) for the unknown functions and substituting these values in equa­

tion (33) we get 
L(x , s) = hu(x , s)fu(s) + hlx, s)fh), (39) 

where 

sh./ as2 + bs+c(L-x) 
h"(x , s)=exp[(es+f)x) / shv as2 +bs+cL 

(40) 
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is the system function (i.e. the Laplace transform of the impulse response) for an upstream 
input and 

"' shJas2 +bs+c x 
h4(x,s)=exp[-(es+i)(L-x)] - J = ===­

sh as2 +bs+cL 

is the system function for a downstream input. 

( 41) 

In the present paper we will concentrate on the downstream wave which is of primary 
importance in flood routing. To filter out the upstream wave we can set L-+ oo in equation 
(39) and deal with the limiting case of downstream flow for semi-infinite reach (i.c. the 
case where the downstream control is so dis tant from the section of interest that the down­
strcam boundary condition has no influence). In sucha case the upstream transfer function 
is given by: 

h"(x, s) =exp(exs + f x-x Ja s2 + bs+c) 

and the downstrearn transfer function 

hix, s)=O. 

(42) 

(43) 

2.2. Solution in the time domain. While, as we shall see later, the Laplace 
transform of the solution gives a good deal of information abo ut the properties of the generał 
solution for the downstream channel response, it is desirable to obtain an explicit formu­
lation of the solution in the time domain. This may be done by using the standard trans­
form pair given by Doetsch {1961) which gives for the cxpression in the transform domain 

exp(-xJas2+bs+c)-exp --- -Jaxs (
-bx ) 

2Ja 
(44a) 

the corresponding function in the time domain 

- 1{ Jd Jt2-a~2J 
J:!_xexp(-b') a . l(t-Jax), 

a 2a .Jt2-ax2 
(44b) 

where 11 [ ] is a modified Bessel function of the first kind and l ( ) is a unit step function. 
By adopting this standard transform pair it is possible to invert equation (42) to the 

time domain where the solution is found to have two distinct parts so that we can WTite 

hu(x, t)=h;(x, t)+h~(x, t). (45} 

The first part of the solution which may b~ termed the head of the wave is given by 

h~(x, t)=c5[t-(Ja- e)x]exp[-(2 ~a-f )x J (46) 

and the second part of the solution which may be tcrmed the body of the wave given by: 

- 11 [ Jd J(t+ex)2-ax2] 

h~(x, t)=exp(fx)J.:!_xexp(~(t+ex)) ~ I [t-(Ja-e)x]. 
a 2Ja (t+ex)2 -ax2 

(47) 
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lt must be stressed that above solution will be the same for any choice of dependent varia ble. 
As indicated in the Station 1.3, the dependent varia blef (x, t) may be either the perturbation 
potentia!, or any linear function of it. 

The head of the wave as given by equation (46) clearly consists of a delta function 
which travels downstream and whose volume declines exponentially. Equation (46) can 
be more conveniently written as 

where the celerity of the head of the wave (c1) is given by: 

1 J-C1= - _- =vo+ 9Yo 
Ja-e 

(48) 

(49) 

and is clearly seen to be the dynamie speed. The parameter p characterising the rate of the 
attenuation of the wave is given by: 

p=~-J=~o l-(m-I)F0 • 

2 J a '.Yo (I +F0)F0 d 
(50) 

Equations (49), (50) are the generałised form of the equations for a wide rectangular 
channel with Chezy friction given by Dooge and Harley (1967). 

Since the solution applies only to tranquił flow i.e. for Froude Numbers less than one, 
the value of the parameter p will always be positive. Accordingly the head of the wave 
as represented by equation (48) will consist of a delta function which travcłs dowMtream 
at the dynamie wave speed and whose volume is exponentially decreasing. When this part 
of the linear channeł response is convoluted with a given input it produces a contribution 
to the downstream outfiow which will take form of a dynamie wave moving with a celerity 
given by equation (49), of the same shape as the input but with its volwne (and all of the 
ordinates) being reduced exponentially. 

The remaining and major part of the solution to the linear channel response is the body 
of the wave as given by equation (47). This equation for the body of the wave can be 
written as 

where the parameter c2 is the upstream characteristic and is given by 

(52) 
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The remaining parameters (r, o, h) are given by: 

b S0 v0 l +(m-l)F~ 
1· = - = -- ----=--- -

2a Yo F~ ' 
(53a) 

be So 
o=f--=(m-1)-=:--, 

2a Yo 
(53b) 

.jd S0 t10 ,/(I-F~)[l-(m-1)2F&J 
h= -=-=- 2 • 

2a Yo 2F0 
(53c) 

The above expression are generalised forms of thosc obtained by D ooge and H arley 
(1967) for a wide rectangular channel with Chezy friction. 

The shape of the body of the wave for any given shape of cross-section and any given 
friction law depends on the dimensionless length of the channel (D=S0 L(y0) and on 
the Froude number of the reference flow (F0 ). Figs I , 2, 3 and 4 show the variation in 
shape for the case of a wide rectangular channel with Chezy friction. Figs 1 and 2 show 
the dimensionless shape of a relatively short channel (S0 L(y0 = I) for F=0.2 and 0.8, 
respectively. Figs 3 and 4 show the corresponding shapes for a relatively long channel 
(S0 L/y0 =25). 

3. CONCLUSIONS 

A linearised solution for the downstream movement of a fiood wave in a semi-infinite 
channel is derived for the generał case of any shape of channel and any fricrion law. lt 
gives insight into the nature of the solution of the complete non-linear problem and will 
do so more effectively than the non-linear analytical solution based on kinematic wave 
theory which has the serious disadvantage of predicting the formation of shock waves 
which do not occur in nature or in a numerical solution of the full St. Venant cquations. 
The shape of the complete tinear channel response is illustrated for the case of m= 1.5 
(which corresponds to the case of a wide rectangular channel with Chezy friction). These 
hydrograph shapes for both short and long channel are typical of these for all channel 
shapes and friction laws encountered in practice. 
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ODPOWIEDŻ IMPULSOWA DLA KANAŁU PRYZMATYCZNEGO 
PRZY GÓRNYM WARUNKU BRZEGOWYM 

Streszczenie 

Wyznaczono rozwiązanie liniowe ruchu fali powodziowej dla półnieskończonego kanału pryzma­
tycznego o dowolnym kształcie i dowolnego prawa tarcia. Otrzymana odpowiedi impulsowa różni 
się od odpowiedzi impulsowej dla przypadku klasycznego (szerokie koryto prostokątne 1 prawo tarcia 
Chczy'ego) jedynie wartościami dwóch parametrów. Wartości tych parametrów można otrzymać 
różniczkując równanie opisujące prawo tarcia względem przepływu i powierzchni przepływu. 
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